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Introduction
Ce document est un recueil de questions d’oraux de mathématiques des concours d’entrée
aux ENS (Écoles normales supérieures) et à de grandes écoles d’ingénieurs françaises. Il
rassemble notamment des questions provenant de :

ENS (Ulm (Paris), Lyon, Paris-Saclay, Rennes)
X (École Polytechnique (Paris))
Centrale
Centrale-Supélec
Mines
Mines-Ponts
Mines-Télécom
ENTPE (École Nationale des Travaux Publics de l’État)
EIVP (École des Ingénieurs de la Ville de Paris)
ENSEA (École Nationale Supérieure de l’Électronique et de ses Applications)
ENSIIE (École Nationale Supérieure d’Informatique pour l’Industrie et l’Entre-
prise)
ENSAM (École Nationale Supérieure d’Arts et Métiers)
CCINP (anciennement CCP) : Concours Commun INP (Instituts Nationaux Po-
lytechniques)

La majorité des questions provient du site BEOS (Base d’épreuves orales scientifiques
de concours aux grandes écoles) ainsi que de vidéos disponibles en ligne. Je remercie
chaleureusement tous les internautes dont les contributions ont permis la réalisation de
ce document.
Les exercices sont numérotés et, dans la mesure du possible, chaque énoncé est précédé
du nom de l’école, de la filière (par exemple MP, PC, PSI, etc.) ainsi que de l’année du
concours. Aucune des questions présentées dans ce document ne requiert la maîtrise du
langage de programmation Python ni d’un quelconque autre logiciel.
Une grande partie des exercices est issue des concours de mathématiques du CCINP
(anciennement CCP) destinés aux étudiants de classes préparatoires scientifiques et visant
l’admission dans les écoles d’ingénieurs du groupe INP.
Les questions sont organisées en 12 paragraphes, chacun structurant les exercices autour
d’un thème ou d’un domaine mathématique particulier.
Les questions ne se sont classées ni par école, ni par filière, ni par année, ni par niveau de
difficulté !
Certaines questions comportaient un temps de préparation, tandis que d’autres devaient
être traitées immédiatement.
Presque toutes les questions devaient être résolues sans recours à une calculatrice, à un
formulaire ou à un dictionnaire.
En règle générale, les exercices les plus exigeants proviennent des concours des ENS (en
particulier celui de Ulm) et de l’École Polytechnique, notamment pour la filière MP.
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Notations

∅ ensemble vide
N ensemble des nombres naturels
N∗ ensemble des nombres naturels non nuls
Z ensemble des entiers relatifs
Z∗ ensemble des entiers relatifs non nuls
Z− ensemble des entiers relatifs négatifs
Q ensemble des nombres rationnels
Q∗ ensemble des nombres rationnels non nuls
R ensemble des nombres réels
R R ∪ {−∞; +∞}
R∗ ensemble des nombres réels non nuls
R+ ensemble des nombres réels positifs
R∗

+ ensemble des nombres réels strictement positifs
R− ensemble des nombres réels négatifs
C ensemble des nombres complexes
C∗ ensemble des nombres complexes non nuls

U ensemble des nombres complexes de module 1
Un ensemble des racines nèmes de l’unité

[[a ; b]] ensemble des nombres entiers k avec a ⩽ k ⩽ b (a, b entiers)

ppcm(a1, . . . , an) plus petit commun multiple de a1, . . . , an

pgcd(a1, . . . , an) plus grand commun diviseur de a1, . . . , an

a ∧ b le plus grand commun diviseur de a et b
a | b a divise b(

n
k

)
n!

k!(n−k)! (coefficient binomial)

Card(E) cardinal de l’ensemble E
|E| cardinal de l’ensemble E

⌊x⌋ partie entière de x
{x} partie fractionnaire de x

sgn(x) signe de x

K corps commutatif
K∗ ensemble des éléments non nuls de K

K[X] ensemble des polynômes à coefficients dans K
deg(P ) degré du polynôme P
K[X, Y ] ensemble des polynômes en X et Y , à coefficients dans K

Z[X] ensemble des polynômes à coefficients dans Z
K(X) corps des fractions de K[X]
Kn[X] ensemble des polynômes à coefficients dans K de degré au plus n

a ≡ b mod n a et b congrus modulo n
x classe de l’entier x modulo n

Z/nZ anneau des entiers modulo n
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(Z/nZ)∗ ensemble des inversibles de Z/nZ
Fp corps des entiers modulo p (p premier)
F∗

p ensemble des éléments non nuls de Fp

Aut(G) ensemble des automorphismes de G
Sn groupe symétrique de [[1 ;n]]

ε(σ) signature de la permutation σ
A ∼= B A isomorphe à B

Df ensemble de définition de f
Zf ensemble des zéros de f
Gf graphe de f

f ∼ g f équivalent à g
f(x) = o(g(x)) f(x) négligeable devant g(x)
f(x) = O(g(x)) f(x) ne croît pas plus vite que g(x)

∇f gradient de f
∆f Laplacien de f

χu polynôme caractéristique de u
πu polynôme minimal de u

Ker(u) noyau de u
Im(u) image de u

rang(u) rang de u
det(u) déterminant de u

|A| déterminant de la matrice A
com(A) comatrice de A
C(A) commutant de A
Tr(u) trace de u
Sp(u) spectre de u

Vect(S) espace vectoriel engendré par les éléments de S
S⊥ orthogonal de l’ensemble S

dim(E) dimension de l’espace vectoriel E
dimK(E) dimension du K-vectoriel E

L(E) ensemble des endomorphismes de E
E∗ dual (algébrique) de E

L(E,F ) ensemble des applications linéaires de E vers F
Mn(K) ensemble des matrices n× n à coefficients dans K
Mn(Z) ensemble des matrices n× n à coefficients dans Z

Mm×n(K) ensemble des matrices m× n à coefficients dans K
GLn(K) ensemble des matrices inversibles de Mn(K)
GLn(Z) ensemble des matrices inversibles de Mn(Z)
SLn(K) noyau du morphisme de groupes det : GLn(K) → K∗

SLn(Z) noyau du morphisme de groupes det : GLn(Z) → Z∗

f ⋆ adjoint de f
Id application identité
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In matrice identité de taille n
(f)B′

B matrice de f relativement aux bases B et B′

diag(λ1, . . . , λn) matrice diagonale dont les coefficients diagonaux sont λ1, . . . , λn

AT transposée de la matrice A
|||A||| norme subordonnée (à la norme ∥·∥) de A

⟨x, y⟩ produit scalaire de x et y

Sn(R) ensemble des matrices symétriques de Mn(R)
S+

n (R) ensemble des matrices positives (semi-définies positives) de Mn(R)
S++

n (R) ensemble des matrices définies positives de Mn(R)
On(R) ensemble des matrices orthogonales de Mn(R)

SOn(R) noyau du morphisme de groupes det : On(R) → {−1; 1}
An(R) ensemble des matrices antisymétriques de Mn(R)
O(E) ensemble des isométries de E

ℓ∞ ensemble des suites bornées
ℓp ensemble des suites sommables pour la norme ∥·∥p

∥·∥∞ norme infinie
∥·∥p p-norme

B(x,R) boule ouverte de centre x et de rayon R

P ensemble des nombres premiers
vp(n) valuation p-adique de n (p ∈ P)

|·|p valeur absolue p-adique
|x− y|p distance p-adique entre x et y

Qp complété du corps Q pour la distance p-adique

FE ensemble des fonctions f de E vers F
f |A restriction de la fonction f à A (A ⊂ E)
1E fonction indicatrice de E

C(E) ensemble des fonctions continues sur E à valeurs réelles
C(E,F ) ensemble des fonctions continues sur E à valeurs dans F
Ck(E,F ) ensemble des fonctions de classe Ck sur E à valeurs dans F
C∞(E,F ) ensemble des fonctions indéfiniment différentiables sur E,

à valeurs dans F
D1(E,F ) ensemble des fonctions différentiables sur E à valeurs dans F

cosh cosinus hyperbolique
sinh sinus hyperbolique
tanh tangente hyperbolique

arcosh argument cosinus hyperbolique
arsinh argument sinus hyperbolique
artanh argument tangente hyperbolique

A adhérence de l’ensemble A
Å intérieur de l’ensemble A

conv(A) enveloppe convexe de l’ensemble A
diam(A) diamètre de l’ensemble A
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dist(A;B) distance entre A et B

P(E) probabilité de l’évènement E
E complémentaire de l’évènement E

E(X) espérance de la variable aléatoire X
Var(X) variance de la variable aléatoire X

cov(X, Y ) covariance des variables aléatoires X et Y
GX fonction génératrice des probabilités de X

B(p) loi de Bernoulli de paramètre p
B(n, p) loi binomiale de paramètres n, p

G(p) loi géométrique de paramètre p
P(λ) loi de Poisson de paramètre λ
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1 Suites et séries

1 Centrale

Pour tout n ∈ N∗, on pose un =
n∑

k=1
sin

(
k

n2

)
.

Trouver un développement asymptotique à trois termes de (un)n∈N∗ , c’est-à-dire des
nombres réels α,β,γ tels que un =

+∞
α + β

n
+ γ

n2 + o
(

1
n2

)
.

2 X-ENS MP

Soit (an)n∈N∗ une suite strictement croissante d’entiers vérifiant a1 ⩾ 1.
Étudier la nature de

+∞∑
n=1

1
ppcm(a1, . . . , an) .

3 X-ENS

Étudier la nature de la série
+∞∑
n=1

sin(π(2 +
√

3)n).

4 Mines

Étudier la suite (un)n∈N définie par un+1 = un − u2
n avec 0 < u0 < 1.

Trouver un équivalent de (un)n∈N.
Indication : on pourra considérer la suite (xn)n∈N définie par xn = 1

un
.

5 Mines-Ponts

Résoudre dans R l’équation
+∞∑
n=0

(3n+ 1)2xn = 0.

6 ENS

Pour tout n ∈ N∗, on pose un =
(

n∏
k=1

kk

) 1
n

.

Trouver un équivalent de (un)n∈N∗ .

7 X-ENS

1. Pour tout n ∈ N∗, on pose un =
n∑

k=1

ln(k)
k

− 1
2 ln2(n).

Montrer que la suite (un)n∈N∗ converge.

2. Calculer la somme
+∞∑
n=1

(−1)n ln(n)
n

.
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8 X-ENS

Soit (un)n∈N∗ une suite de nombres réels telle que pour tous m,n ∈ N∗, um+n ⩽ um+un.
Montrer que si la suite

(
un

n

)
n∈N∗

est minorée, elle converge.

9 X ESPCI 2013

1. Montrer que la série
∑
n⩾0

2−n2 converge.

2. Soit S =
∑
n⩾0

2−n2 . Montrer que le nombre S est irrationnel.

10 X ESPCI 2022

Pour tout nombre réel x, on note {x} = x− ⌊x⌋.
Trouver un équivalent de {n! e} quand l’entier n tend vers +∞.

11 Mines-Télécom

Calculer lim
n→+∞

n∑
k=1

k

n2 sin
(

kπ

n+ 1

)
.

12 Mines-Ponts PC 2019

Pour tout n ∈ N, on pose wn =
∫ π

2

0
cosn(t) dt.

Montrer que la série
+∞∑
n=0

(−1)nwn converge et calculer sa limite.

13 CCINP PC 2002

La série
∑
n⩾2

ln
(

cos
(
π

2n

))
est-elle convergente ? Le cas échéant, calculer sa limite.

14 Mines

Calculer lim
n→+∞

n∏
k=1

(
1 + 1

n2

√
k(n− k)

)
.

15 Mines-Ponts PC 2016

Soit (an)n∈N une suite réelle de termes positifs. On suppose que la série ∑ an converge.
Trouver la nature de la série ∑√

anan+1.

16 X PSI

Pour tout n ∈ N, on pose un = 2n2 + 4n+ 2
3n

.
Montrer que la série

∑
n⩾0

un converge et calculer sa limite.
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17 Mines-Ponts MP

Soit n ∈ N∗ et In =
∫ 1

0

1
1 + t+ t2 + · · · + tn−1 dt.

1. Montrer que la suite (In)n∈N∗ converge. On note ℓ sa limite.
2. Trouver un équivalent de In − ℓ lorsque n tend vers +∞.

18 X-ENS MP

Étudier la suite (xn)n∈N définie par :
x0 = 1

xn+1 = 1 + n

xn

(n ∈ N)

19 CCINP/Mines-Télécom MP

Étudier la nature de la série de terme général :

un = cos
(
πn2 ln

(
n

n+ 1

))
avec n ∈ N∗.

20 X-ENS

Soit u0 ∈
[
0 ; π

2

]
et pour tout n ∈ N, un+1 = sin(un).

Donner un équivalent simple de la suite (un)n∈N.

21 Mines-Ponts MP

Pour tout α ∈ R∗
+, on considère la série F (α) =

+∞∑
n=0

e−nα

√
n2 + 1

.

Donner un équivalent simple de F (α) lorsque α tend vers zéro.

22 Mines-Ponts PC 2018

1. Montrer que si a, b > 0, alors

arctan(a) − arctan(b) = arctan
(
a− b

1 + ab

)
.

2. Calculer : ∑
n∈N∗

arctan
( 2
n2

)
.

23 Mines-Télécom MP 2024

Donner la nature des séries de terme général un avec :

1. un = na

(
1 − cos

(
1
n

))
, pour a ∈ R.

2. un = n2√
n− 1.
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24 Mines-Ponts PC 2015

On définit la suite (un)n∈N∗ grâce à la règle suivante :

u1 =
√

1, u2 =
√

2 +
√

1, u3 =
√

3 +
√

2 +
√

1, . . .

un =

√
n+

√
n− 1 + · · · +

√
2 +

√
1.

1. Montrer que la suite (un)n∈N∗ diverge.
2. Exprimer un+1 en fonction de un.
3. Montrer que un ⩽ n pour tout n ∈ N∗.
4. Montrer que un est négligeable devant n.
5. Donner un équivalent simple de un.

25 Mines-Télécom PSI 2023

Pour tout n ∈ N∗, on pose un =
(
n sin

( 1
n

))n2

.
Déterminer lim

n→+∞
un.

26 X-ENS MP

Soit (an)n∈N et (bn)n∈N deux suites définies par a0 > 0 et b0 > 0, et pour tout n ∈ N,

an+1 = an + bn

2 et 1
bn+1

= 1
2

( 1
an

+ 1
bn

)
.

1. Étudier la convergence des suites (an)n∈N et (bn)n∈N.
2. En notant ℓ = lim

n→+∞
an, trouver un équivalent de an − ℓ.

27 Centrale 2010

Soit u0 > 1 et pour tout n ∈ N, un+1 = un + ln(un).
Étudier la convergence de la suite (un)n∈N et donner un équivalent.

28 ENS Ulm Lyon PC 2022

Soit f la fonction continue sur R+ définie par :

f(x) =
∑
n⩾0

xn

(n!)2 .

Montrer que la série converge pour tout x ∈ R+ et que f(x) =
+∞

o(ex).

29 Mines-Ponts PSI

Soit α ∈ R∗
+ et fα : x 7→ ln

(
x2 − 2 cosh(α)x+ 1

)
.

1. Déterminer l’ensemble de définition de fα.
2. Déterminer le développement en série entière de fα au voisinage de zéro.
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30 X PC 2008

Étudier la nature de la suite de terme général

un = n+ ln(n) −
n∑

k=1
e 1

k .

31 Mines-Ponts PSI 2019

Déterminer la nature de la série de terme général

un = (−1)n

na + (−1)nnb

selon les valeurs de a et b.

32 CCINP

Montrer que la série de terme général

an = n3 + 2n2 + n+ 1
n!

est convergente et calculer sa somme.

33 Centrale

Pour n ∈ N∗, on pose Pn =
n∏

k=0
(X − k).

1. Montrer qu’il existe un unique αn ∈ ]0 ; 1[ tel que P ′
n(αn) = 0.

2. Pour x ∈ R \ {0; 1; . . . ;n}, exprimer P
′
n(x)
Pn(x) sous forme de somme.

3. Déterminer la limite de la suite (αn)n∈N∗ .
4. Trouver un équivalent de αn.

34 Centrale PC 2015

Soit n ∈ N∗. On note s(n) le nombre de chiffres dans l’écriture en base 10 de n. Étudier
la convergence, puis la somme de la série

+∞∑
n=1

s(n)
n(n+ 1) .

35 Centrale PC 2023

Pour n ∈ N∗, on pose un =
∫ 1

0

xn

1 + xn
dx. Soit encore J =

∫ 1

0

ln(t)
1 + t

dt.

1. Calculer la limite ℓ de la suite (un)n∈N∗ .
2. Étudier la convergence de J et calculer cette intégrale.

On pourra utiliser l’égalité :
∑
n⩾1

1
n2 = π2

6 .

3. Montrer que un =
+∞

ℓ+ α

n
+ β

n2 + o
( 1
n2

)
, où α et β sont deux nombres réels.
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36 Mines-Ponts PC 2013

Quelle est la nature de la série

+∞∑
n=3

1
n ln(n) ln(ln(n)) ?

37 X MP 2018

Pour tout n ∈ N∗, on pose un =
{
(1 +

√
2)2n

}
.

Étudier la nature de la série
∑
n⩾1

un.

38 Centrale PC 2004

Soit a > 0. On pose, pour tout n ∈ N,

un = a2n∏n
k=0

(
a2k + 1

) .
Déterminer la nature de la série

∑
n⩾0

un selon les valeurs de a et calculer sa somme

lorsqu’elle converge.

39 CCINP PSI 2013

On considère la série de terme général défini pour tout n ∈ N∗ par :

un = 1∑n
k=1 k

2 .

1. Montrer que la série
∑
n⩾1

un converge.

2. Trouver trois réels a, b, c tels que pour tout n ∈ N∗,

1
n(n+ 1)(2n+ 1) = a

n
+ b

n+ 1 + c

2n+ 1 .

3. Calculer la somme de la série.

40 Mines-Ponts PSI 2019

On pose f : x 7→
+∞∑
n=0

ln
(
1 + e−nx

)
.

1. Trouver Df .
2. Calculer lim

x→+∞
f(x).

3. La fonction f est-elle intégrable sur [1 ; +∞[ ?
4. Trouver un équivalent de f en zéro.
5. La fonction f est-elle intégrable sur ]0 ; 1] ?
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41 CCP MP

1. Soit n ∈ N. Montrer qu’il existe un unique un ∈ ]0 ; 1] tel que :
∫ 1

un

et

t
dt = n.

On pourra considérer la fonction f définie par f(x) =
∫ 1

x

et

t
dt.

2. Étudier la monotonie de la suite (un)n∈N et calculer lim
n→+∞

un.

3. Pour tout n ∈ N, on pose vn = n− ln(un).
Montrer que la suite (vn)n∈N converge et exprimer sa limite à partir d’une inté-
grale.

4. Trouver un équivalent simple de un.

42 Mines-Télécom PSI 2019

Soit f une fonction continue, croissante et positive de ]0 ; 1] dans R.

On note, pour tout n ∈ N, un = f(e−n) et pour tout n ∈ N∗, vn =
1
n
f

(
1
n

)
.

Montrer que les séries de terme général un et vn ont même nature.

43 Mines-Ponts

Pour tout n ∈ N∗, on pose un = (−1)n+1 ln
(

1 + 1
n

)
.

Montrer que la série de terme général un est convergente et calculer sa somme.

44 Mines

Calculer :

lim
n→+∞

n∏
k=0

1 +

√
k(n− k)
n2

 .
45 Mines-Ponts

Pour a et b réels, trouver la nature de la série de terme général

un = sin
( 1
n

)
+ a tan

( 1
n

)
+ b ln

(
n+ 1
n− 1

)
.

46 CCINP

1. Montrer que pour tout n ∈ N tel que n ⩾ 2, l’équation

ex + x = n,

d’inconnue x ∈ [0 ; +∞[, admet une unique solution notée xn.
2. Montrer que la suite (xn)n⩾2 est équivalente à ln(n) lorsque n tend vers +∞.
3. Pour α ∈ R, déterminer la nature de la série de terme général xα

n.
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47 X PC 2013

Soit x > 0. Quelle est la nature de la série
∑
n⩾1

(
x

1
n − 1

)
?

48 CCINP PC

Quelle est la nature de la série de terme général défini par :

∀n ∈ N∗, un = arccos
( 1
n

)
− arccos

( 1
n2

)
?

49 Centrale PC 2019

Soit (un)n∈N∗ une suite de réels positifs ou nuls.

1. On suppose que un >
1
n

sauf pour un nombre fini d’entiers n ∈ N∗.
La série ∑un est-elle divergente ?

2. On suppose que un >
1
n

pour un nombre infini d’entiers n ∈ N∗.
La série ∑un est-elle divergente ?

50 Centrale

Soit (un)n∈N une suite réelle. On suppose que
+∞∑
n=0

un converge.

Montrer que
n∑

k=1
kuk = o(n).

51 X-ENS

Soit (an)n∈N une suite réelle telle que, pour tout n ∈ N,

an

n∑
k=0

a2
k = 1.

Trouver un équivalent de (an)n∈N.

52 Mines-Ponts/Centrale PC 2010

Pour tout n ∈ N∗, on pose
un =

n∑
k=1

1√
k

− 2
√
n .

1. La suite (un)n∈N∗ est-elle convergente ?
2. Soit α > 0. Quelle est la nature de la série de terme général donné par

∀n ∈ N∗, vn = 1
nα

n∑
k=1

1√
k

?

53 CCINP

Pour tout n ⩾ 2, on pose un = ln
(

1 − 1
n2

)
.

Étudier la nature de la série
∑
n⩾2

un.
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54 X-ENS

Soit (un)n∈N une suite réelle telle que lim
n→+∞

(un+1 − un) = 0.
Montrer que l’ensemble des valeurs d’adhérence de (un)n∈N est un intervalle.

55 X

Soit (an)n∈N∗ une suite de naturels telle que pour tout n ∈ N∗, 0 ⩽ an ⩽ n− 1.

1. Montrer que la série
∑
n⩾1

an

n! converge.

2. On suppose que an = n− 1 à partir d’un certain rang.
Montrer que

∑
n⩾1

an

n! est rationnel.

3. Soit t ∈ [−1 ; 1].
Montrer qu’il existe α ∈ R tel que lim

n→+∞
sin(2πn!α) = t.

56 X-ENS

Étudier la suite (un)n∈N∗ définie par un = 1
nn

n∑
k=1

kn.

57 X-ENS

Trouver un équivalent de un =
∑
k⩾1

(−1)k−1
⌊
n

k

⌋
.

58 X-ENS

Soit a et b deux nombres réels tels que a < b. Soit f : [a ; b] → [a ; b] une fonction
continue, u0 ∈ [a ; b] et pour tout n ∈ N, un+1 = f(un). On suppose de plus que
lim

n→+∞
(un+1 − un) = 0. Montrer que la suite (un)n∈N converge.

59 X

Calculer lim
n→+∞

n∑
k=0

cos
(

2kπ
2n+ 1

)
.

60 X-ENS

Pour tout n ∈ N∗, on note Bn le nombre de partitions de l’ensemble [[1 ;n]]. On pose
B0 = 1. Montrer que pour tout n ∈ N :

Bn+1 =
n∑

k=0

(
n

k

)
Bk.

En déduire la formule :
∀n ∈ N, Bn = 1

e

+∞∑
j=0

jn

j! .
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61 Mines/CCP

Calculer lim
x→0+

+∞∑
n=1

(−1)n−1

x
ln
(

1 + x

n

)
.

62 Centrale

Soit α un réel irrationnel fixé. On note Rα le rayon de convergence de la série entière

∑
n⩾1

xn

sin(n!πα) .

1. Démontrer que Rα ⩽ 1.
2. On considère la suite (un)n⩾1 définie par :

u1 = 2 et ∀n ⩾ 1, un+1 = (un)un .

Démontrer que, pour tout n ⩾ 1 :

un

un+1
⩽

1
(n+ 1)n

.

En déduire que la série de terme général
1
un

converge.

Dans la suite, on pose α =
+∞∑
n=1

1
un

et on admet que α est irrationnel.

3. Démontrer qu’il existe une constante C strictement positive telle que, pour tout
entier n ⩾ 1 :

πun

+∞∑
k=n+1

1
uk

⩽
C

uun−1
n

.

4. Démontrer que Rα = 0.
5. Question subsidiaire : démontrer que α est effectivement irrationnel.

63 ENS

1. Soit (xn)n∈N une suite à valeurs dans ]0 ; 1[. Montrer que la suite

(xn(1 − xn+1))n∈N

admet une valeur d’adhérence inférieure ou égale à 1
4 .

2. On suppose que (xn(1 −xn+1))n∈N n’admet pas de valeur d’adhérence inférieure
à 1

4 . Montrer que la suite (xn)n∈N converge vers 1
2 .

64 ENS

Soit (un)n∈N une suite réelle vérifiant u0 ⩾ 0 et un+1 = |un − n| pour tout n ∈ N.
Trouver un équivalent de un.
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65 CCP MP

Pour tout n ∈ N∗, on pose un =
n∑

k=1

k

k2 + 1 − ln(n).

1. Donner un équivalent de un+1 − un.
En déduire que la suite (un)n∈N∗ converge. On note ℓ sa limite.

2. Proposer un équivalent simple de un − ℓ.
3. Étudier la nature de la série

∑
n∈N∗

(−1)n(un − ℓ).

66 Centrale

Considérons la suite (In)n∈N∗ définie par In =
∫ +∞

0

1
(1 + t3)n dt.

1. Soit les suites (un)n∈N∗ et (vn)n∈N∗ telles que pour tout n ∈ N∗ :

un =
n∑

k=1

1
k

− ln(n) et vn =
n∑

k=1

1
k

− ln(n+ 1).

Montrer que ces deux suites convergent.

2. Montrer que pour tout n ∈ N∗, In+1 =
(

1 − 1
3n

)
In.

3. Montrer qu’il existe deux nombres réels α et β
tels que ln(In) = α ln(n) + β + o(1).

4. Étudier la convergence de la série
+∞∑
n=1

In.

67 Mines-Télécom MP

Soit
∑
n∈N

un une série à termes strictement positifs.

1. On suppose qu’il existe ℓ ∈ R+ tel que lim
n→+∞

n
√
un = ℓ.

Montrer que :

(a) ℓ < 1 =⇒
∑
n∈N

un converge ;

(b) ℓ > 1 =⇒
∑
n∈N

un diverge.

2. On suppose qu’il existe ℓ ∈ R+ tel que lim
n→+∞

un+1

un

= ℓ.

Montrer que lim
n→+∞

n
√
un = ℓ.

68 X MP

Soit λ ∈ ]0 ; 1]. Étudier la suite (xn)n∈N définie par :x0 ∈ ]0 ; 1[
∀n ∈ N, xn+1 = 1 − λx2

n
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69 Mines-Ponts

Soit f ∈ C1([1 ; +∞[,R∗
+) vérifiant lim

x→+∞

f ′(x)
f(x) = −∞.

1. Étudier la nature de la série
∑

n∈N∗
f(n).

2. Donner un équivalent de Rn =
+∞∑
k=n

f(k) en +∞.

70 Centrale MP

Soit q une application continue de R dans C telle que t 7→ tq(t) soit intégrable sur R+.

1. Montrer qu’il existe a ∈ R+ tel que
∫ +∞

a
|tq(t)| dt ⩽ 1

2.

On définit (yn)n∈N une suite de fonctions définies sur R par :
y0 = 1

∀n ∈ N, ∀x ∈ R, yn+1 = 1 −
∫ +∞

0
(t− x)q(t)yn(t) dt

2. Justifier la définition de (yn)n∈N et montrer que pour tout n ∈ N, yn est continue
sur R et bornée sur [a ; +∞[.

3. Montrer la convergence uniforme de (yn)n∈N sur [a ; +∞[.

71 Mines-Télécom MP

Soit (un)n∈N la suite définie par :
u0 ∈ R

un = (−1)n cos(un−1)
n

si n ⩾ 1

Étudier la nature de la série de terme général un.

72 ENS ESPCI 2015

Pour tout n ∈ N, soit cn = 1
n+ 1

n∑
k=0

(
n

k

)2

.

1. Montrer que pour tout n ⩾ 1, cn = 1
n+ 1

(
2n
n

)
.

2. Montrer que la série ∑ cnx
n a un rayon de convergence R > 0.

3. On pose f : x 7→
+∞∑
n=1

cnx
n.

Montrer que f(x) = 1
2x
(
1 −

√
1 − 4x

)
pour tout x ∈ ] −R ;R[ \{0}.
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73 CCP MP

Soit M =


1
2

1
4

1
4

1
4

1
3

5
12

1
4

5
12

1
3

 ∈ M3(R).

1. La suite (Mn)n∈N converge-t-elle ?
2. On note N = lim

n→+∞
Mn. Que représente N ?

3. Déterminer N .

4. Soit u0, v0 et w0 trois nombres réels et X0 =

u0
v0
w0

 .
Soit Xn =

un

vn

wn

 tel que, pour tout n ∈ N, Xn+1 = MXn.

La suite (Xn)n∈N converge-t-elle ? Le cas échéant, quelle est sa limite ?

74 CCP MP

Soit δ ∈ ]0 ;π]. Pour tout n ∈ N, on pose Sn(δ) =
n∑

k=1
cos(kδ).

1. Donner une expression simplifiée de Sn(δ). Exhiber M(δ) ∈ R, indépendant de
n, tel que :

∀n ∈ N, |Sn(δ)| ⩽M(δ).

2. Pour tout n ⩾ 2 entier, on pose un(δ) =
√
n

n− 1 cos(nδ).

(a) Montrer que la fonction x 7→
√
x

x− 1 est décroissante sur [2 ; +∞[.

(b) Montrer que la série
∑
n⩾2

un(δ) converge simplement sur [2 ; +∞[.

On pourra écrire cos(nδ) = Sn(δ) − Sn−1(δ).

3. Étudier la convergence uniforme de
∑
n⩾2

un(δ) sur tout segment inclus dans ]0 ; π].

75 Mines-Ponts MP 2023

1. Soit n ⩾ 2 un entier. Montrer que l’équation

xn − nx+ 1 = 0

admet une unique solution dans l’intervalle [0 ; 1]. On la note xn.
2. Étudier la monotonie et la convergence de la suite (xn)n⩾2.
3. Donner un équivalent de la suite (xn)n⩾2.
4. Donner un développement asymptotique à deux termes de la suite (xn)n⩾2.

18



76 X ESPCI

Étudier le comportement en l’infini de la suite (un)n∈N∗ , avec pour n ∈ N∗ :

un =
n∑

i=1

1
n+ i

.

77 Mines-Télécom MP 2023

Soit f : R → R définie par :

f : x 7→ ⌊x⌋ + (x− ⌊x⌋)2 .

On définit la suite récurrente (un)n∈N par :u0 ∈ R
un+1 = f(un)

1. Étudier la continuité de f et esquisser le graphe de cette fonction.
2. Étudier la monotonie de la suite (un)n∈N et calculer sa limite en fonction de u0.

78 Mines-Ponts MP 2023

1. Soit n ⩾ 2 un entier. Montrer que l’équation

sin(x) = x

n

admet une unique solution dans l’intervalle ]0 ; π[. On la note xn.
2. Montrer que la suite (xn)n⩾2 converge. Calculer sa limite.
3. Donner un développement asymptotique de la suite (xn)n⩾2 avec la précision
o
( 1
n3

)
.

79 X-ENS

Soit pn le nème nombre premier. Montrer que
+∞∑
n=1

1
pn

diverge.

80 CCP MP 2007

Pour tout n ∈ N∗, on pose fn : x 7→ exp(−x
√
n).

1. Étudier la convergence simple de la série de fonctions
∑

n∈N∗
fn.

Lorsque
∑

n∈N∗
fn converge, on note S sa somme.

2. Montrer que S est continue sur R∗
+.

3. Montrer que lim
x→+∞

S(x) = 0.

4. Montrer que S est décroissante sur R∗
+.

5. Montrer que S(x) est équivalent à e−x en l’infini.
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81 X-ENS

Quelle est la nature de la série
+∞∑
n=0

sin(n!πe) ?

82 Mines-Ponts MP 2023

Pour tout A ∈ Mn(C) on pose :

∥A∥ = sup
1⩽j⩽n

{
n∑

i=1
|aij|

}
.

1. Montrer que ∥·∥ est une norme d’algèbre sur Mn(C).
2. Soit A ∈ Mn(C). Étudier la convergence de ∑Ak si ∥A∥ < 1. Cette condition

est-elle nécessaire pour la convergence de la série ?
3. Pour tout p ∈ N∗ on pose

Up =
(
In + A

p

)p

.

Étudier la convergence de la suite (Up)p∈N∗ .

83 Mines-Ponts PC 2023

Soit n ∈ N∗, α ∈ R et

Mn =

 1 α

n
α

n
1

 .
Déterminer lim

n→+∞
Mn

n .

84 CCP MP

Soit (un)n∈N la suite définie par :u0 = 1
∀n ∈ N, un+1 = ∑n

p=0 upun−p

On souhaite obtenir une expression de un en fonction de n. On suppose qu’il existe un
nombre réel R strictement positif tel que la série entière ∑unx

n converge sur ]−R ;R[.
Pour tout x ∈ ] −R ;R[, on pose S(x) = ∑

unx
n.

1. Pour tout x ∈ ] −R ;R[\{0}, calculer S2(x).
En déduire que pour tout x ∈ ] −R ;R[\{0} :

xS2(x) − S(x) + 1 = 0.

2. Montrer que S(0) = 1, et qu’au voisinage de 0, S(x) = 1 −
√

1 − 4x
2x .

3. Montrer qu’au voisinage de 0, S(x) =
+∞∑
n=0

(2n)!
n!(n+ 1)!x

n.

4. Conclure.
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85 X MP

Pour |t| < 1, on pose f(t) =
+∞∏
k=1

1
1 − tk

.

1. Montrer que f est bien définie.

2. Montrer, pour |t| < 1, que f(t) = 1 +
+∞∑
n=1

p(n)tn, où p(n) est le nombre de suites

(yk)k∈N∗ d’entiers naturels telles que
+∞∑
k=1

kyk = n.

86 X-ENS

1. Soit n ∈ N. Montrer qu’il existe un polynôme Pn tel que,

∀t ∈
]
0 ; π

2

[
, Pn(cot2(t)) = sin((2n+ 1)t)

sin2n+1(t) .

2. Expliciter les racines de Pn et calculer leur somme.
3. En observant que

cot2(t) ⩽ 1
t2

⩽ 1 + cot2(t)

pour tout t ∈
]
0 ; π

2

[
, déterminer la valeur de ζ(2) =

+∞∑
n=1

1
n2 .

87 Mines-Ponts

Pour n ∈ N∗, on note Hn =
n∑

k=1

1
k
.

1. Soit p > 1. Donner un équivalent de Rn =
+∞∑
k=n

1
kp

.

2. Montrer que la suite (Hn − ln(n))n∈N∗ converge vers un certain réel γ, appelé la
constante d’Euler. Déduire que

Hn = ln(n) + γ + o(1).

3. Pour n ∈ N∗, on note tn = Hn − ln(n)−γ. Déterminer un équivalent de tn+1 −tn,
puis de tn. Déduire que

Hn = ln(n) + γ + 1
2n + o

( 1
n

)
.

4. Avec un raisonnement similaire, montrer que

Hn = ln(n) + γ + 1
2n − 1

12n2 + o
( 1
n2

)
.
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88 X-ENS

Soit P ∈ R[X]. Étudier la convergence et calculer explicitement la série :

+∞∑
n=0

P (n)x
n

n! .

89 Centrale PC 2023

1. Soit n et p deux naturels. Calculer :

In,p =
∫ 1

0
(ln(x))pxn dx.

2. On pose I =
∫ 1

0

1
xx

dx. Montrer que I converge et que

I =
∑
n⩾1

1
nn
.

3. En majorant les restes de la série précédente, donner une valeur approchée à
10−3 près de I.

90 Mines-Ponts MP 2024

Calculer :
lim

n→+∞

n∑
k=1

n+ k

2 + sin(n+ k) + (n+ k)2 .

91 Mines-Ponts PSI 2024

Soit u0 ∈ R et pour tout n ∈ N, un+1 = sin(un).

1. Étudier la convergence de la suite (un)n∈N.

2. Sous réserve de sens, étudier la nature de la série
+∞∑
n=0

ln
(
un+1

un

)
.

3. Quelle est la nature des séries
+∞∑
n=0

u2
n et

+∞∑
n=0

un ?

4. Bonus : trouver un équivalent simple de la suite (un)n∈N.

92 X PC 2021

Soit (xn)n∈N une suite vérifiant x0 ⩾ 0, x1 ⩾ 0, x0 + x1 > 0 et

∀n ∈ N, xn+2 = xn+1

n+ 1 + xn.

Étudier la convergence de la suite (xn)n∈N.
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93 CCP

1. Soit (un)n∈N et (vn)n∈N deux suites de nombres positifs. On suppose que (un)n∈N
et (vn)n∈N sont non nulles à partir d’un certain rang. On suppose encore que
un ∼ vn. Montrer que ∑un et ∑ vn sont de même nature.

2. Étudier la convergence de la série

+∞∑
n=2

((−1)n + i) ln(n) sin
(

1
n

)
√
n+ 3 − 1

.

94 CCP

1. On considère deux suites réelles (un)n∈N et (vn)n∈N telles que (vn)n∈N est non
nulle à partir d’un certain rang et un ∼ vn. Démontrer que un et vn ont le même
signe à partir d’un certain rang.

2. Déterminer le signe au voisinage de +∞ de

un = sinh
( 1
n

)
− tan

( 1
n

)
.

95 CCINP

Considérons la suite de fonctions (fn)n∈N définie par :

fn(x) = n+ 2
n+ 1e−nx2 cos(

√
nx).

1. Étudier la convergence simple de la suite de fonctions (fn)n∈N.
2. La suite (fn)n∈N converge-t-elle uniformément sur [0 ; +∞[ ?
3. Soit a > 0. La suite (fn)n∈N converge-t-elle uniformément sur [a ; +∞[ ?
4. La suite (fn)n∈N converge-t-elle uniformément sur ]0 ; +∞[ ?

96 X-ENS

Soit an la plus grande racine réelle de X2n − 2nX + 1. Donner un développement
asymptotique à deux termes de an.

97 X-ENS

Pour tout entier n ⩾ 4, on considère la fonction réelle fn définie par :

fn(x) = x3n −
√
n · x+ 1.

1. Montrer qu’il existe un unique xn ∈ [1 ; 2] tel que fn(xn) = 0.
2. Étudier la convergence de εn = xn − 1 et en déduire un équivalent de xn.
3. Donner un équivalent asymptotique à trois termes de xn.
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98 Centrale PC 2015

On pose, pour tout x réel,
f(x) =

∫ 1

0

e−xt

√
t

dt.

On pose, pour tout entier naturel n,

un = f(n).

1. Montrer que la suite (un)n∈N converge.
2. Calculer la limite de la suite (un)n∈N.

Étudier la nature de la série ∑un.

3. Montrer que pour tout entier naturel n,

un = 2
+∞∑
k=0

(−1)knk

k!(2k + 1) .

99 Mines-Ponts

Soit (xn)n∈N la suite réelle définie par x0 > 0 et xn+1 = xn +
1
xn

.
Donner un équivalent de xn.

100 ENSAE 2013

Étudier la nature de la série
∑
n⩾1

1
n

(
3
√
n+ 1 − 3

√
n
)
.

101 X MP

Soit f : [0 ; 1] → [0 ; 1] vérifiant |f(x) − f(y)| < |x− y| pour tout (x; y) ∈ [0 ; 1]2.
Soit (xn)n∈N avec x0 ∈ [0 ; 1] et xn+1 = f(xn).

1. Montrer que f admet un unique point fixe a.
2. Montrer que la suite (xn)n∈N converge vers a.

102 Mines-Ponts PC 2013

Soit la suite (un)n∈N∗ telle que

un =


1
n

si n est un carré
1
n2 sinon

Quelle est la nature de la série ∑un ?
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103 X PC 2019

Soit n ∈ N∗ et Pn le polynôme défini par :

Pn(X) = X2n +X2 − 1.

1. Montrer que Pn possède deux racines réelles de signes opposés.
2. On note rn la racine positive de Pn. Démontrer que la suite (rn)n⩾1 est bornée

et convergente. Déterminer sa limite.

104 Mines

Soit x0 ∈ R∗
+ et pour tout n ∈ N, xn+1 = arctan(xn).

1. Étudier la monotonie et la convergence de la suite (xn)n∈N.
2. Donner un équivalent de xn lorsque n tend vers +∞.

105 CCP 2015

Pour tout n ∈ N∗, soit

Jn =
∫ +∞

0

arctan
(

x
n

)
x3 + x

dx.

1. Prouver l’existence de Jn.
2. Étudier les limites des suites (Jn)n⩾1 et (nJn)n⩾1.

106 Mines 2015

Montrer que
+∞∑

k=n+1

1
k! ∼

n→+∞

1
(n+ 1)! .

107 CCP 2015

Soit α ∈ R. Pour tout n ∈ N, on définit un =
n∑

k=0

1
2k + 1 − α ln(n).

1. Calculer un équivalent de un+1 − un quand n tend vers +∞.
2. Déterminer α pour que la suite (un)n∈N converge, et calculer alors sa limite.

108 CCP 2105

Montrer que pour tout entier n ⩾ 1, l’équation xn +
√
n · x = 1 admet une unique

solution appartenant à l’intervalle [0 ; 1]. On note an cette solution. Étudier la limite
de la suite (an)n⩾1 et la convergence de la série ∑ an.

109 Centrale 2015

Soit Pn(X) le polynôme
n∏

k=0
(X − k).

1. Montrer qu’il existe un unique réel un ∈ ]0 ; 1[ tel que P ′
n(un) = 0.

2. Montrer que pour tout n > 0,
n∑

k=0

1
k − un

= 0.

3. En déduire lim
n→+∞

un et déterminer un équivalent de un quand n tend vers +∞.
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110 CCP 2015

Pour tout n ∈ N∗, soit an =
∫ +∞

1

sin
(

t
n

)
t(1 + t2) dt.

Étudier la limite de la suite (an)n⩾1 et en calculer un équivalent.

111 Mines 2015

Quelle est la nature de la série de terme général un = arcosh
(
n+ 1
n

)
?

112 CCP 2015

Soit n un entier naturel supérieur ou égal à 3. On définit Pn(X) = Xn − nX + 1.
1. Montrer que Pn admet deux racines positives, an et bn.
2. Étudier les suites (an)n⩾3 et (bn)n⩾3 et leur rapidité de convergence.

113 CCP 2015

On considère la suite de terme général un =
∫ e

0
(ln(t))n dt.

1. Pour quels n, un est-il défini ?
2. Étudier la limite de la suite (un)n∈N.
3. Étudier la convergence de la série ∑un.

4. Déterminer le rayon de convergence de la série entière
∑ un

n!x
n.

5. Calculer S(x) =
+∞∑
n=0

un

n! x
n.

6. En déduire une expression de un pour tout n ∈ N∗.

114 Centrale 2015

On considère une suite (un)n∈N de réels strictement positifs, et on suppose que
lim

n→+∞
un = 0. On note J = {x ∈ R | ∑ux

n converge}.

1. Montrer que J est vide ou alors un intervalle de R∗
+. (Illustrer par des exemples

concrets.)
2. On suppose que J ̸= ∅, et on note :

f : J −→ R

x 7−→
+∞∑
n=0

ux
n

Étudier la continuité de f et ses limites au bornes.

115 Centrale 2015

Pour tout n ∈ N, on note an le nombre de chiffres dans l’écriture décimale de 2(2n).
Quel est le rayon de convergence de la série entière ∑ anz

n ?
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116 CCP MP

1. On considère la série de terme général un =
1

n ln(n)α
où n ⩾ 2 et α ∈ R.

(a) On suppose α ⩽ 0.
En utilisant une minoration très simple de un, démontrer que la série diverge.

(b) On suppose α > 0.
Étudier la nature de la série.

Indication : on pourra utiliser la fonction f définie par f(x) =
1

x(ln(x))α
.

2. Déterminer la nature de la série
∑
n⩾2

(
e −

(
1 + 1

n

)n)
e 1

n

(ln(n2 + n))2 .

117 X PC 2019

Étudier la nature de la série de terme général

un = (−1)n sin(ln(n))
n

.

On pourra commencer par regarder le comportement de un + un+1.

118 CCP MP

On considère la série de fonctions de terme général un définie par :

∀n ∈ N∗, ∀ x ∈ [0 ; 1], un(x) = ln
(

1 + x

n

)
− x

n
.

On pose, lorsque la série converge, S(x) =
+∞∑
n=1

(
ln
(

1 + x

n

)
− x

n

)
.

1. Démontrer que S est dérivable sur [0 ; 1].
2. Calculer S ′(1).

119 CCP 2015

Donner un développement en série entière de la fonction f(x) = arctan
(
x
√

2
1 − x2

)
.

120 Mines-Télécom MP 2023

Étudier la nature de la série
∑

cos
(
π

√
n2 + n+ 1

)
.

121 Mines-Ponts

1. Montrer que l’équation x = tan(x) admet une unique solution xn dans l’inter-
valle

]
−π

2 + nπ ; π
2 + nπ

[
.

2. Donner un équivalent de xn lorsque n tend vers +∞.

3. Déterminer les réels a et b tels que la série
∑
n⩾1

xn − nπ − a+ b

n
converge.
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122 CCP MP

1. Montrer que la série
+∞∑
n=0

(2n)!
(n!)224n(2n+ 1) converge.

On se propose de calculer la somme de cette série.

2. Donner le développement en série entière en 0 de t 7→
1√

1 − t
en précisant le

rayon de convergence.
Remarque : dans l’expression du développement, on utilisera la notation facto-
rielle.

3. En déduire le développement en série entière en 0 de x 7→ arcsin (x) ainsi que
son rayon de convergence.

4. En déduire la valeur de
+∞∑
n=0

(2n)!
(n!)224n(2n+ 1).

123 CCP MP

Soit E l’ensemble des suites réelles qui convergent vers 0.
1. Prouver que E est un sous-espace vectoriel de l’espace vectoriel des suites réelles.
2. On pose :

∀u = (un)n∈N ∈ E, ∥u∥ = sup
n∈N

|un|.

(a) Prouver que ∥·∥ est une norme sur E.
(b) Prouver que pour tout u = (un)n∈N ∈ E, la série

∑ un

2n+1 converge.

(c) On pose, pour tout u = (un)n∈N ∈ E, f(u) =
+∞∑
n=0

un

2n+1 .

Prouver que f est continue sur E.

124 CCP MP

Soit (un)n∈N une suite de réels strictement positifs et ℓ un réel positif strictement
inférieur à 1.

1. Démontrer que si lim
n→+∞

un+1

un

= ℓ, alors la série
∑

un converge.

2. Quelle est la nature de la série
∑
n⩾1

n!
nn

?

125 CCP MP

1. Que peut-on dire du rayon de convergence de la somme de deux séries entières ?
Le démontrer.

2. Développer en série entière au voisinage de 0, en précisant le rayon de conver-
gence, la fonction f : x 7→ ln(1 + x) + ln(1 − 2x).

La série obtenue converge-t-elle pour x =
1
4 ? x =

1
2 ? x = −

1
2 ?
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126 CCP MP

On pose f(x) =
3x+ 7

(x+ 1)2.

1. Décomposer f(x) en éléments simples.
2. En déduire que f est développable en série entière sur un intervalle du type

] − r ; r[ (où r > 0). Préciser ce développement en série entière et déterminer, en
le justifiant, le domaine de validité D de ce développement en série entière.

3. (a) Soit ∑ anx
n une série entière de rayon R > 0.

On pose, pour tout x ∈ ] −R ;R[, g(x) =
+∞∑
n=0

anx
n.

Exprimer, pour tout entier p, en le prouvant, ap en fonction de g(p)(0).
(b) En déduire le développement limité de f à l’ordre 3 au voisinage de 0.

127 CCP MP

1. Donner la définition du rayon de convergence d’une série entière de la variable
complexe z.

2. Déterminer le rayon de convergence de chacune des séries entières suivantes :

(a)
∑ (n!)2

(2n)!z
2n+1

(b)
∑

n(−1)n

zn

(c)
∑

cos(n)zn

128 Mines 2016

Déterminer le rayon de convergence de la série entière
+∞∑
n=0

sin
(
nπ

2015

)
xn et calculer sa

somme.

129 CCP MP

Soit (an)n∈N une suite complexe telle que la suite
(

|an+1|
|an|

)
n∈N

admet une limite.

1. Démontrer que les séries entières
∑

anx
n et

∑
(n+1)an+1x

n ont le même rayon
de convergence. On le note R.

2. Démontrer que la fonction x 7→
+∞∑
n=0

anx
n est de classe C1 sur l’intervalle ]−R ;R[.

130 CCP MP

Pour chacune des séries entières de la variable réelle suivantes, déterminer le rayon de
convergence et calculer la somme de la série entière sur le disque ouvert de convergence :

1.
∑
n⩾1

3nx2n

n

2.
∑

anx
n avec a2n = 4n et a2n+1 = 5n+1.
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131 CCP MP

1. Soit (un)n∈N une suite décroissante positive de limite nulle.
(a) Démontrer que la série

∑
(−1)kuk est convergente.

Indication : considérer (S2n)n∈N et (S2n+1)n∈N avec Sn =
n∑

k=0
(−1)kuk.

(b) Donner une majoration de la valeur absolue du reste de la série
∑

(−1)kuk.

2. On pose : ∀n ∈ N∗, ∀x ∈ R, fn(x) =
(−1)ne−nx

n
.

(a) Étudier la convergence simple sur R de la série de fonctions
∑
n⩾1

fn.

(b) Étudier la convergence uniforme sur [0 ; +∞[ de la série de fonctions
∑
n⩾1

fn.

132 X-ENS 2015

On considère la suite (xn)n∈N définie par la donnée des réels x0 > 0 et a > 0, et par la
relation de récurrence :

∀n ∈ N, xn+1 = xn + a

xn

.

Étudier la limite de cette suite, et donner un équivalent simple de xn quand n tend
vers +∞.

133 CCP MP

Soit A une algèbre de dimension finie admettant e pour élément unité et munie d’une
norme notée ∥·∥. On suppose que : ∀(u; v) ∈ A2, ∥uv∥ ⩽ ∥u∥∥v∥.

1. Soit u un élément de A tel que ∥u∥ < 1.
2. (a) Démontrer que la série

∑
un est convergente.

(b) Démontrer que e− u est inversible et que (e− u)−1 =
+∞∑
n=0

un.

3. Démontrer que, pour tout u ∈ A, la série
∑ un

n! converge.

134 CCP 2016

On considère un entier m ∈ N∗ et la série entière
+∞∑
n=m

(
n

m

)
xn, de somme S(x).

Déterminer son rayon de convergence, et calculer sa somme sur son disque de conver-
gence.

135 Mines 2016

Soit S(x) =
+∞∑
n=2

xn

4n2 − n+ 1.

1. Calculer le rayon de convergence de la série S(x).
2. Calculer S(x) lorsque x > 0.
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136 CCP MP

Soit x0 ∈ R.
On définit la suite (un)n∈N par u0 = x0 et, pour tout n ∈ N, un+1 = arctan(un).

1. (a) Démontrer que la suite (un)n∈N est monotone et déterminer, en fonction de
la valeur de x0, le sens de variation de (un)n∈N.

(b) Montrer que (un)n∈N converge et déterminer sa limite.
2. Déterminer l’ensemble des fonctions h, continues sur R, telles que, pour tout
x ∈ R, h(x) = h(arctan(x)).

137 CCP MP

1. Déterminer le rayon de convergence de la série entière
∑ xn

(2n)! .

On pose S(x) =
+∞∑
n=0

xn

(2n)! .

2. Rappeler, sans démonstration, le développement en série entière en 0 de la fonc-
tion x 7→ cosh(x) et préciser le rayon de convergence.

3. (a) Déterminer S(x).
(b) On considère la fonction f définie sur R par :

f(0) = 1, f(x) = cosh(
√
x) si x > 0, f(x) = cos(

√
−x) si x < 0.

Démontrer que f est de classe C∞ sur R.

138 CCP 2016

On rappelle que la série harmonique alternée converge et que
+∞∑
n=1

(−1)n

n
= − ln(2).

1. Montrer qu’il existe a, b, c tels que
1

4X3 −X
=

a

X
+

b

2X − 1 +
c

2X + 1.

2. Montrer que
+∞∑
n=1

( 1
2k − 1 − 1

2k

)
et

+∞∑
n=1

( 1
2k + 1 − 1

2k

)
convergent, calculer leur

somme.

3. Montrer que
+∞∑
k=1

1
4k3 − k

converge, calculer sa somme.

4. L’intégrale impropre
∫ +∞

1

1
4x3 − x

dx converge-t-elle ? Si oui, la calculer.

139 CCP 2016

Pour tout n ∈ N∗, on considère l’équation (En) : x+ x2 + x3 + · · · + xn = 1.
1. Montrer que cette équation admet une unique solution dans R+, que l’on notera
un. Calculer u1 et u2.

2. Montrer que la suite (un)n∈N∗ converge vers une limite ℓ que l’on calculera.
Trouver un équivalent de un − ℓ quand n tend vers +∞.
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140 Mines 2016

Déterminer le rayon de convergence de la série entière

S(x) =
+∞∑
n=0

x2n+1∏n
k=0(2k + 1) .

Montrer que :
+∞∑
n=0

1∏n
k=0(2k + 1) =

√
e

+∞∑
n=0

(−1)n

2nn!(2n+ 1) .

Indication : on pourra utiliser une équation différentielle.

141 X-ENS 2016

1. Déterminer la limite de
n∑

k=1

1
n+ k

quand n tend vers +∞.

2. Déterminer la limite de
n∑

k=1
ln
(

1 + 1
n+ k

)
quand n tend vers +∞.

142 ENSAM 2016

Pour tout n ∈ N, on définit : an =
∫ 1

0

tn

2 + tn
dt et la fonction f : x 7→

+∞∑
n=0

anx
n.

1. Montrer que le rayon de convergence de R de la série entière∑ anx
n est supérieur

ou égal à 1.
2. Calculer f(x) pour |x| < 1.
3. Montrer que R = 1.

143 ENAC 2016

On pose ζ(x) =
+∞∑
n=1

1
nx

.

1. Donner le domaine de définition de la fonction ζ.
2. Étudier la continuité et la dérivabilité de ζ.

3. Montrer que l’intégrale
∫ +∞

2
(ζ(x) − 1) dx est définie et est égale à la somme de

la série
+∞∑
n=2

1
n2 ln(n) .

144 Mines PSI 2016

On considère la fonction f : x 7→
+∞∑
n=0

(−1)n

n!(x+ n) .

1. Montrer que f est définie et de classe C1 sur ]0 ; +∞[.
2. Étudier les variations de f et ses limites aux bornes.

3. Montrer que pour tout x > 0, xS(x) − S(x+ 1) = 1
e .

4. Trouver un équivalent de f en 0 et en +∞.

32



145 Mines 2016

On considère une suite réelle (un)n∈N et on pose, pour tout n ∈ N, sn =
n∑

k=0
uk.

1. On suppose que la suite (un)n∈N est bornée. Déterminer les rayons de conver-
gence des séries entières

U(x) =
+∞∑
n=0

un

n! x
n et S(x) =

+∞∑
n=0

sn

n!x
n.

2. Trouver une relation entre S, S ′ et U ′.
3. On suppose que lim

n→+∞
un = 0.

Montrer que lim
x→+∞

U(x)e−x = 0.

4. On suppose que la suite (un)n∈N converge vers une limite ℓ ∈ R.
Déterminer lim

x→+∞
U(x)e−x.

5. On suppose que la série
∑

un converge.

Déterminer lim
x→+∞

S(x)e−x en fonction de σ =
+∞∑
n=0

un.

146 Mines 2016

Soit (un)n∈N∗ une suite réelle qui converge vers une limite ℓ. On définit alors la suite
(vn)n∈N∗ telle que :

∀n ∈ N∗, vn = 1
n2

n∑
k=1

kuk.

Montrer que la suite (vn)n∈N∗ converge et préciser sa limite.

147 Mines 2016

Pour tout n ∈ N∗, on définit :

la somme harmonique Hn =
n∑

k=1

1
k

et la fonction f : x 7→
+∞∑
n=1

Hnx
n.

1. Déterminer le rayon de convergence de la somme f(x).
2. Déterminer le comportement de f(x) aux bornes du domaine de convergence.

148 CCP 2016

On considère, pour n ⩾ 2 entier, l’équation (En) : xn = x+ n.
1. Montrer qu’il existe une unique solution un de (En) dans l’intervalle R+.
2. Montrer que pour tout n ⩾ 3 on a 1 < un < 2.
3. Étudier la convergence de la suite (un)n⩾2 et sa limite ℓ.
4. Calculer un équivalent de un − ℓ.
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149 Mines 2016

On considère la suite (an)n∈N définie par :
a0 = a1 = 1

∀n ∈ N∗, an+1 =
n∑

k=0

(
n

k

)
akan−k

On définit la fonction f : x 7→
+∞∑
k=0

an

n!x
n.

1. Montrer que le rayon de convergence de la série entière f n’est pas nul.
2. Déterminer une équation différentielle vérifiée par f .

En déduire la fonction f et la suite (an)n∈N.

150 Mines 2016

On considère une série
∑

un à termes positifs, convergente.
Montrer que la série

∑√
unun+2 converge aussi.

151 CCP PSI 2019

1. Quel est le domaine de convergence D de la série de fonctions
+∞∑
n=2

un(x)

avec un(x) =
ln(x)

xn ln(n) ?

2. Montrer que cette série de fonctions ne converge pas normalement sur D.

3. Notons Rn(x) =
+∞∑

k=n+1
uk(x).

Montrer que, pour tout x ∈ D, |Rn(x)| ⩽
1

ln(n+ 1).

4. Montrer que la somme S associée à cette série est continue sur D.
5. Montrer que S est intégrable sur D.

152 ENSEA/ENSIIE 2024

Soit (un)n∈N et (vn)n∈N deux suites positives telles que, pour tout n ∈ N, un ⩽ vn.
1. Démontrer que si

∑
vn converge alors

∑
un converge.

2. Démontrer que si
∑

un diverge alors
∑

vn diverge.

3. Déterminer, par majoration ou minoration, la nature de
∑

un avec :
(a) un = n4esin(n)

(b) un =
cos

(
1

n4

)
2n
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153 ENSIIE 2015

À quelle(s) condition(s) sur les réels a, b, c, la série de terme général

un = a ln(n) + b ln(n+ 1) + c ln(n+ 2)

converge-t-elle ?

154 Mines-Ponts 2015

Soit M(x0; y0) un point de la parabole P d’équation y2 = 2px. (p > 0)
On note Mn la deuxième intersection entre la normale à la parabole en Mn−1 et la
parabole.

Étudier la convergence et la convergence absolue de la série de terme général
1
yn

.

155 TPE/EIVP 2017

Pour tout n ∈ N∗, soit fn(x) = nx3 + n2x− 2.
1. Montrer qu’il existe un unique réel un tel que fn(un) = 0.
2. Déterminer la limite de la suite (un)n∈N∗ .
3. Pour quels nombres réels α la série

∑
uα

n est-elle convergente ?

156 Centrale 2017

On considère, pour tout n ∈ N, un =

√√√√
n+

√
n− 1 +

√
· · · +

√
1 +

√
0.

1. Établir une relation simple entre un et un−1.
2. Donner un équivalent puis un développement à deux, puis à trois termes de un

quand n tend vers +∞.

157 ENSEA/ENSIIE PSI 2017

1. Montrer que Pn =
n∑

k=1
xk − 1 admet une unique racine xn ∈ R+.

2. Étudier la suite (xn)n∈N∗ .

158 Mines 2012

1. Montrer que la fonction f : x 7→
exp(x2) − 1

x
est prolongeable en une fonction

développable en série entière.
2. Montrer que f est strictement croissante, et réalise une bijection entre deux

intervalles que l’on précisera.
3. Calculer le développement limité à l’ordre 3 de la fonction réciproque g = f−1

en 0.
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159 Mines 2012

On considère deux suites (an)n∈N et (bn)n∈N à termes réels positifs.

1. Montrer que si lim
n→+∞

bn = +∞, alors la série
∑ 1

nbn
converge.

2. Si lim
n→+∞

an = lim
n→+∞

bn = +∞, la série
∑ 1

abn
n

converge-t-elle ?

160 CCP 2012

On considère la suite réelle (un)n∈N définie par :

u0 = 1
2 , u1 = 1 et pour tout n ∈ N, un+2 = 2u2

n+1
un

.

1. Étudier la limite de la suite (un)n∈N.
2. Exprimer un en fonction de n.

161 X PSI

Soit (un)n∈N une suite réelle. On suppose que cette suite est décroissante et que la série
de terme général un converge. Montrer que lim

n→+∞
nun = 0.

162 X PC

Soit f : R∗
+ → R∗

+ une fonction de classe C1 telle que lim
x→+∞

f ′(x)
f(x) = −∞.

1. Donner un exemple d’une telle fonction.

2. Montrer que la suite de terme général
f(n+ 1)
f(n) converge et déterminer sa limite.

3. Quelle est la nature de la série de terme général f(n) ?

163 X PC

Soit (un)n⩾1 une suite de réels positifs telle que :

∀n ∈ N∗,
2n∑

k=n+1
uk ⩽

1
n

n∑
k=1

uk.

Montrer que la série de terme général un converge.

164 ENSEA/ENSIIE 2012

On considère une série réelle convergente
∑
n⩾1

un et une suite (εn)n⩾1 à termes positifs

ou nuls, de limite nulle.
1. Montrer que si la série

∑
n⩾1

un converge absolument, alors la série
∑
n⩾1

εnun

converge.
2. Trouver un contre-exemple si la série

∑
n⩾1

un ne converge pas absolument.
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165 CCP 2012

On considère la suite (un)n∈N de terme général un =
∫ 1

0
tn

√
1 − t2 dt.

1. Calculer a0 et a1.
2. Étudier les variations et la limite de la suite (un)n∈N.

3. Montrer que pour tout n ∈ N, un+2 =
n+ 1
n+ 4un, et que un+1 ∼

n→+∞
un.

4. Montrer que la suite ((n+ 1)(n+ 2)(n+ 3)anan+1)n∈N est constante. En déduire
un équivalent de un et la nature de la série ∑un.

5. Montrer que
+∞∑
n=0

un =
∫ 1

0

√
1 + t

1 − t
dt et calculer cette somme.

166 CCP 2012

Étudier le développement en série entière de la fonction f : x 7→ ln(1 + x+ x2).

167 Centrale 2012

On considère la série entière f : x 7→
+∞∑
n=0

(
2n
n

)
xn.

1. Déterminer le rayon de convergence de f .
2. Calculer (1 − 4x)f ′(x) en fonction de f(x). En déduire f(x).
3. Montrer que pour tout n ∈ N :

n∑
k=0

(
2k
k

)(
2n− 2k
n− k

)
= 4n.

168 ENS Rennes 2017

Soit (a; b) ∈ R∗
+

2.

1. Montrer que
∫ 1

0

ta−1

1 + tb
dt =

+∞∑
n=0

(−1)n

a+ bn
.

Indication : on pourra développer en série entière 1
1+tb .

2. Calculer
+∞∑
n=0

(−1)n

3n+ 1.

169 CCP 2017

Déterminer le rayon de convergence de la série S(t) =
+∞∑
n=0

n2 + n+ 1
n! tn et calculer sa

somme.

170 CCP

Montrer que la série
+∞∑
n=0

2n2 + 3n+ 1
2n

converge et calculer sa somme.
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171 CCP PC

Soit (un)n∈N la suite réelle définie par u0 ∈ ]0 ; π
2 [ et pour tout n ∈ N, un+1 = sin(un).

1. Montrer que la suite (un)n∈N converge et préciser sa limite.

2. Étudier la limite de
un+1 − un

u3
n

.

En déduire la nature de la série de terme général u3
n.

3. En étudiant ln
(

un+1
un

)
, montrer que la série de terme général u2

n diverge.

172 Mines-Ponts MP 2023

Soit n ∈ N. On pose :
In =

∫ π
4

0
tann(x) dx.

1. Donner une relation de récurrence sur In.
2. Trouver un équivalent simple de In en +∞.

3. (a) Montrer que I2n = (−1)n
∑
k⩾n

(−1)k

2k + 1.

(b) Exprimer I2n+1 à l’aide d’une série.

173 Mines-Ponts PSI

Soit (an)n∈N la suite réelle définie par a0 > 0 et an+1 = 1 − e−an .
1. Étudier la limite de cette suite.
2. Déterminer la nature de la série de terme général (−1)nan.
3. Déterminer la nature de la série de terme général a2

n.
4. Étudier la série de terme général ln

(
an+1

an

)
. En déduire la nature de la série de

terme général an.

174 Mines-Ponts PC 2023

1. Montrer que, pour tout x ∈ [0 ; 1], ln(1 + x) =
+∞∑
n=1

(−1)n+1xn

n
.

2. Montrer que la somme
+∞∑
n=0

(
x2n+1

2n+ 1 − xn+1

2n+ 2

)

converge uniformément sur [0 ; 1] et calculer sa somme.
3. La série de fonctions précédentes converge-t-elle uniformément sur [0 ; 1] ?

175 Mines-Ponts MP

Soit n ⩾ 2 entier et Pn(X) =
n∏

k=0
(X − k).

1. Montrer que P ′
n admet une unique racine dans ]0 ; 1[, notée λn.

2. Déterminer lim
n→+∞

λn.

3. Trouver un équivalent de λn pour n → +∞.
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176 Mines-Télécom MP 2023

Étudier la convergence de la série
∑ (−1)n√

n2α + (−1)n
en fonction de α ∈ R.

177 Mines-Télécom MP 2023

Étudier la convergence de la série
+∞∑
n=1

un, où un =
n∏

k=1

(
1 + (−1)k−1

√
k

)
.

178 CCP PC

Soit f ∈ C(R,C) 1-périodique et, pour n ∈ N∗, un =
∫ n+1

n

f(t)
t

dt.

Montrer que la série de terme général un converge si, et seulement si,
∫ 1

0
f(t) dt = 0.

179 CCP PSI

Soit, pour tout réel t ⩾ 1,

f(t) =
t

t2 + t+ 1
et, pour tout entier n ⩾ 1,

un =
∫ (n+1)π

nπ
f(t) sin(t) dt.

Étudier le sens de variation de la fonction f , préciser le sens de variation de la suite
(|un|)n∈N∗ et la nature de la série

∑
un.

180 ENSAM PSI

Soit (an)n∈N∗ une suite réelle à termes positifs, avec a1 ⩾ 1. On pose Pn : x 7→
n∑

k=1
akx

k.

1. Montrer qu’il existe un unique xn ∈ [0 ; 1] tel que Pn(xn) = 1.
2. Montrer que Pn+1(xn) ⩾ 1. En déduire que la suite (xn)n∈N∗ est décroissante et

qu’elle converge.
3. On note ℓ = lim

n→+∞
xn et on suppose que ℓ > 0. Montrer que le rayon de conver-

gence de la série ∑ anx
n est supérieur à ℓ.

181 X ESPCI

Soit a0 = 1 et, pour tout n ∈ N∗, an =
n∏

k=1

2k − 1
2k .

1. Montrer que le rayon de convergence R de la série
∑

anx
n vaut 1.

2. Pour tout x ∈ ] − 1 ; 1[, soit f(x) =
+∞∑
n=0

anx
n. Trouver une équation différentielle

vérifiée par f sur ] − 1 ; 1[.
3. Calculer f(x) pour tout x ∈ ] − 1 ; 1[.
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182 CCP PSI

Déterminer, suivant a ∈ R, le rayon de convergence de la série entière
∑

arctan(na)xn.

183 Centrale PSI

Soit (dn)n⩾0 la suite définie par

d0 = 1, d1 = 0 et ∀n ∈ N, dn+2 = (n+ 1)(dn+1 + dn).

1. Calculer d2 et d3. Montrer que, pour tout n ⩾ 2, n!
3 ⩽ dn ⩽ n! et en déduire le

rayon de convergence R de la série entière de terme général dn

n! x
n.

2. Pour tout x ∈ ] −R ;R[, on pose S(x) =
+∞∑
n=0

dn

n!x
n.

Montrer que pour tout x ∈ ] −R ;R[, (1 − x)S ′(x) = xS(x).
3. En déduire une expression de S(x) en fonction de x et exprimer dn comme une

somme en fonction de n.

184 Mines-Ponts PC 2011

On pose, pour tout entier n ⩾ 2,

un =
n∏

k=2

(
2 − e 1

k

)
.

1. Quelle est la nature de la suite (un)n⩾2 ?
2. Quelle est la nature de la série

∑
un ?

185 CCP MP 2018

Soit
∑

an une série absolument convergente à termes complexes. On pose M =
+∞∑
n=0

|an|.

On pose encore :
∀n ∈ N, ∀t ∈ [0 ; +∞[, fn(t) = ant

n

n! e−t.

1. (a) Justifier que la suite (an)n∈N est bornée.
(b) Justifier que la série de fonctions

∑
fn converge simplement sur [0 ; +∞[.

On admettra, pour la suite de l’exercice, que f : t 7→
+∞∑
n=0

fn(t) est continue

sur [0 ; +∞[.
2. (a) Justifier que, pour tout n ∈ N, la fonction gn : t 7→ tne−t est intégrable sur

[0 ; +∞[ et calculer
∫ +∞

0
gn(t) dt.

En déduire la convergence et la valeur de
∫ +∞

0
|fn(t)| dt.

(b) Prouver que
∫ +∞

0

(+∞∑
n=0

ant
n

n! e−t

)
dt =

+∞∑
n=0

an.
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186 CCP MP 2018

On considère, pour tout entier naturel n non nul, la fonction fn définie sur R par

fn(x) =
x

1 + n4x4.

1. (a) Prouver que
∑
n⩾1

fn converge simplement sur R.

On pose alors, pour tout x ∈ R, f(x) =
+∞∑
n=1

fn(x).

(b) Soit (a; b) ∈ R2 avec 0 < a < b.
La série

∑
n⩾1

fn converge-t-elle normalement sur [a ; b] ? sur [a ; +∞[ ?

(c) La série
∑
n⩾1

fn converge-t-elle normalement sur [0 ; +∞[ ?

2. Prouver que f est continue sur R∗.
3. Déterminer lim

x→+∞
f(x).

187 X

Soit θ ∈ [0 ; 2π] et t ∈ [0 ; 1[. On pose :

Sn(t) =
n∑

p=1
tp−1 sin(pθ).

1. Calculer S(t) = lim
n→+∞

Sn(t).

2. En déduire la valeur de
+∞∑
n=1

sin(nθ)
n

.

188 X MP 2019

1. Soit f : R+ → C de classe C1, telle que
∫ +∞

0
|f ′(x)| dx < +∞.

Montrer que ∑
n⩾0

f(n) et
∫ +∞

0
f(x) dx

sont de même nature.

2. Quelle est la nature de la série
+∞∑
n=2

cos(ln(n))
ln(n) ?

189 Centrale

Soit S(x) =
+∞∑
n=1

1
n(nx+ 1).

1. Démontrer que S est définie et continue sur R∗
+.

2. Déterminer la limite de S en +∞, puis un équivalent de S en +∞.
3. Déterminer la limite de S en 0+.
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190 TPE/EIVP PC 2018

Posons, pour tout entier naturel n :

un = arctan
( 1
n2 + 3n+ 3

)
.

Montrer la convergence et donner la somme de la série de terme général un.
Indication : utiliser l’identité n2 + 3n+ 3 = 1 + (n+ 1)(n+ 2).

191 ENSAE MPI 2023

Pour tout n ∈ N, soit Sn =
n∑

k=0

1
(k + 1)(2k + 1).

1. Montrer que la suite (Sn)n∈N converge.

2. Montrer que
n∑

k=1

1
k

= ln(n)+γ+o(1), où γ est une constante que l’on ne cherchera

pas à exprimer.
3. Calculer la limite de la suite (Sn)n∈N.

192 CCINP MP 2024

1. Montrer que pour tout n ⩾ 3, on a :
∫ n

3

ln(t)
t

dt+ ln(2)
2 ⩽

n∑
k=2

ln(k)
k

⩽
∫ n

3

ln(t)
t

dt+ ln(2)
2 + ln(3)

3 .

2. Montrer que

ln2(n) − ln2(n− 1) = 2 ln(n)
n

+ ln(n)
n2 + o

(
ln(n)
n2

)
.

3. Pour tout n ∈ N∗, on pose un =
ln(n)
n

−
1
2
(
ln2(n) − ln2(n− 1)

)
.

Montrer qu’il existe c ∈ R tel que
n∑

k=2

ln(k)
k

= ln2(n)
2 + c+ εn avec lim

n→+∞
εn = 0.

193 Mines-Télécom MP 2024

Considérons la suite (un)n∈N définie par :u0 > 0
∀n ∈ N, un+1 = ln(1 + un)

1. Déterminer la limite éventuelle de la suite (un)n∈N.

2. Déterminer la limite de
(

1
un+1

− 1
un

)
n∈N

.

3. En déduire un équivalent de la suite (un)n∈N.
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194 Mines-Télécom MP 2025

Soit a ∈ R∗
+. Déterminer la nature de la série de terme général

un = arctan(n+ a) − arctan(n).

195 CCINP PSI 2024

Calculer lim
n→+∞

(
(2n)!
n!nn

) 1
n

.

196 CCINP PSI 2014

Résoudre l’équation
un+3 = 6un+2 − 11un+1 + 6un

avec u0 = 0, u1 = 1, u2 = 5.

197 Mines-Ponts PC 2018

On note F =
{
(un)n∈N ∈ RN | ∀n ∈ N, un+3 = un+2 + un

}
.

1. Montrer que F est un sous-espace vectoriel de dimension finie de RN. Préciser
la dimension de F .

2. Pour tout entier p ⩾ 3, on note vp le nombre de parties de {0; 1; . . . ; p} telles
que l’écart entre deux éléments quelconques d’une de ces parties soit supérieur
ou égal à 3. Montrer que la suite (vn+3)n∈N est élément de F .

198 TPE/EIVP PC 2019

Soit u0 ∈ R+ et, pour tout n ∈ N, un+1 =
√

1 + un.
Montrer que la suite (un)n∈N est bien définie et discuter la convergence de celle-ci en
fonction de la valeur de u0.

199 CCINP PSI 2024

On considère la série
∑
n⩾0

x2

(3n+ 1)(3n+ 2).

1. Déterminer le rayon de convergence et le domaine de définition de cette série.

2. Calculer αn =
∫ 1

0
(1 − t)t3n dt.

3. Calculer la somme α0 + α1 + · · · + αN−1 de deux manières différentes.

4. Montrer que
N−1∑
n=0

1
(3n+ 1)(3n+ 2) =

∫ 1

0

1 − t3N

1 + t+ t2
dt.

5. En déduire que
+∞∑
n=0

1
(3n+ 1)(3n+ 2) =

∫ 1

0

1
1 + t+ t2

dt.

6. Calculer
∫ 1

0

1
1 + t+ t2

dt.
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200 ENSAE MP 2022

Pour tout n ∈ N∗, on note (En) l’équation :

(En) :
n∑

k=1
xk = 1.

1. Montrer, pour tout n ∈ N∗, qu’il existe une unique solution xn de (En) sur R+

et que xn ∈
[

1
2 ; 1

]
.

2. Montrer que la suite (xn)n∈N∗ converge.
3. Calculer la limite de la suite (xn)n∈N∗ .

201 CCINP TSI 2019

Pour tout n ∈ N, soit

un =
∫ π

0

1
1 + (nπ + t)2 sin2(t) dt et an =

∫ π

0

1
1 + (nπ)2 sin2(t) dt.

1. Montrer que pour tout t ∈ [0 ;π], sin(t) ⩽ t.

2. Montrer que an ⩾
arctan(nπ2)

nπ
.

3. Montrer que an+1 ⩽ un ⩽ an.
4. Quelle est la nature de la série de terme général un ?

202 Centrale-Supélec PC 2022

Pour tout n ∈ N∗, on définit le polynôme Pn = −4 +
n∑

k=1
Xk.

1. Pour tout n ∈ N∗, montrer que Pn possède une unique racine dans ]0 ; +∞[.
Cette racine est notée xn.

2. Calculer x1 et x2. Montrer que x5 < 1.
3. Quel est le signe de Pn+1(xn) ? En déduire que la suite (xn)n⩾1 est monotone

puis qu’elle converge. Sa limite est notée ℓ.
4. Pour tout n ∈ N∗, montrer que xn+1

n − 5xn + 4 = 0.
5. Montrer que xn+1

n tend vers 0 quand n tend vers +∞ et en déduire la valeur de
ℓ.

6. Pour tout n ∈ N∗, on pose δn = xn − ℓ.
Vérifier l’égalité δn = 1

5x
n+1
n et en déduire que nδn tend vers 0 quand n tend

vers +∞.
7. Trouver une constante K telle que δn soit équivalent à K · ℓn+1 quand n tend

vers +∞.

203 TPE/EIVP MP 2017

Calculer lim
n→+∞

n∑
k=1

k

n2 exp
(

−k

n

)
.
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204 Mines-Ponts MP 2017

1. Soit p ∈ N. Montrer que
n∑

k=1
kp ∼

+∞

np+1

p+ 1.

2. Soit f : [0 ; 1] → R continue et d ∈ N∗. Montrer que

lim
n→+∞

1
n

∑
0⩽k⩽n

d|k

f

(
k

n

)
= 1
d

∫ 1

0
f(t) dt.

205 Mines-Télécom PSI 2021

Développer en série entière la fonction f définie par :

f(s) = s

2 − s2 .

206 Mines-Ponts MP 2019

Montrer que pour tout x ∈ [−1 ; 1], arctan(x) =
+∞∑
n=0

(−1)nx2n+1

2n+ 1 .

207 Mines-Ponts MP 2021

Soit x réel tel que |x| < 1. Montrer que :

+∞∑
k=0

2kx2k

1 + x2k =
+∞∑
k=1

xk.

208 Centrale-Supélec PSI 2018

Dans tout l’exercice, (an)n∈N est une suite de réels non nuls. On lui associe la suite
(pn)n∈N définie, pour n ∈ N, par pn = ∏n

k=0 ak. On dira que ∏ ak converge si et seule-
ment si la suite (pn)n∈N converge vers une limite finie non nulle. On pose pour tout n,
un = an − 1.

1. Prouver que, si ∏ an converge, alors la suite (an)n∈N converge vers 1. On suppose
dans toute la suite que (an)n∈N converge vers 1.

2. Montrer que la suite (ln(1 + un))n∈N est bien définie à partir d’un certain rang.
Montrer que ∏ an converge si et seulement si la série ∑ ln(1 + un) converge.

3. On suppose maintenant que un ⩾ 0 à partir d’un certain rang. Montrer que∏
an et ∑un sont de même nature.

4. En étudiant directement la convergence de
∏(

1 + 1
1 + n

)
,

démontrer la divergence de la série harmonique.

209 Mines-Télécom MPI 2025

Soit k ⩾ 2 un entier. Calculer :

lim
n→+∞

kn∑
p=n+1

1
p
.
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210 Mines-Télécom MP 2024

On considère la suite (pn)n∈N∗ définie par :

∀n ⩾ 1, pn = 1! + 2! + · · · + n!
n! .

1. Trouver une relation de récurrence entre pn+1 et pn.
2. Montrer par récurrence que la suite est majorée par 2.
3. La suite (pn)n∈N∗ converge-t-elle ?

211 Mines-Télécom MP 2025

Déterminer l’ensemble des suites réelles (un)n∈N qui vérifient :

∀n ∈ N, un+1 = 2un + 2n2 + 2n+ 1.

Indication : il pourra être utile d’introduire l’endomorphisme S− 2Id, où S est l’appli-
cation suivante :

S : RN −→ RN

(vn)n∈N 7−→ (vn+1)n∈N

212 Mines-Télécom PSI 2023

1. Montrer que, pour tout n ⩾ 2, l’équation

1 + ln(x+ n) = x

admet une unique solution dans R+. On note un cette solution.
2. Montrer que la suite (un)n⩾2 est croissante.
3. Montrer que, pour tout n ⩾ 2,

ln(n) < un < n

et en déduire un équivalent de un.

213 CCINP TSI 2022

On considère In =
∫ e

1
(ln(x))n dx.

1. (a) Vérifier que x 7→ x ln(x) − x est une primitive de ln.
(b) En déduire la valeur de I1.
(c) Interpréter géométriquement ce calcul.

2. Proposer une méthode numérique permettant un calcul approché de In.
3. (a) Étudier les variations de la suite (In)n∈N.

(b) Montrer que, pour tout n ⩾ 1, In ⩾ 0. Que peut-on en déduire ?
4. (a) Soit n ∈ N∗. Montrer que In+1 = e − (n+ 1)In.

(b) En déduire que (n+ 1)In ⩽ e.
(c) En déduire la limite de In.
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214 TPE/EIVP MP 2018

Soit (un)n∈N une suite à valeurs dans Z et (vn)n∈N une suite à valeurs dans N∗ telle
que :

lim
n→+∞

un

vn

= L ∈ R \ Q.

Montrer que |un| et vn tendent forcément vers +∞ quand n tend vers +∞.

215 Centrale-Supélec PC 2016

Soit (xn)n∈N et (yn)n∈N deux suites à valeurs dans R telles que (x0; y0) = (0; 0) et :xn+1 =
√

7 − yn

yn+1 =
√

7 + xn

1. Montrer que les suites (xn)n∈N et (yn)n∈N sont bien définies.
2. Calculer les premiers termes de chaque suite et conjecturer leur comportement.
3. On suppose que les deux suites convergent. Déterminer rigoureusement leur(s)

limite(s) possible(s).
4. Montrer que (x2n − ℓ)n∈N et (x2n+1 − ℓ)n∈N, où ℓ est la limite de la suite (xn)n∈N,

convergent vers 0. (On pourra pour cela majorer xn+1 − ℓ.)
5. Pour tout ε > 0, il existe un rang n0 tel que pour tout n > n0, l’écart entre yn

et sa limite et celui entre xn et sa limite est inférieur à ε. Déterminer ce rang
pour ε = 10−3.

216 ENSEA/ENSIIE MP 2019

On considère, pour n ⩾ 1,

un =
(

1 − cos
(

1√
n

))
sin

(
ln
(

1 + 1
n

))
.

1. Donner un équivalent simple de un quand n → +∞.
2. En déduire la nature de la série de terme général un.

217 CCINP MP 2025

Soit (an)n⩾1 une suite réelle. On pose :

∀n ∈ N∗, Sn =
n∑

k=1
a2

k.

On suppose que lim
n→+∞

an · Sn = 1.

1. Montrer que la suite (Sn)n⩾1 diverge (raisonner par l’absurde), puis en déduire
que lim

n→+∞
an = 0.

2. Calculer lim
n→+∞

Sn−1

Sn

et lim
n→+∞

∫ Sn

Sn−1
t2 dt.

3. Montrer que an ∼
1

3
√

3n
quand n → +∞.
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218 Mines-Télécom MP 2017

Soit (un)n∈N une suite décroissante de nombres réels strictement positifs tels que ∑un

converge. Démontrer que la suite (nun)n∈N est convergente de limite nulle.

219 ENSEA/ENSIIE MPI 2025

Soit la série de terme général (n2 + n+ 1)xn.
Déterminer son rayon de convergence et calculer sa somme.

220 CCINP PC 2021

Pour tout entier n ⩾ 2, on pose :

un =
n∏

k=2

(
2 − e 1

k

)
et vn = ln

(
nun

(n− 1)un−1

)
.

Montrer que la série
∑
n⩾2

vn converge, puis que la série
∑
n⩾2

un diverge.

221 CCINP PC 2019

Pour tout entier n ⩾ 2, soit an =
(−1)n

√
n

.

1. Étudier la nature de
∑
n⩾2

ln(1 + an).

2. Calculer lim
n→+∞

n∏
k=2

(1 + ak).

222 Mines-Ponts MP 2019

1. Existe-t-il une suite réelle (an)n∈N∗ telle que :

∀k ∈ N∗,
+∞∑
n=1

ak
n = k ?

2. Existe-t-il une suite réelle (an)n∈N∗ telle que :

∀k ∈ N∗,
+∞∑
n=1

ak
n = 1

k2 ?

223 Mines-Ponts MP 2017

Soit α ∈ R et (un)n∈N une suite réelle périodique de période d. Étudier la convergence
de la série de terme général un

nα .

224 Mines-Ponts PC 2017

Soit α ∈ R. Déterminer la nature de la série de terme général
(

n

n+ α

)n ln(n)
.
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225 Mines-Télécom MP 2025

Soit A ∈ Mn(R) telle que A3 = −A.

Déterminer le rayon de convergence et la somme de la série entière
+∞∑
k=0

Tr(Ak)xk.

226 ENSAE MP 2024

Déterminer le rayon de convergence de la série entière
∑
n⩾0

(
n+ 1

2

)
z2n.

227 CCINP MP 2017

On définit la suite (Jn)n∈N telle que :

∀n ∈ N, Jn =
∫ +∞

0
e−x sin2n(x) dx.

1. Justifier la définition de (Jn)n∈N.
2. Montrer que :

∀n ∈ N∗, Jn = 2n(2n− 1)
1 + 4n2 Jn−1.

3. En utilisant le résultat de la question 2, trouver la limite de la suite (Jn)n∈N.

228 Mines-Ponts MP 2025

Montrer la convergence de la somme suivante et en calculer la valeur :

∑
n⩾1

 (−1)n

2n− 1

+∞∑
k=n+1

(−1)k−1

2k − 1

 .
229 Mines-Télécom MP 2019

On considère la suite de terme général un =
∫ +∞

1
e−tn dt.

1. Étudier la convergence de la suite (un)n∈N.

2. Montrer l’existence de c > 0 tel que un ∼
c

n
quand n → +∞.

3. Quel est le rayon de convergence R de la série entière
∑

unx
n ?

4. Étudier la convergence en R et en −R.

230 Mines-Ponts MP 2019

On considère la suite (un)n⩾2, où un =
(

ln(n+ 1)
ln(n)

)n

.

1. Étudier la nature de cette suite.

2. Étudier la nature de la série de terme général
un − 1
n

.
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231 Mines-Ponts PSI 2013

Étudier la convergence de la série de terme général

un = arcosh(n) − arsinh(n).

232 Mines-Télécom MP 2022

Soit trois suites réelles (xn)n∈N, (yn)n∈N et (zn)n∈N, déterminées par leur premier terme
x0, y0, z0 et les relations de récurrence :

xn+1 =
xn

2 +
yn

4 +
zn

4
yn+1 =

xn

4 +
yn

2 +
zn

4
zn+1 =

xn

4 +
yn

4 +
zn

2

Montrer que les trois suites sont toujours convergentes.

233 Mines-Télécom MP 2018

Montrer que :
+∞∑
n=0

∫ 1

0
xn

√
1 − x dx =

∫ 1

0

1√
1 − x

dx = 2.

234 CCINP PSI 2019

Soit A =

0 3 0
1 0 1
1 0 0

 et, pour tout n ∈ N, un = Tr(An).

1. Trouver une relation vérifiée par la suite (un)n∈N.

2. Étudier la série
∑ 1

un

.

235 CCINP MP 2022

On pose :
∀n ∈ N∗, un = 1

3nn!

n∏
k=1

(3k − 2) et vn = 1
3
√
n2
.

1. Montrer que, pour tout n ∈ N∗,
un+1

un

⩾
vn+1

vn

.

2. En étudiant la suite
(
un

vn

)
n∈N∗

, montrer que la série
∑

un diverge.

3. On pose :
∀n ∈ N∗, wn = 2

3 ln
(
n+ 1
n

)
+ ln

(
un+1

un

)
.

Montrer que la série
∑

wn converge.

4. En déduire qu’il existe deux réels a et C tels que un ∼
C

na
.
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236 Mines-Ponts MP 2014

On pose u1 = 1 et un+1 = 2n− 3
2n+ 1un pour n ⩾ 1.

1. Étudier la suite (un)n⩾1.
2. Étudier la série

∑
n⩾1

un.

237 CCINP PC 2024

On pose, pour tout n ∈ N, un = (−1)n
∫ π

2

0
cosn(x) dx.

1. Montrer que la série
∑

un converge.

2. Calculer
∑

un.

238 CCINP MP 2022

1. Donner le développement en série de Taylor de l’exponentielle sur [0 ; 1].

2. On pose In =
∫ 1

0
(1 − t)net dt. Montrer que la suite (In)n∈N converge et qu’elle

est de limite nulle.
3. Donner un équivalent de In en partant d’une intégration par parties.

4. (a) Exprimer
n∑

k=0

1
k! en fonction de In.

(b) Montrer la convergence de la suite (un)n∈N définie par un = n sin(2πn!e).

239 Mines-Télécom MP 2025

Calculer la somme
+∞∑
n=0

1
sinh(2n) .

240 Mines-Ponts MP 2025

Soit (un)n∈N la suite telle que u0 = 1, u1 = 0 et :

∀n ∈ N, un+2 = un+1 + un

n+ 2 .

Déterminer le rayon de convergence de la série entière
∑
n⩾0

unx
n et calculer sa somme.

241 Mines-Ponts MP 2022

Soit u la suite réelle définie pour tout entier naturel n par :

un = n
√
n!.

Trouver une suite v d’éléments de la forme nα(ln(n))β, avec (α; β) ∈ R2, tel que u− v
soit convergente.
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242 CCINP PSI 2019

1. Pour tout n ∈ N∗, soit gn la fonction définie par gn(t) =
(

1 − t

n

)
et. Montrer

que :

∀t ∈ [0 ; 1], ∀n ∈ N∗, |g′
n(t)| ⩽ et

n
et

∣∣∣∣(1 − t

n

)n

et − 1
∣∣∣∣ ⩽ t

n
et.

2. Montrer la convergence simple et la convergence uniforme de la suite (In)n∈N∗ ,
où :

In : x ∈ [0 ; 1] 7−→
∫ x

0

(
1 − t

n

)
et dt.

243 Centrale-Supélec PC 2016

Pour tout n ∈ N, on pose :

un = 1
n!

∫ n

0
exp(−t)tn dt.

1. Montrer que la suite (un)n∈N converge vers une limite ℓ.
2. Montrer que ℓ ⩽ 1

2 .

244 Mines-Télécom MP 2023

Soit la fonction f définie par :

f(x) = 1
(1 + x)(2 − x) .

1. La fonction f est-elle développable en série entière au voisinage de 0 ? Si oui,
expliciter ce développement et donner son domaine d’existence.

2. Donner le développement limité de f à l’ordre 3 au voisinage de 0.

245 CCINP TSI 2024

On considère la fonction f donnée par :

f(x) = cos(x) − 1 + ax2

1 + bx2 .

Donner une condition sur a et b afin que le premier terme du développement limité de
f en 0 soit de degré maximal.

246 Mines-Télécom MP 2024

Soit f(x) =
+∞∑
n=1

xn2 .

1. Déterminer l’intervalle de définition de f .
2. Trouver un équivalent simple de f(x) quand x tend vers 1.
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247 Mines-Télécom MP 2022

1. Montrer que :
∀n ∈ N∗, ∃! x ∈ R+, cos(x) = nx.

2. On note (xn)n∈N∗ la suite ainsi trouvée. Montrer une éventuelle monotonie et
une éventuelle limite de cette suite.

248 CCINP PC 2021

Pour tout n ∈ N∗, on pose :

an = − ln(n) +
n∑

k=1

1
k

et Dn = an+1 − an.

Montrer que la série
∑
n⩾1

Dn converge.

249 Mines-Télécom MP 2022

Montrer la convergence et calculer la somme de la série

+∞∑
n=1

ln
(

(2n+ 1)n
(2n− 1)(n+ 1)

)
.

250 CCINP MP 2023

On considère :
•
∑

anx
n série entière de rayon R, de somme f(x),

•
∑

bnx
n série entière de rayon R′, de somme g(x),

•
∑

cnx
n avec, pour tout n ∈ N, cn =

n∑
p=0

apbn−p.

1. Que dire du rayon de convergence de la série
∑

cnx
n ?

Que dire de la somme de la série ? (Aucune démonstration n’est exigée.)
2. Donner le rayon de convergence et la somme de la série suivante :

∑
n⩾1

(
1 + 1

2 + · · · + 1
n

)
xn.

251 Mines-Ponts MP 2022

Pour n ⩾ 1 entier et x > 0, on pose :

un(x) = x
1+ 1√

2
+···+ 1√

n .

Étudier la convergence simple de la série
∑

un, puis étudier la continuité de sa somme.

252 Mines 2022

Soit P,Q ∈ C[X] n’admettant aucune racine entière.

Déterminer la nature de la série
∑

ln
∣∣∣∣∣P (n)
Q(n)

∣∣∣∣∣.
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253 Mines 2023

Calculer
+∞∑
m=1

+∞∑
n=1

1
m2n+ n2m+ 2mn .

254 Mines 2023

Soit f une fonction continue sur [0 ;π]. Pour n ⩾ 1 entier, on pose

In =
∫ π

0
|sin(nt)|f(t) dt.

1. Montrer que In = 1
n

n−1∑
k=0

∫ π

0
f

(
t+ kπ

n

)
sin(t) dt.

2. Déterminer la limite de la suite (In)n∈N.

Indication : on pourra étudier Sn = 1
n

n−1∑
k=0

∫ π

0
f

(
kπ

n

)
sin(t) dt.

255 Mines 2022

On fixe α ⩾ 0 et on pose, pour n ⩾ 1 :

un =
∫ n

0

(
1 + x

n

)n

e−αx dx.

1. Déterminer la limite et un équivalent de un lorsque α = 0.
2. Faire de même lorsque α > 1.
3. À l’aide du changement de variable x = t

√
n, faire de même lorsque α = 1.

4. En déduire la limite de un lorsque α ∈ ]0 ; 1[.

256 Mines 2023

Soit b ⩾ 2. On note c(n) le nombre de chiffres dans l’écriture en base b de n. On pose
u1 = 1 et, pour n ⩾ 2, un = nuc(n). Montrer que la série

∑ 1
un

diverge.

257 Mines 2024

1. Soit α ∈ R \ {−1}. Donner un équivalent de :

Sn(α) =
n∑

k=1

1
kα
.

2. Calculer :
lim

n→+∞

1√
n

n∑
k=1

1√
2k − 1 +

√
2k
.
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258 Mines 2024

On admet que ζ(2) = π2

6 et on pose :

an =
n∑

k=1

1
k2 et bn =

n∑
k=1

1
(2k − 1)2 .

Calculer :
lim

n→+∞
n

(
π4

48 − anbn

)
.

259 X 2022

Soit a ∈ CN. On note f(z) =
+∞∑
n=0

an

n! z
n, et on note R le rayon de convergence de f .

Montrer l’équivalence entre les assertions suivantes :
i) ∃C > 0, ∀ε > 0, ∃n0 ∈ N, |an| ⩽ (C + ε)n ;
ii) R = +∞ et ∃C > 0, ∀ε > 0, ∃r0 > 0, ∀z ∈ C, |z| ⩾ r0 =⇒ |f(z)| ⩽ e(C+ε)|z|.

260 CCP 2023

1. Calculer lim
n→+∞

1
n

n−1∑
k=0

ln
(

1 + k

n

)
.

2. Montrer que lim
n→+∞

1
n

n−1∑
k=0

ln
(

1 + k

n2

)
= 0.

3. Soit f une fonction continue sur [0 ; 1]. À l’aide de la continuité uniforme de f ,
montrer que :

lim
n→+∞

1
n

n−1∑
k=0

f

(
k

n
+ k

n2

)
=
∫ 1

0
f(t) dt.

261 CCP 2024

Soit λ > 0. Pour n ∈ N et x ∈ R, on pose :

fn(x) = x

1 + λnx2 .

1. Étudier la convergence simple de
∑

fn en fonction de λ.
2. Même question pour la convergence uniforme.
3. On définit à présent :

gn(x) = 1
2n+1 ln(1 + 2nx2) et G(x) =

+∞∑
n=0

gn(x).

(a) Donner le domaine de définition de G.
(b) Donner le domaine de continuité de G.
(c) Donner le domaine de dérivabilité de G.
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262 Mines 2024

On pose u0 = 0, u1 = 1, et pour tout n ∈ N :

un+2 = un+1 + (n+ 1)un

n+ 2 .

Déterminer une expression explicite de un et calculer la limite de la suite (un)n∈N.

263 Mines 2024

Étudier la série entière :

S(x) =
+∞∑
n=0

un

n! x
n avec un =

∫ +∞

0

(ln(t))n

t2 + 1 dt.

264 Centrale 2023

Pour tout n ⩾ 1 entier, on pose Hn =
n∑

k=1

1
k

.

Soit encore :
f(x) =

+∞∑
n=1

ln(n)xn et g(x) =
+∞∑
n=1

Hnx
n.

1. En utilisant la méthode des rectangles, montrer que Hn = ln(n) + O(1). En
déduire les rayons de convergence de f et g.

2. Donner une expression de g et en déduire un équivalent de f en 1−.
3. En calculant (1 − x)f(x), montrer que f admet une limite finie en −1 et la

calculer.

265 Mines 2022

On pose f(x) =
+∞∑
n=0

e−x
√

n.

1. Donner le domaine de définition de f .
2. Donner le domaine de continuité de f .
3. Calculer lim

x→+∞
f(x).

4. Donner un équivalent de f en 0+.

266 Mines 2024

Soit A ∈ S++
n (R), b ∈ Rn et α > 0. On définit la suite :x0 ∈ Rn

xn+1 = xn + α(b− Axn)

1. Donner une condition nécessaire et suffisante sur x0 et α pour que la suite
(xn)n∈N converge.

2. On pose en = A−1b− xn.
Trouver la constante optimale C > 0 telle que ∥en+1∥ ⩽ C∥en∥ pour tout n ∈ N.
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267 Centrale 2023

Soit (an)n∈N et (bn)n∈N deux suites réelles. On suppose que la suite (bn)n∈N est décrois-
sante et converge vers 0.

1. Montrer qu’une série (réelle ou complexe) absolument convergente est conver-
gente.

2. (a) On note Sn = a0 + · · · + an et on suppose que la suite (Sn)n∈N est bornée.
Montrer que :

n∑
k=0

akbk =
n−1∑
k=0

Sk(bk+1 − bk) + Snbn.

(b) En déduire que
∑

anbn converge.

3. (a) On pose fn : x 7→ sin(nx). Montrer que si
∑

bnfn converge uniformément
sur R, alors bn = o

(
1
n

)
.

(b) Montrer la réciproque.

268 Centrale 2023

On fixe a > 0 et on pose :

f(x) =
+∞∑
n=0

sin(nx) exp(−na).

1. (a) Rappeler le théorème de dérivation des séries de fonctions.
(b) Donner le domaine de définition de f . Montrer que f est de classe C∞.

2. On suppose a > 0. Montrer que τx : t 7→ f(x + t) est développable en série
entière au voisinage de 0.

3. Qu’en est-il lorsque a ⩽ 1 ?

269 Mines 2022

Pour α ∈ R et n ∈ N, on pose :

un =
+∞∑
k=n

1
(k + 1)α

et vn =
+∞∑
k=n

(−1)k

(k + 1)α
.

Discuter de la nature de
∑

un et
∑

vn en fonction de α.

270 Mines 2023

Soit f : R+ → R telle que f(0) = 0 et lim
x→+∞

f(x) = 0.

1. Pour tout n ∈ N, soit fn : x 7→ f(nx).
(a) La suite (fn)n∈N converge-t-elle simplement sur R+ ?
(b) La suite (fn)n∈N converge-t-elle uniformément sur tout compact ?

2. Mêmes questions avec fn : x 7→ f

(
x

n

)
.
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271 Mines 2023

Pour tout z ∈ C \ {1}, on pose f(z) = exp
(

z

1 − z

)
.

1. Montrer que f est développable en série entière au voisinage de 0. Donner son
rayon de convergence.

2. Exprimer les coefficients an de cette série entière sous forme d’une somme.
3. Donner une relation de récurrence entre les an.
4. Effectuer un développement asymptotique de ln(an) à la précision O(ln(n)).

272 Mines-Ponts MPI 2025

Soit (an)n∈N une suite réelle à valeurs dans [0 ; 1] et (bn)n∈N telle que :

bn =
∫ 1

0

n∏
k=1

(1 − akt) dt.

1. Dans cette partie, on suppose que la suite (an)n∈N converge vers 1.

(a) Démontrer que bn ⩾
1

n+ 1.

(b) En utilisant σn =
n∑

k=1
ak, démontrer que bn ⩽

1 − e−σn

σn

.

(c) En déduire un équivalent de bn en +∞.
2. Dans cette partie, on suppose que (an)n∈N converge vers un réel de l’intervalle

]0 ; 1[. Soit α ∈ ] − 1 ; 0[.
(a) Démontrer que pour tout x ∈ [0 ;α], il existe C ∈ R∗

+ tel que :

x− Cx2 ⩽ ln(1 + x) ⩽ x.

(b) En déduire un équivalent de bn en +∞.

273 Mines-Ponts MP 2025

Pour tout n ∈ N∗, on définit :

un : t 7−→ 2t
t2 + n2 .

1. Étudier les modes de convergence de
∑

un.
2. On note g la fonction somme. Montrer sa continuité.
3. La fonction g est-elle de classe C1 ?
4. Étudier la limite de g en +∞.

274 Mines-Télécom MP 2021

Soit (a; b) ∈ R∗
+

2. Quelle est la nature de la série de terme général un = an2
√

n

bn + 2
√

n
?
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275 Mines-Télécom MP 2025

Pour tout entier n ⩾ 1, on pose :

In =
∫ +∞

0

sin(x)
1 + n2x4 dx.

1. Justifier l’existence de la suite (In)n∈N.
2. Déterminer la limite de la suite (In)n∈N.

276 CCINP MP 2021

On pose, pour tout réel x :

∀n ∈ N∗, un(x) = rn(einx + e−inx)

avec r un nombre réel fixé tel que |r| < 1.
1. Montrer que la série de fonctions

∑
un converge normalement sur R.

2. Pour tout x ∈ R, calculer Pr(x) =
+∞∑
n=0

un(x).

3. Calculer
∫ 2π

0
Pr(x) dx.

4. Soit α ∈ R.

Calculer
+∞∑
n=0

cos(nα)xn et préciser le rayon de convergence de cette série entière.

277 Mines-Télécom MP 2021

1. Donner une condition nécessaire sur la suite (un)n∈N pour que la série numérique∑
un converge.

2. Cette condition est-elle suffisante ? Justifier.
3. Déterminer la nature de la série de terme général

vn =
√
n+ a

√
n+ 1 + b

√
n+ 2

en fonction des réels a et b.

278 Mines-Ponts MP 2021

Soit α ∈ ]0 ;π[ et
f : R −→ R

x 7−→
x2 + 1

x2 + 2 cot(α)x− 1
Montrer que f admet un développement en série entière au voisinage de 0 et le déter-
miner.

279 Mines-Ponts MP 2021

Calculer
+∞∑
k=1

k − n
⌊

k
n

⌋
k(k + 1) .
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280 Mines-Télécom 2021

Soit f : x 7→
+∞∑
n=1

1
n

sin(nx) cosn(x).

1. Justifier que f est définie sur R.
2. Étudier la parité et la périodicité de f .
3. Justifier que f est de classe C1 sur ]0 ; +∞[. Exprimer f ′.
4. En déduire une expression de f .

281 CCINP MP 2021

À l’aide de séries entières, calculer les sommes suivantes :

1.
+∞∑
n=1

(−1)n

n

2.
+∞∑
n=2

(−1)n

n(n− 1) (sans utiliser 1.)

282 Mines-Télécom MP 2018

Pour tout entier n ⩾ 2 et pour tout x ∈ [0 ; +∞[, on pose un(x) =
xe−nx

ln(n) .

Étudier les convergences simple, absolue, normale et uniforme de la série de fonctions∑
un sur [0 ; +∞[.

283 ENSEA/ENSIIE MP 2018

Trouver tous les polynômes P ∈ R[X] tels que la série de terme général

un =
√
P (n) − n2 − n+ 1

converge.

284 Mines-Télécom MP 2023

1. Montrer la relation :

∀x ∈ R∗
+, arctan(x) + arctan

(1
x

)
= π

2 .

2. On pose :

un(x) = arctan(
√
n+ x) − arctan(

√
n) et S(x) =

+∞∑
n=0

un(x).

(a) Étudier la convergence simple, puis la convergence normale de S.
(b) Montrer que S est de classe C1 et calculer S ′.
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285 Mines-Télécom 2025

Pour tout x > 0, on pose f(x) =
+∞∑
n=0

1
n!(n+ x) .

1. Montrer que f existe.

2. Trouver (a; b) ∈ R2 tel que f(x) =
x→+∞

a

x
+ b

x2 + o
( 1
x2

)
.

286 CCINP PSI 2025

Pour tout n ∈ N∗, on pose un(x) = (−1)n e−nx

n
.

1. Déterminer le domaine de définition de la fonction somme S : x 7→
+∞∑
n=1

un(x).

2. Montrer que la fonction somme S est continue sur son domaine de définition.
3. Montrer qu’elle est de classe C1 sur R∗

+.
4. Pour tout x du domaine de définition, calculer explicitement la somme S(x).
5. Montrer que la fonction S est intégrable sur [0 ; +∞[.

6. Calculer l’intégrale
∫ +∞

0
S(x) dx et montrer qu’elle vaut

π2

6 .

287 CCINP TSI 2025

Pour tout n ∈ N∗, on pose :

un = 1 − 1
n2 tan2

(
1
n

) .
Déterminer la nature de la série de terme général un.

288 CCINP MP 2024

Soit p ⩾ 2 entier et (an)n∈N la suite définie par :

an =


1 si n ≡ 0 mod p

−1 si n ≡ 1 mod p

0 sinon

1. Déterminer le rayon de convergence R de la série entière
+∞∑
n=0

anx
n.

2. Calculer la somme de la série f(x), et l’écrire sous une forme simplifiée.
3. La série converge-t-elle uniformément sur ] −R ;R[ ?
4. Décomposer f(x) en éléments simples dans C, écrire les coefficients sous forme

trigonométrique.
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289 Mines-Ponts MP 2022

1. Soit (pn)n∈N une suite croissante d’entiers avec pn ⩾ 2. Montrer que
∑
n⩾1

1
p1 · · · pn

converge et que sa somme appartient à ]0 ; 1].
2. Soit x ∈ ]0 ; 1]. Montrer qu’il existe une unique suite croissante (pn)n∈N d’entiers

supérieurs ou égaux à 2 telle que x =
∑
n⩾1

1
p1 · · · pn

.

3. Montrer que x est rationnel si, et seulement si, (pn)n∈N est stationnaire.

290 Mines-Ponts MP 2018

Soit A =

0 1 0
0 0 1
1 1 0

 ∈ M3(R).

1. Montrer que Sp(A) = {ρ; z; z} avec ρ > 1 et |z| < 1.
2. Pour tout n ∈ N, on pose un = ρn + zn + zn. Montrer que pour tout α ∈ R, les

séries
∑

sin(αun) et
∑

sin(αρn) sont de même nature.

291 TPE/EIVP MP 2015

1. Montrer que la série double de terme général up,q = 1
(p+ q)2 , avec p, q ∈ N∗,

diverge.

2. Étudier la convergence de la série double de terme général vp,q = 1
p2 + q2 , avec

p, q ∈ N∗.

292 Mines-Télécom PSI 2022

On considère la série de terme général un = (−1)n
sin(n)
n

.

1. Soit f ∈ C1([a ; b],R). Montrer que :

lim
λ→+∞

∫ b

a
f(t) cos(λt) dt = 0.

2. Soit n ∈ N∗ et t ∈
[
0 ; 1

2

]
. Montrer que :

n∑
k=1

(−1)k cos(2kt) = (−1)n cos((2n+ 1)t) − cos(t)
2 cos(t) .

3. Calculer
∫ 1

2

0
cos(2kt) dt, puis en déduire que la série

∑
un converge et donner

sa somme.

293 ENSEA/ENSIIE MP 2023

Donner le développement limité à l’ordre 5 en 0 de ecos(x).
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294 Mines-Ponts MP 2021

1. Montrer que la série de terme général
(−1)n

(2n)! converge et calculer sa somme S.

2. Proposer un encadrement de S avec ses sommes partielles.
3. Montrer que S est irrationnel.

295 Mines-Ponts PSI 2019

Soit f définie par f(t) = cos
(

arcsin(t)
2

)
.

1. Donner le domaine de définition de f et donner une équation différentielle
d’ordre 2 vérifiée par f .

2. En déduire un développement en série entière de f .

296 Mines-Ponts MP 2018

Quelle est la nature de la série de terme général (−1)n
∫ 1

0
cos(nt2) dt ?

297 CCINP PC 2022

Soit a > 0. On définit une suite réelle (un)n∈N en posant u0 = a et

∀n ∈ N, un+1 = un + u2
n.

On admet que tous les termes de cette suite sont strictement positifs et on pose :

vn = ln(un)
2n

.

1. Étudier la monotonie de la suite (un)n∈N et en déduire que cette suite tend vers
+∞.

2. Pour tout (n; p) ∈ N2, prouver l’égalité

vn+p−1 − vn+p = 1
2n+p+1 ln

(
un+p+1

u2
n+p

)

et en déduire l’encadrement

0 ⩽ vn+p+1 − vn+p ⩽
1

2n+p+1 ln
(

1 + 1
un

)
.

3. Prouver que la suite (vn)n∈N est convergente. Sa limite est notée ℓ.
Pour tout n ∈ N, on pose tn = exp(2nℓ) et sn = tn − un.

4. Montrer que un est équivalent à tn quand n tend vers +∞.
5. Déterminer une relation entre sn+1, sn et un.
6. En déduire que la suite (sn)n∈N est convergente.
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298 CCINP MP 2024

1. Déterminer le développement en série entière de la fonction arcsin.
2. Jusitifier que la fonction f définie par

∀x ∈ ] − 1 ; 1[, f(x) = (arcsin(x))2

admet un développement en série entière.
3. Montrer que f est solution de l’équation différentielle (1 − x2)y′′ − xy′ = 2.
4. En déduire le développement en série entière de f .

299 Mines-Ponts MP 2021

Soit (an)n∈N∗ une suite réelle telle que :

a1 = 1, ∀n ⩾ 2, an = 2a⌊n
2 ⌋.

Montrer que la suite (an)n∈N∗ est définie, puis que la série
∑

a−2
n converge.

300 Mines-Ponts MP 2021

1. Soit (un)n∈N une suite numérique. Montrer que :

lim
n→+∞

un = ℓ =⇒ lim
n→+∞

1
n

n−1∑
k=0

uk = ℓ.

2. Soit a > 0, α > 1 et f : [0 ; a] → [0 ; a] continue admettant un développement
asymptotique en 0 de la forme :

f(x) = x− λxα + o(xα).

(a) Montrer qu’il existe ε > 0 tel que 0 soit le seul point fixe de f dans [0 ; ε].
(b) On définit la suite (un)n∈N par :

∀n ∈ N, un+1 = f(un).

Montrer que la suite (un)n∈N converge vers 0.
(c) Trouver un équivalent en 0 de (f(x))1−α − x1−α quand x → 0.
(d) En déduire un équivalent de un quand n → +∞.
(e) Appliquer aux fonctions x 7→ sin(x) et x 7→ ln(1 + x).

301 Mines-Télécom MP 2018

Déterminer si la série de terme général

1
ln(n) ln(cosh(n))

converge.
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302 Mines-Ponts MP 2023

On note p(n) le nombre de triplets (x; y; z) ∈ N3 tels que x+ 2y + 3z = n.

On pose G(t) =
+∞∑
n=0

p(n)tn.

1. Montrer que G est définie pour |t| < 1 et qu’on a :

∀t ∈ ] − 1 ; 1[, G(t) = 1
(1 − t)(1 − t2)(1 − t3) .

2. En déduire un équivalent de p(n).

303 Mines-Ponts PC 2023

Déterminer lim
n→+∞

n∏
k=1

(
1 + 10−2k

)
.

304 Mines-Télécom MP 2021

Soit n ∈ N∗. On considère l’équation :

(En) : ln(x)
x

= 1
n
.

1. Montrer qu’il existe des suites (un)n∈N∗ et (vn)n∈N∗ telles que un et vn vérifient
(En), et pour n assez grand, 0 < un < e < vn.

2. La suite (un)n∈N∗ converge-t-elle ? On note ℓ sa limite.
3. Trouver un équivalent de un − ℓ.

305 CCINP PC 2021

Pour tout n ∈ N∗, on pose :

an = − ln(n) +
n∑

k=1

1
k

et Dn = an+1 − an.

Montrer que la série
∑
n⩾1

Dn converge.

306 CCINP PC 2021

Soit (an)n∈N une suite réelle vérifiant a0 > 0 et

∀n ∈ N, 0 < an+1 ⩽ 2 − 1
an

.

Montrer que la suite est décroissante, puis qu’elle converge. Quelle est sa limite ?

307 Mines-Télécom MP 2021

Déterminer le rayon de convergence et calculer la somme de la série suivante :

∑
n⩾0

n2 + 4n− 1
(n+ 2)n! xn.
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308 Mines-Ponts MP 2016

1. Montrer qu’il existe (a; b) ∈ R2 tel que :

∀n ∈ N∗,
∫ π

0
(at2 + bt) cos(nt) dt = 1

n2 .

2. Soit θ ∈ R \ 2πZ. Montrer que, pour tout n ∈ N∗,

n∑
k=1

cos(kθ) =
sin

(
(n+ 1

2)θ
)

2 sin
(

θ
2

) − 1
2 .

3. Soit f ∈ C1([a ; b],R). Montrer que :

lim
λ→+∞

∫ b

a
f(t) sin(λt) dt = 0.

4. En déduire la valeur de
+∞∑
n=1

1
n2 .

309 Mines-Télécom MP 2017

Soit S =
∑
n⩾0

tan
(
nπ

5

)
zn.

1. Donner le rayon de convergence R de cette série.
2. Soit a = tan

(
π
5

)
. Exprimer tan

(
nπ
5

)
en fonction de a, pour n ∈ {2; 3; 4}.

3. Simplifier S5N(z) pour |z| < R.
4. Calculer S sur l’intervalle ] −R ;R[.

310 Mines-Ponts MP 2017

Pour tout n ∈ N, on définit :

In =
∫ 1

0

1√
1 + t+ · · · + tn

dt.

1. Montrer que la suite (In)n∈N converge vers une limite ℓ que l’on calculera.
2. Trouver un équivalent de In − ℓ.

311 X MP 2017

Soit (un)n∈N la suite réelle définie par u0 = a (a ∈ R) et un+1 = tanh(un).
1. Étudier la limite de la suite (un)n∈N.
2. Trouver un équivalent de un.

312 Mines-Ponts MP 2017

Étudier la suite réelle (un)n∈N définie par u0 = a (a ∈ R) et un+1 =
1 − u2

n

1 + u2
n

.
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313 CCINP PSI 2019

1. Soit t ∈
[
−1

2 ; 1
2

]
. Montrer que :

∣∣∣ ln(1 + t) − t
∣∣∣ ⩽ 2t2.

2. Montrer la convergence simple et la convergence uniforme sur R de la série de
fonctions de terme général :

fn(x) = ln
(

1 + (−1)nx

n2(1 + x2)

)
(n ∈ N∗).

314 CCINP PSI 2019

Pour n ∈ N∗ et x ∈ R, on pose :

In(x) =
∫ x

0

1
coshn(t) dt.

1. Montrer que In est bien définie.
2. Montrer que la suite (In)n∈N converge simplement sur R. La convergence est-elle

uniforme ?
3. (a) Trouver une relation de récurrence entre In et In+2.

(b) Utiliser cette relation pour calculer :

I =
∫ ln(2)

0

sinh2(t)
cosh3(t)

dt.

315 Mines-Ponts MP 2019

Soit (un)n∈N une suite réelle telle que lim
n→+∞

(u2
n − un) = 0.

Que peut-on dire des affirmations suivantes ?
1. Si lim

n→+∞
un ̸= 0, alors lim

n→+∞
un = 1.

2. La suite (un)n∈N est bornée.
3. lim

n→+∞
(u3

n − un) = 0

316 Mines-Ponts MP 2019

Soit (a; b) ∈ R2 et (xn)n∈N la suite réelle définie par x0 = a, x1 = b et

∀n ∈ N, xn+2 = min(3 − xn+1; 2xn − 2).

1. Étudier la convergence de la suite (xn)n∈N.
2. Montrer que la suite (xn)n∈N possède au moins un terme négatif.
3. En déduire le caractère non borné de la suite (xn)n∈N.

317 Mines-Ponts MP 2019

Calculer
+∞∑
n=0

+∞∑
m=0

n2

(n+m)! .
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318 Mines-Ponts MP 2012

Déterminer le rayon de convergence de la série entière
∑

en sin(n)zn.

319 Mines-Ponts MP 2014

Quelle est la nature de la série de terme général

un = arccos
√1 − 1

n3

 ?

320 Mines-Ponts MP 2014

Étudier la limite suivante :

lim
n→+∞

n−1∑
k=1

ln(k) − ln(n)
k − n

.

321 Mines-Ponts MP 2015

Soit z ∈ C. Montrer que pour tout n ∈ N, il existe (a1,1; . . . ; an,n) ∈ Rn tel que :
n∑

k=0

zk

k! −
(

1 + z

n

)n

=
n∑

k=0
ak,nz

k.

En déduire que lim
n→+∞

(
1 + z

n

)n

= ez.

322 Mines-Ponts MP 2016

On considère la suite (Un)n∈N définie par :

U0 = U1 = 1 et ∀n ∈ N, Un+2 = Un+1 + (n+ 1)Un.

On pose :

f(x) =
+∞∑
n=0

Un
xn

n! .

1. Expliciter f et en déduire Un pour tout n.
2. Comparer Un et Vn = Card({σ ∈ Sn | σ2 = Id}), où Sn est l’ensemble des

permutations de {1; . . . ;n}.

323 Mines-Ponts PSI 2016

Soit u ∈ RN. Montrer qu’il existe v ∈ RN et w ∈ RN respectivement croissante et
décroissante telles que u = v + w.

324 Mines-Ponts MP 2016

Calculer lim
n→+∞

n∑
k=1

sin
(
k

n

)
sin

(
k

n2

)
.
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325 Mines-Ponts MP 2016

Soit f : [0 ; 1] → R+ dérivable en 0 telle que f(0) = 0. Calculer :

lim
n→+∞

n∑
k=1

f

(
k

n2

)
.

326 Mines-Ponts MP

1. Soit (xn)n∈N une suite réelle, et (yn)n∈N une suite réelle strictement positive,
strictement croissante et non bornée. Montrer que si la suite

(
xn+1−xn

yn+1−yn

)
n∈N

tend
vers L ∈ R ∪ {−∞; +∞}, alors (théorème de Stolz) :

lim
n→+∞

xn

yn

= L.

2. Déduire, à partir du théorème de Stolz, le lemme de Cesàro.
3. En utilisant le théorème de Stolz, établir que :

n∑
k=1

1
k

∼
n→+∞

ln(n).

4. (a) Soit (an)n∈N une suite réelle telle que :

lim
n→+∞

an+1 − 1
2an = 0.

Montrer que lim
n→+∞

an = 0.
(b) Soit λ ∈ ] − 1 ; 1[ et (an)n∈N une suite réelle telle que :

lim
n→+∞

an+1 − λan = a ∈ R.

Montrer que lim
n→+∞

an = a

1 − λ
.

327 Mines-Ponts MP 2022

Étudier les suites (un)n∈N∗ et (vn)n∈N∗ vérifiant les conditions :

(u1; v1) ∈ R2 et ∀n ∈ N∗,

un+1 = un + arctan
(

2
n2

)
vn

vn+1 = vn − arctan
(

2
n2

)
un

328 X MP 2018

Soit x ∈ [−π ; π]. Montrer que

π2

3 +
+∞∑
n=1

4(−1)n

n2 cos(nx)

vaut x2.
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329 Mines-Ponts MP 2019

Pour tout n ∈ N∗, soit Hn =
n∑

k=1

1
k

. On pose ω(n) = min ({p ∈ N∗ | Hp ⩾ n}).

Donner une équivalent de ω(n).

330 X ESPCI 2017

1. Trouver la limite de la suite (xn)n∈N où, pour tout n ∈ N, xn+1 =
√

1 + xn

2 , avec
x0 ∈ ]0 ; 1[.

2. Donner un équivalent de xn − 1 quand n → +∞.

331 Mines-Télécom PSI 2023

1. Soit θ ∈ ]0 ; π[ et f(x) =
+∞∑
k=0

sin(kθ)xk.

Montrer par l’absurde que la suite (sin(nθ))n∈N ne converge pas vers 0.
2. Déterminer le rayon de convergence de la série f(x).
3. Calculer f(x).

332 X PC 2019

Soit I un intervalle de R et (fn)n∈N une suite de fonctions sur I à valeurs réelles, et
convergeant uniformément sur I. On pose :

gn = fn

1 + f 2
n

.

Montrer que la suite de fonctions (gn)n∈N converge uniformément sur I.

333 CCP MP

Soit X une partie de R ou de C.
1. Soit

∑
fn un série de fonctions définies sur X à valeurs dans R ou C.

Rappeler la définition de la convergence normale de
∑

fn sur X, puis celle de
la convergence uniforme de

∑
fn sur X.

2. Démontrer que toute série de fonctions, à valeurs dans R ou C, normalement
convergente sur X est uniformément convergente sur X.

3. La série de fonctions
∑ n2

n! z
n est-elle uniformément convergente sur le disque

fermé de centre 0 et de rayon R ∈ R∗
+ ?

334 ENSEA/ENSIIE MPI 2024

Donner le rayon de convergence de la série entière
∑
n⩾0

xn

2n+ 1, puis calculer sa somme

pour x ⩾ 0.
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335 CCP MP

1. Soit X une partie de R, (fn)n∈N une suite de fonctions de X dans R convergeant
simplement vers une fonction f . On suppose qu’il existe une suite (xn)n∈N d’élé-
ments de X telle que la suite (fn(xn)−f(xn))n∈N ne tende pas vers 0. Démontrer
que la suite de fonctions (fn)n∈N ne converge pas uniformément vers f sur X.

2. Pour tout x ∈ R, on pose fn(x) =
sin(nx)

1 + n2x2.

(a) Étudier la convergence simple de la suite (fn)n∈N.
(b) Étudier la convergence uniforme de la suite (fn)n∈N sur [a ; +∞[ (avec a > 0),

puis sur ]0 ; +∞[.

336 CCP MP

1. Soit (gn)n∈N une suite de fonctions de X dans C, X désignant un ensemble non
vide quelconque. On suppose que, pour tout n ∈ N, la fonction gn est bornée
et que la suite (gn)n∈N converge uniformément sur X vers g. Démontrer que la
fonction g est bornée.

2. Pour tout entier naturel n non nul, on considère la fonction fn définie sur R
par :

fn(x) =


n3x si |x| ⩽ 1

n

1
x

si |x| > 1
n

Prouver que la suite de fonctions (fn)n∈N converge simplement sur R. La conver-
gence est-elle uniforme sur R ?

337 CCP MP

1. Soit a et b deux nombres réels donnés avec a < b. Soit (fn)n∈N une suite de
fonctions continues sur [a ; b], à valeurs réelles.
Démontrer que si la suite (fn)n∈N converge uniformément sur [a ; b] vers f , alors

la suite
(∫ b

a
fn(x) dx

)
n∈N

converge vers
∫ b

a
f(x) dx.

2. Justifier comment ce résultat peut être utilisé dans le cas des séries de fonctions.

3. Démontrer que
∫ 1

2

0

(+∞∑
n=0

xn

)
dx =

+∞∑
n=1

1
n2n

.

338 CCINP MP 2025

On pose f : x 7→
1√

1 − x2
arcsin(x), où x est un nombre réel.

1. Déterminer le domaine de définition de f .
2. Déterminer une équation différentielle vérifiée par f avec la condition f(0) = 0.
3. Déterminer le développement en série entière de f .
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339 CCP MP

Soit A ⊂ C et (fn)n∈N une suite de fonctions de A dans C.
1. Démontrer l’implication :

la série de fonctions
∑

fn converge uniformément sur A

⇓

la suite de fonctions (fn)n∈N converge uniformément vers 0 sur A

2. On pose : ∀n ∈ N, ∀x ∈ [0 ; +∞[, fn(x) = nx2e−x
√

n.
(a) Prouver que

∑
fn converge simplement sur [0 ; +∞[.

(b) La série
∑

fn converge-t-elle uniformément sur [0 ; +∞[ ? Justifier.

340 CCINP MP 2025

On pose d0 = 1, d1 = 1
2 et pour tout n ⩾ 2 entier :

dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n
n+1

√
1

n+1 0 · · · 0

−
√

1
n+1

. . . . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . . . .

√
1
3

0 · · · 0 −
√

1
3

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

1. Calculer d2 et d3.
2. Montrer que, pour tout n ⩾ 2 :

(n+ 1)dn = ndn−1 − dn−2.

3. En déduire une information sur le rayon de convergence de
∑

dnx
n.

4. On pose f(x) =
+∞∑
n=0

dnx
n+1. On admet que f vérifie l’équation :

(E) : (1 − x)f ′(x) − xf(x) = 1.

Montrer que f(x) = 1 − e−x

1 − x
. En déduire une expression de dn en fonction de n.

341 Mines-Ponts MP 2025

1. Décomposer X4 + 1 en polynômes irréductibles dans R[X] en remarquant que
X4 + 1 = (X2 + 1)2 − 2X2.

2. Décomposer en éléments simples
1

X4 + 1.

3. Justifier l’existence puis calculer
+∞∑
n=0

(−1)n

4n+ 1.
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342 CCINP MP 2025

Soit (un)n∈N la suite définie par u0 = 3 et :

∀n ∈ N, un+1 =
n∑

k=0

(
n

k

)
ukun−k.

1. Montrer que, pour tout n ∈ N, 0 ⩽ un ⩽ 4n+1n!.

2. On pose f(x) =
+∞∑
n=0

un

n! x
n.

Montrer que f est solution de l’équation f ′ = f 2 sur un intervalle à préciser.
3. Exprimer f à l’aide de fonctions usuelles.
4. Exprimer un en fonction de n.

343 CCINP MP 2025

1. Montrer que
∑
n⩾1

(−1)n

n
xn converge uniformément sur [0 ; 1].

2. Soit
∑

anx
n une série entière de rayon de convergence R ⩾ 1.

On pose Rn =
+∞∑

k=n+1
ak et on suppose que

∑
an converge.

Montrer que, pour tout x ∈ [0 ; 1] :

+∞∑
k=n+1

akx
k = Rnx

n+1 +
+∞∑

k=n+1
Rk(xk+1 − xk).

3. En déduire que
∑

anx
n converge uniformément sur [0 ; 1].

344 Mines-Télécom MP 2025

Étudier la convergence simple, puis uniforme sur
[
0 ; π

2

]
de la suite (fn)n∈N de fonctions

définie par :
∀n ∈ N, ∀x ∈ R, fn(x) = n2 cos(x) sinn(x).

345 CCINP MP 2025

On pose c0 = 0, c1 = 1 et pour tout n ⩾ 2 entier, cn =
n−1∑
k=1

ck · cn−k.

On pose f(x) =
+∞∑
k=0

ckx
k et on note R > 0 son rayon de convergence.

1. Montrer que pour tout x ∈ ] −R ;R[, f 2(x) = f(x) − x. Déterminer f(0).

2. Montrer qu’au voisinage de 0, f(x) = 1 −
√

1 − 4x
2 . Préciser R.

3. Développer
√

1 + x au voisinage de 0. En déduire que :

∀n ⩾ 1, cn = (2n− 2)!
(n− 1)!n! .

73



346 CCINP PSI 2017

On pose :

∀x ∈ R, f(x) =
+∞∑
n=1

arctan(nx)
n2 .

1. Déterminer lim
x→+∞

f(x) sachant que
+∞∑
n=1

1
n2 = π2

6 .

2. Montrer que f est de classe C1 sur R∗.
3. Déterminer lim

x→+∞
f ′(x).

4. Que peut-on en déduire sur le graphe de f ?

347 Centrale-Supélec MP 2017

1. Rappeler le théorème d’interversion de lim et ∑ pour les séries de fonctions (ou
théorème de la double limite).

2. On admet que :
πx

tan(πx) = 1 +
+∞∑
n=1

2x2

x2 − n2

pour tout x ∈ R \ Z. En déduire les valeurs de ζ(2) et ζ(4), où ζ(α) =
+∞∑
n=1

1
nα

.

348 X MPI 2023

Soit f : [0 ; +∞[→ [0 ; +∞[ continue strictement croissante. Montrer que :

∑ 1
f(n) converge ⇐⇒

∑ f−1(n)
n2 converge.

349 Mines-Télécom MPI 2023

Soit (an)n∈N une suite de réels qui converge vers ℓ.
Soit f : x 7→

∑
n⩾0

anx
n

n! .

1. Donner le rayon de convergence de cette série.
2. Calculer lim

x→+∞
e−xf(x).

350 CCINP PSI 2024

Pour tout n ∈ N, on considère :

fn : ] − 1 ; 1[ −→ R
x 7−→ sin(nx)e−n2x2

1. La suite (fn)n∈N converge-t-elle simplement ?
2. Étudier la convergence uniforme de f sur [α ; 1], où α ∈ ]0 ; 1[, puis sur [0 ; 1].
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351 X MP 2017

Soit σ une bijection de N∗ dans N∗. Que dire de la série
+∞∑
n=1

σ(n)
n2 ?

352 Mines-Ponts PSI 2022

On pose :

∀x > 0, S(x) =
+∞∑
n=1

1
n+ n2x

.

1. Montrer que S est continue sur R∗
+.

2. Déterminer la limite de S en +∞, puis déterminer un équivalent.
3. Déterminer la limite de S en 0.

353 CCINP PSI 2022

Soit α ∈ R. Si n ∈ N∗, on pose fn(x) = x(1 + nαe−nx) pour tout x ∈ R+.
1. Montrer que la suite (fn)n∈N∗ converge simplement vers une fonction f à préciser.
2. Déterminer les valeurs de α pour lesquelles il y a convergence uniforme.

3. Calculer lim
n→+∞

∫ 1

0
fn(x) dx.

354 TPE/EIVP PC 2018

Trouver un équivalent de un =
n∑

k=1
ln2(k).

355 CCINP PC 2024

Pour tout n ∈ N∗, on considère l’équation :

(En) : x
√

1 + x

n
= 1.

1. Montrer que, pour tout n ∈ N∗, l’équation (En) admet une unique solution
strictement positive, notée xn.

2. Montrer que la suite (xn)n∈N∗ est croissante.

356 Mines-Télécom MP 2024

1. Démontrer que
+∞∑
n=0

(−1)n

2n+ 1 = π

4 .

2. Donner une valeur approchée de π à 10−10 près.

357 Mines-Ponts MP 2022

Étudier la série de terme général :

un =
n∏

k=1

√
k sin

(
1√
k

)
.
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358 CCINP MP 2022

1. Rappeler l’inégalité de Taylor-Lagrange pour une fonction de classe Cn+1.
2. Pour tout n ⩾ 1, on pose :

un =
n∑

k=1

n

n2 + k2 .

Montrer que la suite (un)n∈N∗ converge et déterminer sa limite notée ℓ.
3. Donner un équivalent simple de un − ℓ.

359 Mines-Télécom MP 2022

Pour tout n ∈ N, soit fn : x 7→ xn(1 −
√
x).

1. Calculer
∫ 1

0
fn(x) dx.

2. En déduire la valeur de
+∞∑
n=0

1
(n+ 1)(2n+ 3).

360 ENS MP 2021

Soit f une fonction continue de [0 ; 1] dans R. On note (Pn)n∈N la suite de polynômes :

Pn(X) =
n∑

k=0
f

(
k

n

)(
n

k

)
Xk(1 −X)n−k.

Montrer que la suite (Pn)n∈N converge uniformément vers f sur [0 ; 1].

361 Mines-Ponts MP 2021

Soit (un)n∈N la suite définie par :

u0 ∈ R+ et ∀n ∈ N, un+1 =

√√√√1 +
(

n∑
k=0

uk

)2

.

1. Montrer que :
∀n ∈ N, ∃!θn ∈

[
0 ; π2

]
, un+1 = 1

sin(θn) ,

puis que :
∀n ∈ N,

1
tan(θn+1)

− 1
tan(θn) = 1

sin(θn) .

2. Déterminer θn pour tout n ∈ N, puis trouver un équivalent de un.

362 Mines-Télécom MP 2022

Étudier la nature de la série de terme général (−1)
n(n+1)

2√
n(n+ 1)

.
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363 CCINP PC 2024

On pose :
∀k ∈ N, ∀x ∈ R+, fk(x) = k2

k2 + 1x exp(−kx).

1. Montrer que la série de
∑

fk converge simplement sur R+.
2. A-t-on convergence normale sur R+ ?

364 CCINP MP 2017

Soit (εn)n∈N∗ une suite convergeant vers 0.
1. Déterminer la convergence des séries suivantes :

∑
n⩾1

(−1)nεn

n
√
n

,
∑
n⩾1

(−1)n

n
,

∑
n⩾1

1
n

et
∑
n⩾1

1
n

√
n
.

On pose, pour tout n ∈ N \ {0; 1}, Un = 1 + (−1)n

√
n

. On admet que :

∀k ∈ N∗, |ln(U2k+1)| − |ln(U2k)| = − ln
(

1 +
√

2k + 1 −
√

2k − 1√
2k

√
2k + 1

)
.

2. Montrer que :
∀n ∈ N∗,

√
n+ 1 −

√
n ⩽

1
2 .

En déduire que :
∀k ∈ N∗, |ln(U2k+1)| − |ln(U2k)| > 0.

3. La série
∑
n⩾2

ln(Un) est-elle alternée ? Satisfait-elle les conditions permettant de

dire que la série converge ?
4. Donner le développement en série entière de ln(1 + x) à l’ordre 3 au voisinage

de 0. En déduire la nature de la série
∑
n⩾2

ln(Un).

365 Centrale-Supélec TSI 2023

Pour tout n ∈ N, on pose un =
e−nnn

√
n

n! et vn = ln
(
un+1

un

)
.

1. Étudier la nature de la série
∑

vn.
2. Montrer que la suite (un)n∈N converge vers une constante c ∈ R∗

+.
3. Déterminer un équivalent de n! lorsque n → +∞.

4. Déterminer la valeur de c, en utilisant wn =
∫ π

2

0
cosn(t) dt.

366 X

Soit (un)n∈N une suite réelle décroissante telle que ∑un converge. Pour tout n ∈ N, on

pose vn = n(un − un+1). Montrer que ∑ vn converge et que
+∞∑
n=1

vn =
+∞∑
n=1

un.
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367 X MP MPI 2024

Soit (un)n∈N∗ une suite réelle majorée telle que :

∀n ∈ N∗, un = 1
n

2n∑
k=n+1

uk.

Montrer que la suite (un)n∈N∗ est constante.

368 Mines-Télécom MP 2018

Soit (an)n⩾0 une suite réelle bornée.

1. Déterminer le rayon de convergence R de la série entière
∑
n⩾0

an
xn

n! . On pose :

∀x ∈ ] −R ;R[, f(x) =
+∞∑
n=0

an
xn

n! .

2. Montrer que
∫ 1

0
f(t) dt =

∞∑
n=0

an

(n+ 1)! .

369 Mines-Télécom MP 2017

On note Hn = 1 +
1
2 +

1
3 + · · ·

1
n

, et on s’intéresse à S =
+∞∑
n=1

Hn

2n
.

Montrer l’existence de cette somme puis la calculer.
Indication : on pourra introduire une série entière.

370 Mines-Ponts MP 2017

Soit n ∈ N∗ et Sn =
n∑

k=1

√
k exp(

√
k).

Donner un développement asymptotique à 2 termes de Sn.

371 Mines-Ponts MP 2019

Soit (un)n⩾1 une suite réelle bornée. On suppose que lim
n→+∞

un + 1
2un+1 = 1. Montrer

que la suite (un)n⩾1 converge et déterminer sa limite.

372 Centrale

Soit (un)n∈N une suite complexe telle que
+∞∑
n=0

un converge.

Montrer que
n∑

k=0
kuk =

+∞
o(n).
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373 CCINP PC 2014

On rappelle que
+∞∑
n=1

1
n2 = π2

6 . On pose θ(t) =
ln(1 − t)

t
qu’on prolonge par θ(0) = 0.

1. Montrer que θ est continue sur ] − ∞ ; 1].
2. Soit x ∈ [−1 ; 1].

(a) Montrer que θ(t) = −
+∞∑
n=0

tn

n+ 1.

(b) On note L(x) =
∫ x

0
θ(t) dt. Montrer que L(x) =

+∞∑
n=1

xn

n2 .

3. (a) Montrer que L(x) + L(−x) =
1
2L(x2).

(b) Calculer
+∞∑
n=1

(−1)n

n2 .

4. (a) Montrer que :

L(x) + L(1 − x) = π2

6 − ln(1 − x).

(b) Calculer
+∞∑
n=1

1
2nn2 .

374 Mines-Télécom MP 2017

Posons f(x) =
+∞∑
n=1

sin(nθ)
n

xn, pour θ réel fixé.

1. Démontrer que f est définie et de classe C1 sur R.
2. Calculer f ′, en déduire f .

375 ENS MP 2017

Soit f ∈ C2(R,R) qui s’annule au moins une fois sur R. Soit (Xn)n∈N la suite définie
par :

X0 ∈ R et Xn+1 = Xn − f(Xn)
f ′(Xn) .

1. Si f est convexe, admet un unique zéro et f ′ ne s’annule jamais, étudier la suite
(Xn)n∈N.

2. Si f(x) = x2 − a2 où a ∈ R, étudier la suite (Xn)n∈N selon X0.
3. Si f(x) = x2 − 2x+ 2 et X0 = 0, étudier la suite (Xn)n∈N.
4. Toujours pour la fonction f de la question 3, montrer l’existence de deux inter-

valles tels que si X0 appartient à l’un de ces deux intervalles, alors (Xn)n∈N ne
converge pas.
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376 ENS

Soit (an)n∈N∗ une suite dans R+. Si n ∈ N∗, on pose bn = 1
n

n∑
k=1

ak.

On suppose que
+∞∑
n=1

a2
n converge. Montrer que

+∞∑
n=1

b2
n converge.

377 ENSEA/ENSIIE MP 2017

Pour x ∈ R+ et n ∈ N∗, on pose :

fn(x) =


1 si x = 0
n sin

(
x
n

)
x(1 + x2) sinon

1. Étudier la convergence uniforme de (fn)n⩾1 sur tout segment inclus dans
[0 ; +∞[.

2. On pose, pour tout n ∈ N∗, an =
∫ +∞

0
fn(x) dx.

La suite (an)n⩾1 converge-t-elle ?
3. Utiliser une autre méthode pour montrer la convergence de la suite (an)n⩾1 et

calculer sa limite.

378 CCINP MP 2018

Soit S(x) =
+∞∑
n=1

1
n2x2 + n

.

1. Donner l’ensemble de définition DS de S.
2. Montrer que S est de classe C1 sur DS.
3. Déterminer lim

x→+∞
S(x).

4. Démontrer que, pour tout x > 0 :

ln(1 + x2) − ln(x2) ⩽ S(x) ⩽ ln(1 + x2) − ln(x2) + 1
1 + x2 .

5. Donner un équivalent de S(x) en 0+.

379 Mines-Ponts MP 2018

Soit α ∈
]

1
2 ; 1

]
et pour tout n ∈ N∗ :

un = sin(
√
nπ)

nα
et vn =

∫ n+1

n

sin(
√
tπ)

tα
dt.

1. Montrer que
∑

vn converge.

2. En déduire que
∑

un converge.
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380 CCINP PC 2019

Soit Eλ l’ensemble des suites de réels strictement positifs, vérifiant :

un+1

un

= 1 + λ

n
+ o

( 1
n

)
.

Notons :

• si n ⩾ 1, vn =
1
nβ

et v0 = 1,

• si n ⩾ 2, wn =
1

n ln(n)2 et w0 = w1 = 1.

1. Montrer que (vn)n∈N∗ ∈ Eβ.
2. (a) Montrer que :

ln(n+ 1)
ln(n) = 1 + 1

n ln(n) + o

(
1

n ln(n)

)
.

(b) En déduire que la suite (wn)n⩾2 ∈ Eλ pour un certain λ à préciser.

3. (a) Donner la nature de
∫ +∞

2

1
t ln(t)2 dt.

(b) Donner la nature de
∑

wn.

4. Soit λ > −1 et (un)n∈N ∈ Eλ. On pose β =
1 − λ

2 . Montrer qu’il existe N ∈ N
tel que, pour tout n ⩾ N :

un+1

un

⩾
vn+1

vn

.

En déduire la nature de
∑

un.
5. Soit λ < −1 et (un)n∈N ∈ Eλ. Déterminer la nature de (un)n⩾1.
6. Que se passe-t-il pour λ = −1 ?

381 Mines-Ponts MP 2019

Pour tout n ∈ N, soit ⟨n⟩ l’entier le plus proche de
√
n. Calculer :

+∞∑
n=1

2⟨n⟩ + 2−⟨n⟩

2n
.

382 Mines-Ponts MP 2018

On note an =
∫ 1

0

1
(2 + t2)n+1 dt, n ∈ N.

1. Donner le rayon de convergence de la série entière
∑

anx
n.

2. Calculer la somme de cette série entière sur son domaine de convergence.

383 Mines-Ponts MP 2018

Étudier la nature de la série
∑

un, où la suite (un)n∈N est définie par :

u0 = 1 et un+1 = ln(eun − un).
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384 CCINP PC 2018

Soit In =
∫ +∞

0
exp(−xn) dx.

1. Soit n > 0. Montrer que In existe.
2. Montrer que la suite (In)n>0 converge.

385 CCINP PC 2018

Pour tout n ∈ N, on pose :

un =
∫ 1

2

0

sin2(nπx)
tan(πx) dx et vn =

∫ 1
2

0

sin2(nπx)
πx

dx.

1. Montrer par une intégration par parties que
∫ +∞

π

cos(u)
u

du converge.

2. Montrer que les intégrales un et vn convergent.
3. (a) Montrer que :

vn = 1
π

∫ n π
2

0

sin2(t)
t

dt = 1
2π

∫ nπ

0

1 − cos(u)
u

du.

(b) Montrer que vn ∼
ln(n)
2π .

4. On définit la fonction f par :

f : x ∈
]
0; 1

2

[
7−→ 1

tan(πx) − 1
πx
.

Montrer que f est prolongeable par continuité sur
[
0 ; 1

2

]
.

5. Donner un équivalent de un.

386 Mines-Télécom PC 2018

Calculer :
lim

n→+∞

(
cos

(
nπ

3n+ 1

)
+ sin

(
nπ

6n+ 1

))n

.

387 Mines-Ponts PC 2018

Pour tout n ∈ N, on pose :
In =

∫ 1

0
xn tan(x) dx.

Déterminer la limite ℓ de la suite (In)n∈N et donner un équivalent de In − ℓ.

388 Mines-Ponts MP 2018

Étudier la convergence de la série de terme général :

un = (−1)
n(n+1)

2

4
√
n

.
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389 Mines

Soit α > 0 et n ∈ N. On pose :

un(α) =
∫ π

2

0
sinα(t) cosn(t) dt.

1. Étudier la nature de
∑

un(α) en fonction de α.

2. Calculer
+∞∑
n=0

un(2) et
+∞∑
n=0

un(3).

390 Mines-Ponts MP 2015

Soit f ∈ C(R,R) telle que f est bornée sur R. On pose de plus, pour tout n ∈ N,

ϕn =
n

π

1
1 + n2t2

. On pose alors, pour tout n ∈ N et pour tout x ∈ R :

fn(x) =
∫ +∞

−∞
f(x+ t)ϕn(t) dt.

Montrer que la suite (fn)n∈N converge simplement sur R et qu’elle converge uniformé-
ment sur tout segment.

391 Mines-Ponts MP 2014

Calculer :
lim

n→+∞

n−1∑
k=1

ln(k) − ln(n)
k − n

.

392 CCINP PC 2016

Soit deux réels a et b tels que a < b et une suite de réels un strictement positifs tels
que :

∀n ∈ N,
un+1

un

= n+ a

n+ b
.

1. Donner, sous sa forme la plus simple possible, un équivalent de ln
(

n+a
n+b

)
au

voisinage de +∞. Montrer que :

lim
n→+∞

n∑
k=0

ln
(
uk+1

uk

)
= −∞

et en déduire que la suite (un)n∈N converge vers 0.
2. On pose α = b− a, v0 = u0 et pour tout n ∈ N∗, vn = nαun. Montrer que

∑
k⩾0

ln
(
vk+1

vk

)

converge. Montrer qu’il existe un réel A tel que un ∼ A
nα au voisinage de +∞.

Étudier la convergence de
∑

un.
3. On suppose que la série de terme général un converge. Montrer que sa somme

vaut
u0(b− 1)
b− 1 − a

.
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393 Mines-Ponts MP 2015

Soit f0 une fonction continue de R+ dans R. On pose :

∀n ∈ N, ∀x ∈ R+, fn+1(x) =
∫ x

0
fn(t) dt.

Montrer que g =
∑
n⩾0

fn est définie sur R+ et la calculer en fonction de f0.

394 CCINP MP 2023

Pour tout n ∈ N∗, on pose :
un =

n∑
k=1

(−1)k
√
k.

1. Montrer que :
u2n =

n∑
k=1

1√
2ℓ+

√
2ℓ− 1

.

2. En déduire que u2n ∼
n→+∞

√
2n
2 .

3. Déterminer un équivalent simple de un quand n tend vers +∞.
4. Pour n ∈ N∗, on pose vn = un + un+1.

Justifier que la série
∑
n⩾1

(vn+1 − vn) est convergente de somme strictement néga-

tive.
5. Trouver la nature de

∑
n⩾1

1
un

.

395 Centrale-Supélec MP 2023

1. Soit I un intervalle de R de longueur non nulle, et f : I → R une fonction.
Définir la continuité par morceaux de f sur I.

2. Soit n ∈ N∗ et

fn : R −→ R

x 7−→


1
n

(
1 −

x

n

)
si 0 ⩽ x ⩽ n

0 sinon

Dessiner le graphe de fn pour un n choisi. Montrer que la suite (fn)n⩾1 converge
uniformément vers une certaine fonction g, mais que

lim
n→+∞

∫
R+
fn ̸=

∫
R+
g.

3. Énoncer le théorème de la convergence dominée et le prouver avec l’hypothèse
supplémentaire de convergence uniforme sur tout segment de I.
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396 Mines-Télécom MP 2017

Donner le rayon de convergence de la série entière

+∞∑
n=1

ln
(

cosh
( 1
n

))
xn

et la limite de sa somme aux bornes de l’ensemble de définition.

397 Mines-Ponts PC 2022

On définit une suite de fonctions (fn)n∈N sur l’intervalle [0 ; 1], à valeurs réelles en
prenant f0 : x 7→ 0 puis

∀n ∈ N, ∀x ∈ [0 ; 1], fn+1(x) = fn(x) + 1
2(x− fn(x)2).

1. Montrer que la suite de fonctions (fn)n∈N converge simplement sur [0 ; 1] vers la
fonction f : x 7→

√
x.

2. Pour tout n ∈ N et tout x ∈ [0 ; 1], prouver l’encadrement :

0 ⩽
√
x− fn(x) ⩽

√
x

(
1 −

√
x

2

)n

.

3. Montrer que la suite de fonctions (fn)n∈N converge uniformément sur [0 ; 1] vers
la fonction f .

398 CCINP MP 2023

1. Calculer
n∑

k=0
(−1)kt3k pour n ∈ N et t ∈ [0 ; 1], puis démontrer que :

lim
n→+∞

∫ 1

0

t3n

1 + t3
dt = 0.

2. En déduire que :
+∞∑
k=0

(−1)k

1 + 3k =
∫ 1

0

1
1 + t3

dt.

3. Calculer
∫ 1

0

2t− 1
1 + t+ t2

dt. En déduire la valeur de
+∞∑
k=0

(−1)k

1 + 3k .

399 Mines-Ponts PSI 2015

Étudier la série de terme général :

un =
(√

3
2 + (−1)n

nα

)
− π

6 .

400 ENS MP 2019

Existe-t-il une fonction f : R → R supérieure à toute série entière réelle en +∞ ?
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401 Centrale-Supélec PSI 2013

Soit n ⩾ 2 un entier. On définit :

un = 1
ln(n)n ln(n) .

Étudier la convergence de la série
+∞∑
n=2

un.

402 Mines-PSI 2016

On pose fn(x) = x|ln(x)|n pour x ∈ ]1 ; +∞[ et n ∈ N∗.
1. Déterminer le domaine de convergence simple de la suite (fn)n∈N∗ .
2. Étudier la convergence uniforme.

403 Mines-Ponts PC 2017

Soit (un)n∈N une suite réelle positive de limite nulle. On note D l’ensemble des a > 0
tels que la série de terme général (un)a

n∈N.
1. Montrer que si D est non vide, alors c’est un intervalle de la forme [s ; +∞[ ou

]s ; +∞[.
2. Donner un exemple où D est vide et un exemple où D est de la forme ]s ; +∞[.

404 Mines-Ponts MP 2017

Soit (an)n⩾2 une suite réelle telle que
∑
n⩾2

anz
n ait un rayon de convergence supérieur à

un. On pose a1 = 1 et on suppose que f(z) =
+∞∑
n=1

anz
n est injective sur B(0, 1).

1. Soit z ∈ B(0, 1). Montrer que z ∈ R si et seulement si f(z) ∈ R.
2. Soit z ∈ B(0, 1). On suppose que Im(z) ⩾ 0. Montrer que Im(f(z)) ⩾ 0.

405 Mines-Ponts MP 2015

On pose :
∀n ∈ N, ∀x ∈ R+, fn(x) = xn

n! e−x.

1. Montrer que la suite (fn)n∈N converge uniformément sur [0 ; +∞[ vers une fonc-
tion f que l’on déterminera.

2. Calculer
∫ +∞

0
fn(x) dx. Que constate-t-on ?

406 Centrale-Supélec MP 2016

On pose :
∀n ∈ N∗, zn =

n∏
k=1

(
1 + i

k

)
.

1. Rappeler le théorème de sommation des relations de comparaison.
2. Montrer que la suite (|zn|)n∈N∗ converge.
3. Déterminer l’ensemble des valeurs d’adhérence de la suite (zn)n∈N∗ .
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407 Mines-Ponts MP 2021

Soit α ∈ R+. Étudier la convergence de
+∞∑
n=1

∫ 1

0
cos(nαt2) dt.

408 Mines-Ponts PSI 2019

Soit a ∈ R et (un)n∈N∗ une série à termes strictement positifs telle que :

un+1

un

= 1 − a

n
+ o

( 1
n2

)
.

Posons, pour tout n ∈ N∗, bn = ln(naun) et an = bn+1 − bn. Déterminer la nature de la
série

∑
n∈N∗

an et en déduire que :

∃λ ∈ R∗
+, un ∼

n→+∞

λ

na
.

Conclure sur la nature de la série de terme général un.

409 Centrale-Supélec MP 2016

Soit f ∈ C1([1 ; +∞[,R).
Pour tout n ∈ N∗, on définit :

fn : [1 ; +∞[ −→ R

x 7−→
n

x

(
f

(
x+

x

n

)
− f(x)

)

1. Montrer la convergence simple de la suite (fn)n∈N∗ .
2. On se place dans des cas particuliers.

(a) Cas f = ln : montrer la convergence uniforme.
(b) Cas f = sin : montrer qu’il n’y a pas convergence uniforme.

3. (a) On suppose que f est de classe C2 et que x 7→ xf ′′(x) est bornée. Montrer
la convergence uniforme de la suite (fn)n∈N∗ .

(b) On suppose que lim
x→+∞

f(x)
x

= ℓ et que la suite (fn)n∈N∗ converge uniformé-
ment. Que peut-on dire du comportement de f ′ en +∞.

410 X-ENS

Soit a et x deux nombres réels. Calculer :
+∞∑
n=1

sin(an)
n

xn.

411 CCINP PSI 2017

Donner un équivalent de
2n∑

k=n+1

1√
k

lorsque n → +∞.
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412 Mines-Télécom MP 2017

Étudier la convergence de la suite (In)n∈N définie par :

In =
∫ +∞

0

sin2n(x)
x2 dx.

413 X 2023

On pose a0 = 1, a1 = 2, et pour n ⩾ 1 :

an+1 = 2an + an−1

n2 .

Trouver un équivalent de an et majorer la constante qui y apparaît.

414 Mines-Ponts MP 2017

Soit a, b, c trois nombres complexes et pour tout n ∈ N, soit un = an + bn + cn. On
suppose que la suite (un)n∈N converge vers ℓ. Montrer que ℓ ∈ {0; 1; 2; 3}.

415 Mines-Ponts MP 2018

Soit (an)n∈N une suite de réels strictement positifs. On considère les deux propositions
suivantes :

• (P1) : an = o
(

1
n

)
• (P2) :

∑
n⩾0

an converge

Trouver les implications entre (P1) et (P2).

416 Mines-Ponts MP 2018

On définit, pour n ∈ N∗, fn(x) = n arctan
(
x

n

)
.

Étudier cette suite de fonctions (convergence simple, convergence uniforme, conver-
gence uniforme sur tout segment).

417 Mines-Ponts PC 2022

Développer la fonction arccos en série entière sur ] − 1 ; 1[.
Ce développement est-il valable sur [−1 ; 1] ?

418 CCINP PSI 2022

Soit (fn)n∈N la suite de fonctions sur [0 ; 1] définie par :

∀n ∈ N∗, ∀x ∈ [−1 ; 1], fn(x) = sin
(
nxe−nx2)

.

1. Montrer que la suite (fn)n∈N converge simplement vers une fonction F que l’on
exprimera.

2. Montrer que, pour tout a ∈ ]0 ; 1[, la suite (fn)n∈N converge uniformément sur
l’intervalle [a ; 1].

3. Y a-t-il convergence uniforme sur [−1 ; 1] ?
4. Comparer éventuellement la limite de fn

(
1
n

)
en +∞ et F (0).
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419 Mines-Ponts MP 2019

On considère la fonction définie par :

f(x) =
+∞∑
n=0

(−1)n−1
(

2n
n

)
xn

2n− 1 .

1. Quel est le rayon de convergence de la série entière dont f est la somme ?
2. Si existence, donner la valeur de f

(
1
4

)
.

420 Mines-Télécom PSI 2019

Déterminer le rayon de convergence de la série entière suivante :

+∞∑
n=0

π
√

2n+n2
x2n.

421 Mines-Télécom PSI 2019

On pose, pour n ∈ N, In =
∫ 1

0

xn

1 + x
dx.

1. La suite (In)n∈N converge-t-elle ? Si oui, calculer sa limite.
2. Calculer I0, I1, In + In+1.

3. Montrer que la série de terme général
(−1)n+1

n
converge et calculer sa somme.

422 Mines-Ponts MP 2019

On considère la série de fonctions de terme général un(x) = xn

(
1 +

x

n

)n

. On note f

la somme de la série.
1. Donner le domaine de définition de f .
2. Montrer que f est de classe C1.
3. Donner un équivalent de f en 1−.

423 CCINP PSI 2018

Soit n ∈ N. On considère la suite fn : R → R telle que :

fn(x) =


nx2

1 + nx
si x ⩾ 0

nx3

1 + nx2 si x < 0

1. Montrer que la suite (fn)n∈N converge uniformément sur R vers une fonction à
définir.

2. On considère la suite (f ′
n)n∈N des dérivées. Montrer que cette suite converge

simplement sur R, mais qu’elle ne converge pas uniformément sur [−1 ; 1].
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424 CCINP PSI 2015

Soit un(x) =
ln(1 + n2x2)
n2 ln(1 + n) .

1. Quel est le domaine de convergence de la série des un(x) ?
2. On note S(x) la somme. Montrer que la fonction S est de classe C1.

425 Mines-Ponts MP 2019

Soit (an)n∈N une suite positive de limite nulle, telle qu’il existe λ > 0 et α > 1 tels
que :

an+1 − an ∼ −λaα
n.

Étudier la convergence de la série
∑

an.
Indication : on pourra considérer aβ

n+1 − aβ
n pour β bien choisi.

426 Mines-Ponts MP 2022

Soit a = (an)n∈Z et b = (bn)n∈Z deux familles sommables complexes, i.e.
∑
n∈Z

|an| < +∞

(et de même pour b).
1. On note

∥a∥1 =
∑
n∈Z

|an|

et pour tout n ∈ Z :

(a ⋆ b)(n) =
∑
k∈Z

akbn−k.

Montrer que a ⋆ b est bien définie, sommable et que :

∥a ⋆ b∥1 ⩽ ∥a∥1∥b∥1.

Montrer que Fa est continue sur U.
2. Soit a ∈ CZ sommable. On pose, pour z ∈ U,

Fa(z) =
∑
n∈Z

anz
n.

Montrer que Fa est continue sur U.
3. Montrer qu’il existe e ∈ CZ telle que pour toute famille a ∈ CZ, a⋆e = e⋆a = a.
4. Soit a ∈ CZ sommable et inversible pour ⋆. Montrer que Fa ne s’annule jamais

sur U.
5. Soit a = (an)n∈Z une famille à support fini et à valeurs complexes telle que Fa

ne s’annule jamais sur U. Montrer que a est inversible pour ⋆.

427 Mines-Ponts MP 2015

Développer en série entière en 0 la fonction t 7→ arctan(1 + t).
Indication : considérer la dérivée, et passer dans C.

90



428 Mines-Ponts PSI 2016

Soit f(x) =
+∞∑
n=0

2nx2n−1

1 + x2n .

1. Donner le domaine de définition de f .

Soit N un entier naturel et x un réel tel que |x| < 1.

2. Simplifier
N∏

n=0

(
1 + x2n

)
.

3. Expliciter f .

429 CCINP PC 2024

Soit (an)n∈N ∈ RN et (bn)n∈N ∈ (R∗
+)N.

On pose ∆an = an+1 − an, dite dérivée de la suite (an)n∈N.
On admet que si (bn)n∈N est strictement croissante, divergente vers +∞, telle que
lim

n→+∞

∆an

∆bn

= ℓ, alors lim
n→+∞

an

bn

= ℓ.

On pose α0 = 1 et αn+1 = αn + exp(−αn).

1. Montrer que la suite (αn)n∈N est monotone et qu’elle diverge vers +∞.
2. (a) Trouver un équivalent de exp(exp(−αn)) − 1 puis déterminer la limite de

∆ exp(αn).
(b) Montrer que exp(αn) ∼ n.

3. Montrer que la série
∑ 1

αn

diverge.

430 ENSEA/ENSIIE

On considère, pour tout n ⩾ 1 :

un =
(

1 − cos
(

1√
n

))
sin

(
ln
(

1 + 1
n

))
.

1. Donner un équivalent simple de un.
2. En déduire la nature de la série de terme général un.

431 Mines-Ponts MP 2024

Soit f ∈ C1([1 ; +∞[,R).
1. Montrer que si n ∈ N∗,∣∣∣∣f(n) −

∫ n+1

n
f(t) dt

∣∣∣∣ ⩽ 1
2 max

[n;n+1]
|f ′|.

2. Quelle est la nature de
∑
n⩾1

sin(ln(n))
n

?
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432 Centrale MP

Quelle est la nature de la série ∑
n⩾1

cos
(
n

1
3
)

n
2
3

?

433 X MP/PC 2024

Soit f ∈ C1([1 ; +∞[,R) telle que :∫ +∞

1
|f ′(x)| dx < +∞.

Montrer que ∑
n⩾1

f(n) et
∫ +∞

1
f(x) dx

ont même nature.

434 Mines-Télécom PC 2017

Pour tout n ∈ N et tout x ∈ R, on pose :

fn(x) = 1
cosh(xn) .

1. Étudier la convergence simple de la suite de fonctions (fn)n∈N.
2. La convergence est-elle uniforme ?

435 TPE/EIVP MP 2015

Soit (fn)n∈N la suite de fonctions de R dans R qui à x associe

sin
(

exp(2x)
n+ exp(x)

)
.

1. Étudier la convergence simple de la suite sur R.
2. Étudier la convergence uniforme de la suite sur R.
3. Étudier la convergence uniforme de la suite sur un segment [a ; b].

4. Étudier la suite In =
∫ +∞

0
fn(t) dt.

436 Mines-Ponts MP 2015

1. Pour tout n ∈ N, montrer l’existence de xn ∈ R tel que xnenxn = 1.
2. Étudier l’existence et la valeur de ℓ = lim

n→+∞
xn.

3. La série
+∞∑
n=0

xn est-elle convergente ?

4. Donner un équivalent de xn.
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437 ENS

Soit x ∈ R∗
+. Calculer

+∞∑
n=0

⌊
x

2n+1 + 1
2

⌋
.

438 Mines-Ponts MP 2015

Étudier la convergence de la série

+∞∑
n=1

(
n+ 1
an+ b

)n ln(n)

selon la valeur des réels strictement positifs a et b.

439 ENSEA/ENSIIE MP 2015

1. Montrer que, pour tout x ∈ [−1 ; 1],
∫ 1

0

1 − t

1 − x3t3
dt =

+∞∑
n=0

xn

(3n+ 1)(3n+ 2) .

2. Calculer
+∞∑
n=0

1
(3n+ 1)(3n+ 2).

440 Centrale-Supélec MP 2015

Soit (un)n∈N∗ une suite de réels convergeant vers λ ∈ R.

Soit vn = 1
n

n∑
k=1

uk. Montrer que la suite (vn)n∈N∗ converge vers λ.

441 TPE/EIVP MP 2018

Pour tout x ∈ ]0 ; +∞[, on pose :

S(x) =
+∞∑
n=0

n∏
k=0

1
x+ k

.

1. Montrer que S est bien définie sur ]0 ; +∞[.
2. Déterminer une relation entre S(x) et S(x+ 1).
3. Déterminer un équivalent de S en +∞ et en 0.

442 Mines-Ponts MP 2015

Soit (un)n∈N la suite définie par :

∀n ∈ N,
n∑

k=0

uk

(n− k)! = 1.

1. En considérant la série entière
∑
n⩾0

unx
n, calculer un.

2. Étudier la convergence de la suite (un)n∈N.
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443 Mines-Ponts MP 2019

1. Soit (an)n∈N une suite de réels positifs et (An)n∈N la suite des sommes partielles

de
∑

an. On suppose que an ∼
1

√
n

. Trouver un équivalent simple de An.

2. On suppose que An ∼ 2
√
n. A-t-on an ∼

1
√
n

?

3. On suppose en outre que la suite (an)n∈N est décroissante. Soit α et β des réels
tels que 0 < α < 1 < β. Montrer que :

A⌊βn⌋ − An

⌊βn⌋ − n
⩽ an ⩽

A⌊αn⌋ − An

⌊αn⌋ − n
.

Conclure que an ∼
1

√
n

.

444 Mines-Ponts MP 2021

Soit deux suites (an)n∈N et (bn)n∈N convergeant respectivement vers a et b. Montrer
que :

lim
n→+∞

1
n+ 1

n∑
k=0

akbn−k = ab.

445 Centrale-Supélec MP 2014

On considère une suite d’entiers (pn)n∈N strictement croissante. Pour x réel convenable,
on introduit :

f(x) =
+∞∑
n=0

xpn .

1. Rappeler la définition du rayon de convergence d’une série entière, puis donner
le domaine de définition de f .

2. Montrer que f est croissante sur [0 ; 1[, puis montrer que lim
x→1

f(x) = +∞.

3. On suppose dorénavant que lim
n→+∞

pn

n
= +∞. Soit A un réel strictement positif.

Montrer qu’il existe un entier n0 tel que pour tout x ∈ [0 ; 1[ :

0 ⩽ f(x) ⩽
n0−1∑
n=0

xpn + xAn0

1 − xA
.

4. Avec la même hypothèse, prouver que :

lim
x→1

(1 − x)f(x) = 0.

5. On suppose maintenant que lim
x→1

(1−x)f(x) = 0. En étudiant
(

1 − 1
n

)pn

, montrer

que lim
n→+∞

pn

n
= +∞.
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446 X

Pour tout entier n ⩾ 2, on pose :

an =
n∏

k=1

n2 + k

n2 − k
.

Montrer que :
an =

+∞
e + 1

e +O
( 1
n2

)
.

447 Mines-Ponts MP 2016

On définit la suite (un)n∈N par récurrence :

u0 > 0 et ∀n ∈ N∗, un =
√
n+ un−1.

1. Montrer que, pour tout n ∈ N :
√
n ⩽ un ⩽ n+ u0

2n
.

2. En déduire un équivalent vn de un, puis un équivalent de un − vn.

448 X

Pour tout n ∈ N∗, soit :

fn : ]n ; +∞[ −→ R

x 7−→
n∑

k=1

1
x− k

Soit a > 0.
1. Montrer que, pour tout n ∈ N∗, il existe un unique nombre réel, noté xn, tel que
fn(xn) = a.

2. Déterminer un équivalent de xn quand n tend vers +∞.

449 Mines-Ponts PSI 2024

Soit θ ∈ R \ 2πZ.

1. Montrer que
∑
n⩾1

einθ

n
converge et que la limite vaut :

eiθ
∫ 1

0

1
1 − xeiθ dx.

2. En déduire que
∑
n⩾1

cos(nθ)
n

converge et déterminer sa valeur.

3. Même question pour
∑
n⩾1

sin(nθ)
n

lorsque θ ∈ ]0 ;π[.
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450 CCINP

Pour tout n ∈ N∗ et x ∈ R, on pose :

fn(x) = x2 exp
(

−sin(x)
n

)
.

1. Étudier la convergence simple de la suite (fn)n∈N∗ .
2. Étudier la convergence uniforme de la suite (fn)n∈N∗ sur R.
3. Étudier la convergence uniforme de la suite (fn)n∈N∗ sur tout segment de R.

451 Mines-Ponts MP 2025

Pour tout réel x, on pose ⌊x⌋ la partie entière de x et {x} = x−⌊x⌋, la partie décimale
de x.

1. Soit f ∈ C1(R,R). Montrer que pour tout n ∈ N∗ :

n−1∑
k=1

f(k) =
∫ n

1
f(x) dx+ 1

2(f(1) − f(n)) +
∫ n

1

(
{x} − 1

2

)
f ′(x) dx.

2. Pour tout n ∈ N∗, on pose :

un = 1
n

n∑
k=1

e2iπ ln(k).

La suite (un)n⩾1 converge-t-elle ?

452 CCINP MP 2017

Pour tout entier naturel n, on pose :

Jn =
∫ +∞

0
e−x(sin(x))2n dx.

1. Prouver que Jn est bien définie pour tout n ∈ N.
2. Démontrer que :

∀n ∈ N∗, Jn = 2n(2n− 1)
4n2 + 1 Jn−1.

3. En déduire la convergence de la suite (Jn)n∈N et préciser sa limite.

453 Mines-Télécom MP 2017

Pour tout n ∈ N∗, on pose :

un =
∫ n

0

(
1 − x

n

)n

cos(x) dx.

La suite (un)n∈N∗ converge-t-elle ? Si oui, trouver sa limite.
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454 CCINP PC 2014

Montrer que :

lim
n→+∞

n∑
k=1

(
k

n2 − sin
(
k

n2

))
= 0.

455 TPE/EIVP MP 2017

Soit (un)n⩾1 une suite à valeurs positives telle que
∑
n⩾1

un converge.

Montrer que :
x >

1
2 =⇒

∑
n⩾1

√
un

nx
converge.

Donner un contre-exemple pour x = 1
2 .

456 Mines-Télécom MP 2017

On définit la suite de fonctions (gn)n∈N de [0 ; 1] dans R par :
g0 = 1
∀n ∈ N, ∀x ∈ [0 ; 1], gn+1(x) =

∫ x

0
gn(1 − t) dt

1. Montrer que pour tout n ∈ N, gn est bornée et que :

∀n ∈ N∗, ∥gn+1∥∞ ⩽
1
2∥gn−1∥∞.

2. On pose :

G : x 7−→
+∞∑
n=0

gn(x).

Montrer que G est bien définie sur [0 ; 1] et déterminer une équation différentielle
vérifiée par G.

3. En déduire l’expression de G.

457 CCINP MP 2017

Soit f : [1 ; e[→ R une fonction continue par morceaux et intégrable sur [1 ; e[.
On définit une suite de fonctions (fn)n∈N∗ par :

fn(t) =


t

1
nf(t) si t ∈

[
1 ;
(
1 + 1

n

)n[
0 si t ∈

[(
1 + 1

n

)n
; e
[

1. Montrer, en justifiant très précisément, que la suite (fn)n∈N∗ converge simple-
ment sur [1 ; e[ vers une fonction que l’on précisera.

2. Montrer que :

lim
n→+∞

∫ (1+ 1
n)n

1
x

1
nf(x) dx =

∫ e

1
f(x) dx.
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458 CCINP PSI 2017

On pose :
un(x) = n+ 2

n+ 1 · exp(−nx2).

1. Étudier la convergence simple sur R de la suite de fonctions (un)n∈N.
2. Étudier la convergence uniforme de la suite de fonctions (un)n∈N

(a) sur [0 ; +∞[ ;
(b) sur [a ; +∞[ avec a > 0.

459 CCINP PC 2017

Soit
∑

an une série à termes positifs convergente, et (bn)n∈N une suite d’entiers naturels.
Notons :

f(x) =
+∞∑
n=0

an cos(2πbnx).

1. Montrer que la série définissant f converge normalement sur [0 ; 1].
2. Montrer que f est définie et continue sur [−1 ; 1].

3. Calculer
∫ 1

0
f(x) dx.

4. Montrer que

SN = 1
N

N−1∑
k=0

f

(
k

n

)
converge et déterminer sa limite.

5. Montrer que
N−1∑
k=0

exp
(

2ibn
k

N

)

vaut N si N divise bn et 0 sinon.
Notons In = {n ∈ N∗ | N divise bn}.
Montrer que SN =

∑
n∈IN

an.

6. On choisit bn = n! et an = 1
n

3
2
.

Montrer que {n ∈ N∗ | n ⩾ N} ⊂ IN , puis que lim
N→+∞

NSN = +∞.

460 Mines-Ponts PC 2018

Pour tout entier n, on note pn le nombre de chiffres dans l’écriture décimale de n.
Quelle est la nature de la série

+∞∑
n=0

(
10 − n

1
pn

)
?
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461 X

Soit f ∈ C([0 ; 1],R). Déterminer la limite de la suite(∫ 1
0 t

nf(t) dt∫ 1
0 t

n dt

)
n∈N

.

462 CCINP MP 2018

Pour tout n ∈ N, soit
fn : R+ −→ R

x 7−→ x(1 + e−nx)
1. Vers quelle fonction la suite (fn)n∈N converge-t-elle simplement ?
2. La suite (fn)n∈N converge-t-elle uniformément sur R+ ?
3. Déterminer :

lim
n→+∞

∫ 1

0
x(1 + e−nx) dx.

463 Mines-Ponts MP 2018

Donner un développement asymptotique à l’ordre 3 de la suite (un)n∈N définie par :

un =
∫ 1

0

1
1 + tn

dt.

464 CCINP PC 2021

On considère une application f0 ∈ C(R,R) et l’on pose pour tout n ∈ N :

∀x ∈ R, fn+1(x) =
∫ x

0
fn(t) dt.

1. Déterminer le rayon de convergence de la série entière
∑
n⩾0

xn

n! et donner la valeur

de sa somme.
2. (a) Montrer que f1 est de classe C1 et déterminer f ′

1.
(b) Montrer que, pour tout n ∈ N, fn est de classe Cn.

On admet provisoirement la propriété suivante :

∀a > 0, ∃K ∈ R+, ∀n ∈ N, ∀x ∈ [−a ; a], |fn(x)| ⩽ |x|n

n! .

3. (a) Soit F : x 7→
+∞∑
n=1

fn(x). Montrer que F est définie et de classe C1 sur R.

(b) Montrer que F ′ − F = f0.
4. Montrer que :

∀x ∈ R, F (x) = ex
∫ x

0
f0(t)e−t dt.

5. Prouver la propriété admise.
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465 Mines-Ponts MP 2018

Pour tout n ∈ N, on pose :
un =

∫ +∞

0

e−x

(1 + x)n
dx.

Déterminer le rayon de convergence de la série
∑

unx
n.

466 CCINP MP 2018

Soit β ∈ R. Pour tout n ∈ N∗, soit rn =
n∑

k=1
k−β et bn =

1
rn

.

1. Déterminer le rayon de convergence R de la série entière
∑

bnx
n.

2. Étudier la convergence de la série pour x = −R et x = R.

467 X 2014

Soit (xn)n∈N une suite réelle bornée telle que :

lim
n→+∞

xn + xn+1

2 = 1.

Montrer la la suite (xn)n∈N converge et déterminer sa limite.

468 TPE/EIVP PSI 2015

Soit
In =

∫ 1

0
(1 − x)ne−2x dx.

1. Montrer que la suite (In)n∈N converge et calculer sa limite.
2. Trouver une relation entre In et In+1.
3. Quelle est la limite de nIn lorsque n tend vers +∞ ?
4. Trouver a, b et c tels que In =

+∞
a+ b

n
+ c

n2 + o
(

1
n2

)
.

469 Mines-Ponts MP 2018

Soit (an)n∈N∗ une suite à valeurs dans ] − 1 ; +∞[. Démontrer l’équivalence entre les
propriétés :

i)
an√
n

→ 0

ii) ean ∼
(

1 +
an

n

)n

470 Mines-Ponts MP 2018

Soit (zp)p∈N ∈ CN une suite de nombres complexes non nuls qui converge vers 0.

1. Soit f(z) =
+∞∑
n=0

anz
n de rayon de convergence R, telle que, pour tout p ∈ N,

f(zp) = 0. Montrer que an = 0 pour tout n ∈ N.
2. Que dire de deux séries entières f et g de même rayon de convergence et telles

que f(zp) = g(zp) pour tout p ?
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471 CCINP PC 2024

Soit (un)n∈N la suite définie par u0 ∈ [0 ; 1] fixé et pour tout n ∈ N :

un+1 = u2
n + 1

2 .

1. La suite (un)n∈N converge-t-elle ? Si oui, calculer sa limite.
2. (a) Rappeler le théorème de Cesàro.

(b) Soit (wn)n∈N une suite réelle telle que :

lim
n→+∞

(wn+1 − wn) = λ ∈ R∗.

Montrer que wn ∼
n→+∞

λn.

3. On pose vn = 1 − un.

(a) Calculer lim
n→+∞

(
1

vn+1
− 1
vn

)
.

(b) En déduire un équivalent simple de la suite (vn)n∈N.

472 Centrale-Supélec 2012

Montrer que si (an)n∈N est une suite réelle de limite nulle, alors les séries
∑

an et∑
(an + an+1) sont de même nature. Est-ce encore vrai si l’on ne suppose pas que

lim
n→+∞

an = 0 ?

473 X 2011

Soit (un)n∈N∗ la suite définie par :

un =
(

1 + (−1)n

n

) 1
sin(π

√
1+n2)

.

Calculer la limite de cette suite.

474 Mines-Télécom PSI 2025

Étudier la nature de la série
∑

sin(π
√
n2 + 1).

475 ENS PC 2024

Soit (an)n∈N et (bn)n∈N deux suites réelles. On suppose que la suite (bn)n∈N est à termes
strictement positifs et que la série de terme général bn est convergente.

On suppose que la suite
(
an

bn

)
n∈N

converge et on note sa limite s.

On pose An =
n∑

k=0
ak et Bn =

n∑
k=0

bk.

Montrer que la suite
(
An

Bn

)
n∈N

converge vers s.
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476 CCINP MP 2024

Soit (an)n∈N une suite décroissante positive qui converge vers 0. Pour x ∈ [0 ; 1], on
note un(x) = anx

n(1 − x).
1. Justifier que la suite (an)n∈N est bornée.
2. Étudier la convergence simple de la série

∑
un sur [0 ; 1].

3. Étudier la convergence uniforme de la série.
Indication : on pourra majorer les restes en calculant la somme de k = n+ 1 à
+∞ de xk.

4. Calculer lim
n→+∞

(
n

n+ 1

)n

.

5. Étudier la convergence normale de la série.
Indication : on pourra calculer la norme infinie de un.

477 Mines-Télécom MP 2023

Calculer lim
α→0+

α
+∞∑
n=1

1
nα+1 .

478 Mines-Ponts PSI 2025

Soit (zn)n∈N une suite de nombres complexes. On suppose que :

∀n ̸= m, |zn − zm| ⩾
√

2.

Soit A ∈ R∗
+. On note M(zn) = (xn; yn) pour zn = xn + iyn et

E = {n ∈ N | M(zn) ∈ [−A;A]2}.

1. Montrer que E est fini.
2. En déduire que lim

n→+∞
|zn| = +∞.

479 Centrale-Supélec PC 2023

Soit n ∈ N∗. Pour tout élément ε = (ε0; . . . ; εn−1) de {0, 1}n, on pose :

Φ(ε) =
n−1∑
k=0

εk2k.

1. Montrer que Φ est injective et déterminer son image.
2. Pour tout n ∈ N∗, on définit sur R la fonction

un : x 7−→
n−1∏
k=0

(
1 + x2k

)
.

Montrer que la suite de fonctions (un)n⩾1 converge simplement sur ] − 1 ; 1[ et
préciser sa limite simple.
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480 Mines-Télécom PSI 2023

Soit
∑

anx
n une série entière dont le rayon de convergence est R.

On pose fn(x) = anx
n.

1. Montrer la convergence normale de la série
∑

fn sur [−r ; r] pour 0 < r < R.

2. En déduire la continuité de x 7→
+∞∑
n=0

anx
n.

3. Rappeler le développement de la fonction arctan en 0.
Montrer qu’il reste valable en 1.

481 Mines-Ponts PC 2018

Pour tout n ∈ N∗, on pose vn =
n∑

k=1
ln(k).

1. À l’aide d’intégrales, montrer que vn est équivalent à n ln(n) quand n tend vers
+∞.

2. Pour tout n ∈ N∗, prouver l’égalité :

ln
(

n+1
√

(n+ 1)!
)

− ln
(

n
√
n!
)

= 1
n+ 1

(
ln(n+ 1) − 1

n

n∑
k=1

ln(k)
)
.

3. Étudier la convergence de la série
∑
n⩾1

(−1)n

n
√
n!

.

4. Démontrer la relation vn = n ln(n) − n+ o(n).

5. Étudier la convergence de la série de terme général
1

n
√
n!

.

482 Mines-Ponts MP 2013

Soit (an)n∈N une suite décroissante convergeant vers 0 et (xn)n∈N une suite réelle telle
que

∑
anxn converge.

1. On suppose, uniquement dans cette question, que (xn)n∈N est à termes positifs.
Montrer que :

lim
n→+∞

an

n∑
k=1

xk = 0.

2. Expliquer l’analogie entre transformation d’Abel et intégration par parties.
3. Montrer que :

lim
n→+∞

an

n∑
k=1

xk = 0.

(Dans le cas général cette fois.)
4. La décroissance de la suite (an)n∈N est-elle nécessaire au résultat précédent ?
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483 CCINP PC 2019

Pour tout t ∈ R, on pose :

f(t) =
+∞∑
n=0

ln(1 + ent).

1. Quel est l’ensemble de définition de f ?
2. Montrer que, pour tout réel x > −1, on a ln(1 + x) ⩽ x.
3. Montrer que lim

t→−∞
f(t) = ln(2).

484 ENSEA/ENSIIE MP 2022

Soit h ∈ C
([

0 ; π
2

]
,R
)

et fn : h(x) sinn(x), pour n ∈ N.

1. Étudier la convergence simple de la suite (fn)n∈N.
2. Étudier de la convergence uniforme de la suite (fn)n∈N.

485 Centrale

On pose, pour tout n ∈ N, un =
√
n− ⌊

√
n⌋.

1. Étudier lim
n→+∞

un2+n.
En déduire que la suite (un)n∈N n’a pas de limite.

2. Soit a ∈ N et b ∈ N∗ avec a ⩽ b.
Étudier lim

n→+∞
ub2n2+2an.

3. Montrer que tout élément de [0 ; 1] est la limite d’une certaine sous-suite de
(un)n∈N.

486 X-ENS

Soit (fn)n∈N une suite de fonctions croissantes toutes définies sur un même intervalle
ouvert I, et à valeurs réelles. On suppose qu’il existe M ∈ R+ tel que, pour tout x ∈ I
et tout n ∈ N, |fn(x)| ⩽M . Montrer qu’il existe une sous-suite de (fn)n∈N qui converge
simplement sur I vers une fonction f .

487 Centrale-Supélec PC 2023

Soit In =
∫ 1

0

1
1 + un

du pour tout n ∈ N et J =
∫ 1

0

ln(ϕ)
1 + ϕ

dϕ.

1. Calculer ℓ = lim
n→+∞

In.

2. Calculer J après avoir montré son existence.
3. Trouver (α; β) ∈ R2 tel que :

In =
+∞

ℓ+ α

n
+ β

n2 + o
( 1
n2

)
.

On donne :
+∞∑
n=1

1
n2 = π2

6 .
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488 Mines-Télécom MP 2022

Soit la série entière
+∞∑
n=0

xn

(n!)2 et f sa somme.

1. Quel est le rayon de convergence de cette série ?

2. Quel est le lien entre f et
∫ π

2

− π
2

e2
√

x sin(t) dt ?

489 CCINP PC 2018

On considère la série entière
∑ sin2(nθ)

n! xn.
Déterminer le rayon de convergence et la somme de cette série entière.

490 ENS MP Cachan/Rennes 2017

1. Montrer que pour tout x appartenant à [0 ; π] :

sin(x) ⩽ x et sin
(
x

2

)
⩾
x

π
.

On admet que pour q appartenant à N∗ :
n∑

k=q+1

sin(kx)
k

⩽
1

(q + 1) sin
(

x
2

) .
2. Montrer qu’il existe C appartenant à R tel que :

∀x ∈ [0 ; π],
n∑

k=1

sin(kx)
x

⩽ C.

On pose pour tout x appartenant à [0 ; 2π] :

qn(x) =
n∑

k=1

sin(kx)
k

et si k ∈ N∗, nk = 2k3 et finalement :

Sm(x) =
m∑

k=1

2 sin(nkx)qnk
(x)

k2 .

3. Montrer que Sm converge vers une fonction f continue sur [0 ; π].

4. Montrer que pour tout p ∈ N∗,
∫ 2π

0
cos(px)Sm(x) dx admet une limite quand m

tend vers +∞, notée A(p).
5. Calculer A(p).

491 Mines-Ponts MP 2013

Soit a > 0. Étudier la convergence de la série :

+∞∑
n=1

a
∑n

k=1
1
k .
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492 CCINP PC 2022

Soit f une fonction définie sur ]0 ; +∞[, à valeurs réelles. Pour tout n ∈ N∗, on définit
la fonction suivante :

un : ]0 ; +∞[ −→ R
x 7−→ f(x+ n) − f(n)

Pour x ∈ ]0 ; +∞[, on pose F (x) =
+∞∑
n=1

un(x) lorsque
∑

un(x) converge.

1. Pour tout N ∈ N∗, montrer l’égalité :

N∑
n=1

un(1) = f(N + 1) − f(1).

En déduire que l’existence de F (1) équivaut à la convergence de la suite
(f(n))n∈N∗ .

2. Dans cette question, on prend pour f la fonction

x 7−→
(

x

1 + x

)x

.

Montrer que F (1) existe.
3. Dans cette question, on prend pour f la fonction

x 7−→ sin
(
πx+ π

2
√
x
)
.

Montrer que F (1) n’existe pas.
Indication : on pourra s’intéresser à f((2n+ 1)2).

493 CCINP PSI 2018

Pour tout n ∈ N∗ et x ⩾ 0, on pose :

fn(x) = 1
n

− 1
n+ x

.

1. Étudier la convergence de
∑
n⩾1

fn.

2. Montrer que la somme S est de classe C1.
3. Calculer S(1).

494 X 2013

Soit n ∈ N.
1. Montrer qu’il existe un unique xn réel qui est solution de l’équation xex = n.
2. Étudier la convergence de la suite (xn)n∈N.
3. Donner un équivalent de xn.
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495 Mines-Ponts MP 2015

Soit s ∈ N∗. On considère la série entière
∑
n⩾s

(
n

s

)
xn.

1. Déterminer son rayon de convergence.
2. Calculer sa somme S(x).

496 CCINP

Soit (p; q) ∈ N2. On pose :
Ip,q =

∫ 1

0
tp(1 − t)q dt.

1. Calculer, pour (p; q) ∈ N2, l’intégrale Ip,q.

2. La série
+∞∑
n=0

In,n est-elle convergente ou divergente ?

3. Donner le domaine de définition réel de la série entière
+∞∑
n=0

In,nx
n.

497 ENS PC 2023

Soit α > 0. Étudier la nature de la série :
+∞∑
n=0

(sin(2n!eπ))α.

498 Mines-Ponts

On pose, pour tout z ∈ C et tout n ∈ N :

Pn(z) =
n∏

k=0

(
1 − 1

zk

)
.

1. Montrer que, pour tout n ∈ N et tout z ∈ C, |Pn(z)| ⩽ Pn(−|z|). En introduisant
un logarithme, en déduire que la suite (Pn(z))n∈N est bornée.

2. En étudiant la convergence de la série
∑
n∈N

Pn+1(z)−Pn(z), établir la convergence

de la suite (Pn(z))n∈N. Soit :

f : z 7−→ lim
n→+∞

Pn(z).

3. Montrer que f est continue en 0.
4. Montrer que f est l’unique fonction continue en 0 telle que :

∀z ∈ C, f(z) = (1 − z)f
(
z

2

)
et f(0) = 1.

5. Montrer que f est développable en série entière.
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499 Mines-Ponts PC 2013

Étudier la nature de la série :
+∞∑
n=0

exp(−n3)
∫ n

0
exp(t3) dt.

500 X MP 2019

Pour tout x ∈ ] − 1 ; 1[, on pose :

P (x) =
+∞∏
k=1

1
1 − xk

.

1. Montrer que P est bien définie.
2. Montrer que, pour tout x ∈ ] − 1 ; 1[,

P (x) =
+∞∑
k=0

p(n)xn,

où p(n) représente le nombre de façons d’écrire n comme une somme d’entiers
naturels.

3. Montrer que pour x tendant vers 1 par valeurs négatives,

P (x) = exp
(
ζ(2)
1 − x

(1 + o(1))
)
,

où ζ(2) =
+∞∑
k=1

1
k2 .

501 Mines-Ponts MP 2025

Pour tout n ∈ N∗ et pour tout x > 0, on pose :

hn(x) =
∫ +∞

0

1
(t2 + x4)n

dt.

1. Montrer que hn est dérivable sur R∗
+ et vérifie :

∀n ∈ N∗, ∀x > 0, h′
n(x) = −4nx3hn+1(x).

2. Montrer qu’il existe une suite (an)n∈N∗ telle que :

∀n ∈ N∗, ∀x > 0, hn(x) = anx
2−4n.

3. En déduire hn(x) pour tout n ∈ N∗ et pour tout x > 0.

502 Mines-Télécom PSI 2025

Trouver la nature de la série
+∞∑
n=0

sin
(
π

√
n2 + 1

)
.
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503 Mines-Ponts MP 2025

À quelle condition nécessaire et suffisante portant sur a0, la suite définie par

an+1 = 2n − an,

est-elle croissante ?

504 Mines-Ponts PC 2025

On fixe α > 0 et on pose I =
[
0 ; π

2

]
. Pour tout n ∈ N, on définit la fonction :

un : I −→ R
x 7−→ sinn(x) cosα(x)

1. Montrer que la série de fonctions
∑
n⩾0

un converge simplement sur I.

2. Cette série de fonctions converge-t-elle normalement sur I ?
3. Converge-t-elle uniformément sur I ?

505 Mines-Ponts MP 2025

Si n ∈ N∗, on définit fn : [0 ; 1] → R par :

fn(x) =
xn ln(x) si x ∈ ]0 ; 1]

0 si x = 0

Montrer que la suite (fn)n∈N∗ converge uniformément vers la fonction nulle.

506 Mines-Télécom MP 2022

Trouver la nature de la série
+∞∑
n=2

cos
(
n2π ln

(
1 − 1

n

))
.

507 CCINP PSI 2022

On définit la suite (un)n∈N par u0 = 1 et

∀n ∈ N, un+1 = 1
1 + un

.

1. Montrer que la suite (un)n∈N est bien définie, qu’elle est convergente, et déter-
miner sa limite.

2. Définir par récurrence deux suites de nombres naturels (pn)n∈N et (qn)n∈N telles
que :

∀n ∈ N, un = pn

qn

et en déduire que, pour tout n ∈ N, un ∈ Q.
3. Trouver une expression de un en fonction de n.
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508 Mines-Télécom MP 2022

Soit u la suite définie par :

∀n ∈ N∗, un =
n∑

k=1

1
(n+ k)α

.

1. Montrer que, si α > 1, la suite (un)n∈N∗ converge vers 0.
2. Que peut-on dire de la suite (un)n∈N∗ si α = 1 ?

509 Mines-Ponts PSI 2013

Soit α ∈ R. Pour tout n ∈ N, on pose :

un = arccos
(√

3
2 + (−1)n

nα

)
− π

6 .

Quelle est la nature de la série
∑

un ?

510 Mines-Télécom MP 2017

Étudier la nature de la série
∑
n⩾1

(−1)n

n+ cos(n)
1. à l’aide d’un développement limité ;

2. en étudiant la série
∑
n⩾1

(
(−1)n

n+ cos(n) − (−1)n

n

)
;

3. en montrant que le critère des séries alternées s’applique.

511 X MP 2017

On admet l’énoncé suivant :

Pour tout réel α, s’il existe une suite de rationnels
(
pn

qn

)
n∈N

telle que 0 <
∣∣∣α− pn

qn

∣∣∣ < εn

qn

avec εn = o(1), alors α est irrationnel.

Soit la suite de terme général Fn = 22n + 1. Montrer que
+∞∑
n=0

1
Fn

est irrationnel.

512 CCINP PSI 2016

1. Calculer
+∞∑
n=1

x2e−nx pour tout x ∈ R+.

2. Montrer l’existence de J =
∫ +∞

0

x2

ex − 1 dx.

3. Montrer que J =
+∞∑
k=1

2
k3 .

110



513 Mines-Télécom MP 2016

Soit n ∈ N∗ et In =
∫ +∞

0
e−x2 sinn(x) dx.

1. Montrer que In est bien définie pour tout n ∈ N∗.
2. Étudier la convergence de la suite (In)n∈N∗ .

514 Mines-Télécom 2024

Soit f : x 7→
∑
n⩾0

e−x
√

n.

1. Déterminer Df .
2. Montrer que f est continue, puis qu’elle est C∞.
3. Étudier la croissance de f .
4. Calculer lim

x→0+
f(x) et lim

x→+∞
f(x).

5. Trouver un équivalent simple de f en 0.

515 Mines-Télécom MP 2019

1. (a) Montrer que
+∞∑
n=0

∫ 1

0
x2n(1 − x) dx =

∫ 1

0

1
1 + x

dx.

(b) En déduire la valeur de
+∞∑
k=1

(−1)k+1

k
. On pourra regrouper les termes deux à

deux dans la somme partielle.

2. Calculer de deux manières différentes
+∞∑
n=0

(−1)n
∫ 1

0
x2n(1 − x) dx et en déduire

la valeur de
+∞∑
n=0

(−1)n

(2n+ 1)(2n+ 2).

516 ENS MP 2014

On note D le disque unité de C. Soit f une fonction de D dans C telle que f(0) = 0 et
f ne s’annule en aucun autre point. Soit (Pn)n∈N une suite de polynômes à coefficients
complexes qui converge uniformément vers f . Montrer que pour tout réel r strictement
compris entre 0 et 1, il existe un entier N tel que pour tout entier n supérieur à N , le
polynôme Pn admet une racine dans B(0, r).

517 ENS MP 2023

On admet le développement asymptotique suivant :
n∑

k=1

1
k

= ln(n) + γ +O
( 1
n

)
.

Montrer que :

γ =
n∑

k=1

(−1)k

k

⌊
ln(k)
ln(2)

⌋
.
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518 CCINP PC 2013

Soit I = ]0 ; +∞[. Pour tout entier naturel n, on pose :

un(x) = x− 1
(n+ 1)(n+ x) .

1. Montrer que la série
∑

un converge simplement sur I. On note S la somme
associée.

2. (a) Soit (a; b) ∈ R2 avec 0 < a < b. Montrer que la série converge normalement
sur [a ; b].

(b) En déduire la continuité de S.
3. Montrer que S est dérivable sur I, et que l’on a :

S ′(x) =
+∞∑
n=0

1
(1 + x)2

4. (a) Montrer que :
p− 1

(n+ 1)(n+ p) = 1
n+ 1 − 1

n+ p
.

(b) En déduire que S(p) =
p−1∑
k=1

1
k

.

5. Calculer lim
x→+∞

S(x).

519 X-ENS Cachan PSI 2019

Soit (un)n∈N une suite de réels strictement positifs, de limite nulle, et α > 1.
On suppose que :

lim
n→+∞

un − un+1

uα
n

= ℓ ∈ R∗.

L’objectif est de montrer que la série de terme général un converge si et seulement si
α < 2.

1. Montrer que la suite (un)n∈N est strictement décroissante à partir d’un certain
rang N .

2. Soit α < 2.
À l’aide de l’inégalité suivante (que l’on justifiera) :

un − un+1

uα−1
n

⩽
∫ un

un+1

1
tα−1 dt,

montrer que la série de terme général un − un+1

uα
n

converge. En déduire la conver-
gence de la série de terme général un.

3. Soit α ⩾ 2.
Montrer que la série de terme général un − un+1

uα−1
n

diverge et en déduire que la
série de terme général un diverge également.
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520 Mines-Ponts MP 2015

Pour tout n ∈ N, on considère le polynôme :

Qn = 1
2i

((
1 + iX

2n+ 1

)2n+1
−
(

1 − iX
2n+ 1

)2n+1)
.

1. Déterminer les racines de Qn.
2. Démontrer alors que celui-ci s’écrit :

Qn = X
n∏

k=1

1 − X2

(2n+ 1)2 tan
(

kπ
2n+1

)
 .

3. En déduire que, pour tout x réel,

sin(x) = x
+∞∏
n=1

(
1 − x2

π2n2

)
.

521 Mines-Télécom MP 2024

Pour n ⩾ 3 entier, on considère l’équation suivante :

(En) : ex = xn.

1. Montrer que (En) admet deux solutions αn < βn.
2. Trouver la limite de la suite (βn)n⩾3.
3. Donner un équivalent de βn.
4. Donne un développement à deux termes de βn.

522 Centrale

Soit n ∈ N. On pose un =
√
n− ⌊

√
n⌋.

La suite (un)n∈N admet-elle une limite ?

523 X ESPCI PC 2017

On considère une suite (An)n∈N décroissante positive. Montrer que :∑
An converge ⇐⇒ An = o

(
1
n

)
et
∑

n(An − An+1) converge.

524 X MP 2022

Soit f la fonction définie par :

f(x) =
exp

(
1
2x+ 1

4x
2
)

√
1 − x

.

On sait que f est développable en série entière et on peut écrire f(x) =
∑

cnx
n.

Montrer que cn ∼
e

3
4

√
πn

.
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525 Centrale-Supélec PC 2019

Soit β ∈ R. On pose :
∀n ∈ N, Sn =

n∑
k=0

cos(k).

1. (a) Montrer que :

n∑
k=1

cos(k)
kβ

= Sn

nβ
+

n−1∑
k=1

Sk

(
1
kβ

− 1
(k + 1)β

)
− 1.

(b) Montrer que la série de terme général Un = cos(n)
nβ

converge.

2. Soit α > 0. Trouver une condition nécessaire et suffisante pour que la série de
terme général

Vn =
√
nα + cos(n) − n

α
2

converge.

526 CCINP MP 2023

Pour tout n ⩾ 2 entier, on pose :

un =
n∑

k=1
(ln(k))2.

1. Montrer que
∑

un diverge.
2. Montrer que pour tout n ⩾ 2 entier :∫ n

1
(ln(t))2 dt ⩽ un ⩽

∫ n+1

2
(ln(t))2 dt.

3. Pour x ⩾ 1, calculer
∫ x

1
(ln(t))2 dt et en trouver un équivalent en +∞ en fonction

de x 7→ x(ln(x))2.

4. Déterminer un équivalent de
(

1
un

)
n⩾2

et en déduire la nature de
∑ 1

un

.
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2 Continuité et dérivabilité

527 Mines-Ponts

Soit P ∈ R[X] scindé sur R. Montrer que pour tout réel α, le polynôme P ′ + αP est
lui aussi scindé sur R.

528 ENS Ulm

Soit P ∈ R[X] tel que P > 0 sur R. On pose Q = P + P ′ + P ′′ + · · · + P (n) avec
n = deg(P ). Montrer que Q > 0 sur R.

529 Mines-Ponts

Soit f : [0 ; 1] → [0 ; 1] une fonction dérivable telle que f(0) = 0 et f(1) = 1.

Montrer qu’il existe x1 < · · · < xn tels que
n∑

k=1
f ′(xk) = n.

530 X PC 2020

Soit f : R → R de classe C2 sur R. On suppose f ′ ⩾ 0 et 0 ⩽ f ′′ ⩽ f .
Montrer que f ′ ⩽ f .

531 Mines-Ponts MP

Soit a < b deux nombres réels et (fn)n∈N une suite de fonctions définies et continues sur
[a ; b]. On suppose que la suite (fn)n∈N converge uniformément sur [a ; b] vers une fonc-
tion f . Montrer que (min(fn))n∈N converge vers min(f) et que (max(fn))n∈N converge
vers max(f).

532 Mines-Ponts PC 2023

Soit f : x 7→ x3

x2 − 1 arctan(x).

1. La fonction f admet-elle une asymptote en +∞ ? Le cas échéant, donner une
équation de cette droite.

2. Étudier les variations de f .

533 Mines-Ponts

Soit a ∈ ]0 ; 1] et f : R → R dérivable telle que, pour tout x ∈ R, f ′(x) = f(ax).
1. Montrer que f est égale à sa série de Taylor sur R.
2. Déterminer toutes les fonctions g : R → R dérivables telles que, pour tout x ∈ R,
g′(x) = g(ax).

534 Mines-Télécom MP

1. Soit f une fonction continue de [0 ; 1] dans R telle que f(0) = f(1). Montrer
qu’il existe x ∈ [0 ; 1

2 ] tel que f(x+ 1
2) = f(x).

2. Soit f : [0 ; 1] → [0 ; 1] croissante. Montrer que la fonction f admet un point
fixe, c’est-à-dire qu’il existe x ∈ [0 ; 1] tel que f(x) = x.
Indication : on pourra considérer l’ensemble A = {x ∈ [0 ; 1] | f(x) < x}.
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535 Mines-Télécom MP

Soit f et g deux fonctions de [0 ; 1] dans [0 ; 1], continues et vérifiant f ◦ g = g ◦ f .
1. Montrer qu’il existe a ∈ [0 ; 1] tel que g(a) = a.
2. Supposons que pour tout x ∈ [0 ; 1], f(x) > g(x).

Montrer que la suite (fn(a))n∈N est croissante.
3. Montrer qu’il existe c ∈ [0 ; 1] tel que f(c) = g(c).

536 Mines-Ponts PC 2023

Soit f et g deux fonctions appartenant à C(R,R) telles que f ◦ g est strictement
décroissante.

1. Montrer que f ◦ g admet un unique point fixe.
2. Montrer que g ◦ f admet un unique point fixe.

537 X-ENS

Soit f : R → R une fonction telle que pour tout segment [a ; b] ⊂ R, f([a ; b]) est un
segment, et f−1({x}) est un fermé pour tout x ∈ R. Montrer que f est continue.

538 CCP

1. Soit (fn)n∈N une suite d’applications de [a ; b] dans R. On suppose que la suite
(fn)n∈N converge uniformément sur [a ; b] vers une application f , et que, pour
tout n ∈ N, fn est continue en x0, avec x0 ∈ [a ; b]. Montrer que f est continue
en x0.

2. On pose, pour tout x ∈ [0 ; 1], gn(x) = xn. La suite (gn)n∈N converge-t-elle
uniformément sur [0 ; 1] ?

539 CCP

1. Énoncer le théorème des accroissements finis.
2. Soit f : [a ; b] → R. On suppose que f est continue sur [a ; b] et que f est

dérivable sur ]a ;x0[ et sur ]x0 ; b[. Démontrer que si la fonction f ′ admet une
limite en x0, alors la fonction f est dérivable en x0 et f ′(x0) = lim

x→x0
f ′(x).

3. Prouver que l’implication

f dérivable en x0 =⇒ f ′ admet une limite finie en x0

est fausse.
Indication : on pourra considérer la fonction g définie par g(x) = x2 sin

(
1
x

)
si

x ̸= 0 et g(0) = 0.

540 X PC 2009

Soit f : R+ → R continue et surjective. Montrer que l’ensemble des zéros de f est
infini.

116



541 CCP

1. On pose g(x) = e2x et h(x) =
1

1 + x
.

Calculer, pour tout entier naturel k, la dérivée d’ordre k des fonctions g et h
sur leurs ensembles de définition respectifs.

2. On pose f(x) =
e2x

1 + x
.

En utilisant la formule de Leibniz concernant la dérivée nème d’un produit de
fonctions, déterminer pour tout entier naturel n et pour tout x ∈ R \ {−1}, la
valeur de f (n)(x).

3. Démontrer, dans le cas général, la formule de Leibniz utilisée dans la question
précédente.

542 X PC 2019

Soit f une fonction continue et périodique de R dans R, t un nombre réel. Montrer
qu’il existe un nombre réel x tel que f(x+ t) = f(x).

543 X-ENS 2015

Montrer que la fonction x 7→ x2 sin
(

1
x

)
est prolongeable en une fonction f continue

sur R. La fonction f est-elle C1, C2, . . . ?

544 Petites Mines 2015

Soit f ∈ C1([0 ; 1],R) telle que
∫ 1

0
f(x) dx = f(1).

Montrer qu’il existe c ∈ ]0 ; 1[ tel que f ′(c) = 0.

545 X-ENS 2015

Montrer que la fonction x 7→
x

ex − 1 est prolongeable en une fonction f , C∞ sur R, et
que les coefficients de la série de Taylor de f sont des nombres rationnels.

546 CCP 2015

Montrer que la fonction x 7→
1 − cos(x)

x2 est prolongeable en une fonction f de classe
C∞ sur R. Calculer f (n)(0) pour tout entier n.

547 Centrale 2015

Soit f ∈ C([0 ; 1],R).

1. Montrer que si
∫ 1

0
f(t) dt = 0, alors f s’annule au moins une fois sur ]0 ; 1[.

2. Montrer que si
∫ 1

0
f(t) dt = 1

2, alors f admet au moins un point fixe sur ]0 ; 1[.
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548 CCP MP

On désigne par C([0 ; 1],R) l’espace vectoriel des fonctions continues sur [0 ; 1] à valeurs
dans R. Soit f ∈ C([0 ; 1],R) telle que

∀n ∈ N,
∫ 1

0
tnf(t) dt = 0.

1. Énoncer le théorème de Weierstrass d’approximation par des fonctions polyno-
miales.

2. Soit (Pn)n∈N une suite de fonctions polynomiales convergeant uniformément sur
le segment [0 ; 1] vers f .
(a) Montrer que la suite de fonctions (Pnf)n∈N converge uniformément sur [0 ; 1]

vers f 2.

(b) Démontrer que
∫ 1

0
f 2(t) dt = lim

n→+∞

∫ 1

0
Pn(t)f(t) dt.

(c) Calculer
∫ 1

0
Pn(t)f(t) dt.

3. En déduire que f est nulle sur l’intervalle [0 ; 1].

549 CCP 2016

Soit f(x) =
+∞∑
n=0

ln(1 + e−nx).

1. Déterminer le domaine de définition D de la fonction f .
2. Étudier la continuité de f .
3. Préciser lim

x→+∞
f(x) et f(D).

550 ENS Ulm

Pour tout n ∈ N, soit fn : R → R dérivable et telle que ∥f ′
n∥∞ ⩽ 1. On suppose que la

suite (fn)n∈N converge simplement vers une fonction g. Montrer que g est continue.

551 Mines-Ponts PSI 2019

Soit n ∈ N∗ et M : R → Mn(R), une application dérivable sur R.
1. Montrer que l’application f : R → Mn(R) définie par :

∀x ∈ R, f(x) = M(x)TM(x)

est dérivable sur R et donner l’expression de f ′(x) pour x ∈ R.
2. Soit A : R → An(R) une application continue et M : R → Mn(R) de classe
C1, solution de l’équation différentielle M ′(x) = A(x)M(x). On suppose que
M(0) ∈ SOn(R). Montrer que :

∀x ∈ R,M(x) ∈ SOn(R).
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552 X-ENS

1. Soit f une fonction à valeurs réelles, définie, continue et injective sur un intervalle
I de R. On note T = {(x; y) ∈ I2 | x < y}. On considère deux couples (x1; y1)
et (x2; y2) appartenant à T . Pour t ∈ [0 ; 1], on pose u(t) = (1 − t)x1 + tx2 et
v(t) = (1 − t)y1 + ty2.
Montrer que, pour tout t ∈ [0 ; 1], (u(t); v(t)) ∈ T , et en déduire que f est
strictement monotone.

2. Soit f dérivable sur I telle qu’il existe (a; b) ∈ I2 vérifiant f ′(a)f ′(b) < 0. À
l’aide de la question précédente, montrer qu’il existe c ∈ ]a ; b[ tel que f ′(c) = 0.
Quel théorème peut-on ainsi montrer ?

3. Déterminer les fonctions f deux fois dérivables sur R, ne s’annulant pas, telles
que |f ′′| = f .

553 CCP 2017

Soit f la fonction définie par f(x) = arcsin
(

x√
1 + x2

)
.

1. Donner le domaine de définition de f et celui de f ′.
2. Calculer f ′(x). Conclure.

554 Mines-Ponts PSI

Soit E = C([0 ; 1],R) muni de la norme ∥·∥∞.
Soit e ∈ E et Te : f ∈ E 7→

∫ 1

0
e(t)f(t) dt ∈ R.

Montrer que Te est une forme linéaire continue et calculer |||Te|||∞, la norme de Te

subordonnée à ∥·∥∞.
Indication : considérer fε : t 7→ e(t)

|e(t)|+ε
, où ε > 0.

555 ENS MP MPI

Soit f la fonction de R∗
+ vers R nulle sur R \ Q et définie par f

(
p
q

)
= 1

p+q
si p ∈ N et

q ∈ N∗ sont premiers entre eux.
Quels sont les points de continuité de f ?

556 CCP

On considère la série de fonctions S(x) =
+∞∑
n=1

x

n(1 + nx2) .

1. Étudier le domaine de définition de la fonction S et sa continuité.
2. Montrer que la fonction S est dérivable sur R∗.

557 TPE/EIVP

Soit (a; b) ∈ C2, n ∈ N∗ et P = (X − a)n(X − b)n. Donner une expression de la dérivée

nème de P et en déduire
n∑

i=0

(
n

i

)2

en fonction de n.
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558 Mines-Ponts PSI

Pour tout n ∈ N∗, on pose fn : x ∈ R 7→ 2x
x2 + n2 .

1. Montrer que la fonction f : x 7→
+∞∑
n=1

fn(x) est définie sur R.

2. Étudier la limite de f en +∞ et en −∞.
3. Montrer que la fonction f est continue mais que la série de fonctions

∑
fn ne

converge pas uniformément sur R.

559 Centrale PC

Soit E = C1([0 ; 1],R). Si f ∈ E, on note ∥f∥2 =
√∫ 1

0 f
2 et ∥f∥∞ = supt∈[0;1]|f(t)|. On

fixe un réel α dans [0 ; 1].

1. Pour tout n ∈ N, on pose fn : x ∈ [0 ; 1] 7→ 1√
1 + (n(x− α))2

.

Montrer que la suite (∥fn∥2)n∈N converge vers zéro.
2. L’application Φ : f ∈ E 7→ f(α) ∈ R est-elle continue pour la norme ∥·∥2 ?
3. Existe-t-il un nombre réel C > 0 tel que, pour tout f ∈ E, ∥f∥∞ ⩽ C∥f∥2 ?
4. Soit n ∈ N. Existe-t-il C > 0 tel que, pour tout P ∈ Rn[X], ∥P∥∞ ⩽ C∥P∥2 ?

560 X

Existe-t-il une injection continue de [0 ; 1]2 dans [0 ; 1] ?

561 Mines-Ponts MP 2024

Soit f : x 7→
+∞∑
n=0

sin (2nx)
2n

.

1. Montrer que f est bien définie.
2. Montrer que f n’est pas dérivable en 0.

562 Mines-Télécom PC 2022

En appliquant le théorème des accroissements finis, prouver l’encadrement :

∀x ∈ ]0 ; +∞[, x

1 + x2 < arctan(x) < x.

563 ENS MP 2017

Soit f : R → R dérivable sur R telle que f ′ = 0. Pourquoi a-t-on f constante sur R ?

564 Mines-Télécom MP 2025

Soit k : x 7→
cos(x) − 1

x2 .

1. Montrer que k est prolongeable par continuité en 0.
2. La fonction k est-elle dérivable en 0 ? de classe C1 en 0 ?
3. A-t-on d’autres informations sur k ?
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565 Mines-Ponts MP 2019

On pose, pour tout n ∈ N, fn : x 7→ ln
(
1 +

√
1 + xn

)
.

Montrer que pour tout n ∈ N, fn est dérivable une infinité de fois en 0, et donner les
expressions de ses dérivées successives en 0.

566 Mines-Ponts MP 2019

Soit f une fonction dérivable de [0 ; 1] dans R non identiquement nulle telle que :

∃M ∈ R+, ∀x ∈ [0 ; 1], |f ′(x)| ⩽M |f(x)|.

Montrer que f ne s’annule pas sur [0 ; 1].

567 Centrale-Supélec

Existe-t-il une fonction continue de [0 ; 1] dans R telle que f soit non monotone sur
tout segment de [0 ; 1] ?

568 CCINP PC 2018

Soit
f : R −→ R

x 7−→ x

√
1
x

−
⌊

1
x

⌋
1. Déterminer l’ensemble de définition de f .
2. Montrer que, pour tout x ∈ R∗, |f(x)| ⩽ |x|.

La fonction f est-elle prolongeable par continuité en 0 ? Si oui, on désigne par
g son prolongement.

3. Posons Tf (x) = f(x)
x

pour x > 0. La fonction Tf a-t-elle une limite quand x

tend vers 0 ?
Indication : utiliser les suites définies par xn = 2

2n+1 et yn = 1
n+1 .

4. La fonction g est-elle dérivable en 0 ?
5. Soit k ∈ N \ {0; 1}. La fonction f est-elle continue en 1

k
?

Indication : prendre I =
]

1
k+1 ; 1

k

[
et J =

]
1
k
; 1

k−1

[
.

6. Étudier l’existence et la valeur de
∫ 1

1
2

f(x) dx.

569 Mines-Télécom MP 2025

Soit h la fonction définie par :

h(x) = ln(1 + x) − x

x2 .

Montrer que la fonction h est prolongeable en une fonction de classe C1 en 0.
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570 Mines-Ponts MP 2015

Soit

f(x) =


x

sinh(x) −
x

sin(x) si x ∈ ]0 ; π[

0 si x = 0

1. Montrer que f est de classe C1 sur [0 ;π[. Calculer f ′(0).
2. La fonction f est-elle de classe C∞ sur [0 ;π[ ? Calculer f ′′(0) .

571 Mines-Ponts MP 2015

Soit f : R+ → R uniformément continue.
Montrer qu’il existe (a; b) ∈ R2 tel que, pour tout x ∈ R+, f(x) ⩽ ax+ b.

572 Mines 2023

Soit f ∈ C∞(R,R) telle que f(0) = 0.

1. Montrer que g : x 7→
f(x)
x

est de classe C∞.

2. On suppose que f(x) > 0 si x ̸= 0, et que f ′′(0) ̸= 0.
Montrer qu’il existe h ∈ C∞(R,R) telle que h2 = f .

573 Mines 2023

Soit f ∈ C2(R,R+).
1. Donner une condition nécessaire et suffisante pour que

√
f soit dérivable sur R.

2. On suppose que f(0) = f ′(0) = f ′′(0) = 0 et on considère α > 0. Montrer que
pour tout x ∈ [−α ;α] :

f ′(x)2 ⩽ 2f(x)M(α) avec M(α) = sup
|t|⩽2α

|f ′′(t)|.

3. Écrire une condition nécessaire et suffisante pour que la fonction
√
f soit de

classe C1 sur R.

574 Mines-Ponts MP 2021

Soit n ∈ N∗. Soit f : [−1 ; 1] → R de classe Cn+1 telle que f(0) = 0.
1. Montrer que :

∀x ̸= 0, f(x)
x

=
∫ 1

0
f ′(xt) dt.

2. Montrer que :

∀k ∈ [[0 ;n]], lim
x→0

(
f(x)
x

)(k)

= fk+1(0)
k + 1 .

575 Mines-Ponts MP 2018

Soit f : [a ; b] → R une fonction croissante. On note D l’ensemble de ses points de
discontinuité. Montrer que l’on a D =

⋃
n∈N

Dn, avec Dn fini pour tout n ∈ N.
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576 X MP 2017

On dit qu’une fonction f : C → C est C-dérivable en z0 ∈ C s’il existe ℓ ∈ C tel que

lim
z→z0

f(z) − f(z0)
z − z0

= ℓ.

1. Montrer que z 7→ z2 et z 7→ ez sont C-dérivables.
2. Montrer que z 7→ z ne l’est pas.
3. Soit f : C → C. On pose f̃ : R2 → R2 définie par :

f̃(x; y) = (f1(x; y); f2(x; y)) =
(
Re(f(x+ iy)); Im(f(x+ iy))

)
.

Montrer que f est C-dérivable en z0 = x0 + iy0 si et seulement si :

f̃ est dérivable en z0 = x0 + iy0,

∂f1

∂x
(x0; y0) = ∂f2

∂y
(x0; y0) et ∂f1

∂y
(x0; y0) = −∂f2

∂x
(x0; y0).

577 Mines-Ponts MP 2021

Soit f ∈ C1(R,R) et ℓ ∈ R. On suppose que f vérifie :

lim
x→+∞

(f(x) + f ′(x)) = ℓ.

Montrer que lim
x→+∞

f(x) = ℓ.

578 ENS Lyon MP 2016

Déterminer les fonctions f continues de R dans R telles que :

∀x ∈ R, lim
h→+∞

(
f(x+ h) + f(x− h) − 2f(x)

)
= 0.

579 Centrale-Supélec TSI 2023

On définit la fonction f par :

f(x) =
exp

(
1
x

)
si x > 0

0 si x ⩽ 0

1. Tracer l’allure de f .
2. Montrer que f est de classe C∞ sur R∗

+.
3. Pour tout N ∈ N, montrer qu’il existe un polynôme PN tel que pour tout x > 0 :

f (N)(x) = PN

(1
x

)
exp

(
−1
x

)
.

4. Montrer que f est de classe C∞ sur R+.
5. Montrer que f n’est pas développable en série entière autour de 0.
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580 ENS MP 2022

Soit a et b deux réels tels que 0 < a < 1, b > 1 et ab > 1. On pose :

∀x ∈ R, fa,b(x) =
+∞∑
n=1

an cos(bnπx).

1. Montrer que fa,b est bien définie, qu’elle est continue sur R et qu’elle est bornée.

2. On pose α = −
ln(a)
ln(b) . Montrer que :

∀x ∈ R, fa,b(x) =
+∞∑
n=1

b−nα cos(bnπx).

3. Montrer que fa,b est α-höldérienne, c’est-à-dire :

∃C > 0, ∀(x; y) ∈ R2, |fa,b(x) − fa,b(y)| ⩽ C|x− y|α.

4. Soit x ∈ R et N,m deux entiers naturels non nuls. On pose h =
N

bn
.

Calculer : ∫ x+h

x−h
fa,b(t) cos(bmπt) dt.

5. Montrer que : ∫ x+h

x−h
fa,b(t) cos(bmπt) dt ⩽ Cam.

6. Montrer qu’il existe un réel xm tel que l’on ait :

|fa,b(xm) − fa,b(x)| ⩽ Cam

2 .

7. Que peut-on dire d’une fonction α-höldérienne avec α > 1 ?
8. Montrer que fa,b est nulle part dérivable.

581 Centrale-Supélec MP 2023

Pour α ∈ N, avec α ⩾ 2 et β ∈ ]1 ; +∞[, on pose :

fα,β(t) =
∑
n∈N

cos(2παnt)
βn

.

1. Donner les théorèmes de continuité et de dérivabilité des séries de fonctions.
2. On suppose que α < β. Montrer que fα,β est continue et dérivable sur R.
3. On suppose que α ⩾ β. Montrer que fα,β n’est pas dérivable en 0.

En déduire une condition pour que fα,β soit de classe Ck, mais non de classe
Ck+1 sur R.
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582 ENSEA/ENSIIE MP 2025

Soit une fonction f : R+ → R continue et dérivable en 0 telle que f ′(0) = f(0) = 0.
On définit la fonction g telle que g(0) = 0 et g(x) = 1

x

∫ x

0
f(t) dt pour tout x > 0.

1. Montrer que g est continue en 0.
2. Montrer que g est dérivable et calculer sa dérivée.

583 ENSEA/ENSIIE MP 2018

On considère la fonction :
f(x) =

+∞∑
n=0

(−1)nxn

3n+ 1 .

1. Donner le domaine de définition Df de la fonction f .
2. Étudier la continuité de f sur Df .
3. Calculer lim

x→−1+
f(x).

4. Étudier la dérivabilité de f sur l’intérieur de Df .
5. Trouver une équation différentielle vérifiée par f .

584 Mines-Ponts

On dit qu’une fonction f : [0 ; 1] → R admet une corde horizontale de longueur ℓ ∈ R
si :

∃x ∈ [0 ; 1] tel que tel que x+ ℓ ∈ [0 ; 1] et f(x+ ℓ) = f(x),
c’est-à-dire si la corde reliant les points (x; f(x)) et (x + ℓ; f(x + ℓ)) de la courbe
représentative de f est horizontale.

1. Soit f : [0 ; 1] → R, continue, telle que f(0) = f(1). Montrer que f admet,
pour tout n ∈ N∗, une corde horizontale de longueur 1

n
(théorème de la corde

universelle).
2. Si pour tout n ∈ N∗, ℓ ̸= 1

n
, montrer qu’il existe une fonction f : [0 ; 1] → R,

continue, telle que f(0) = f(1) et n’admettant pas de corde horizontale de
longueur ℓ.

3. Soit f : [0 ; 1] → R, continue, telle que f(0) = f(1). Prouver que, pour tout
n ∈ N∗, f admet au moins n cordes horizontales de longueur multiple de 1

n
.

4. Soit f : [0 ; 1] → R, continue, telle que f(0) = f(1) et g : [0 ; 1] → R une fonction
continue et strictement monotone. On pose L = g(1)−g(0). Montrer qu’il existe
n paires {Ti;T ′

i } ⊂ [0 ; 1] telles que :

f(Ti) = f(T ′
i ) et ∃k ∈ N, |g(Ti) − g(T ′

i )| = k

∣∣∣∣ LN
∣∣∣∣ .

5. Montrer qu’une courbe fermée du plan, continue, et tournant de façon monotone
n fois autour d’un point, se recoupe au moins n− 1 fois.
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585 TPE/EIVP MP 2019

Soit f : R → R une fonction continue vérifiant :

∀(x; y) ∈ R2, |f(x) − f(y)| ⩾ |x− y|.

Montrer que f est bijective.

586 Mines-Ponts PC 2015

Un marcheur parcourt (continûment) 6 kilomètres en une heure. Montrer qu’il existe
une demi-heure durant laquelle il parcourt exactement 3 kilomètres.

587 Mines-Ponts

Soit I un intervalle et f : I → R. On dit que f est uniformément continue sur I si :

∀ε ∈ R∗
+, ∃δ ∈ R∗

+, ∀(x; y) ∈ I2, |x− y| ⩽ δ =⇒ |f(x) − f(y)|⩽ ε.

1. Soit (a; b) ∈ R2 avec a < b. Soit f une fonction continue sur [a ; b] et à valeurs
réelles. Montrer qu’alors f est uniformément continue. (théorème de Heine)

2. Une fonction continue sur R est-elle nécessairement uniformément continue ?
3. Soit f une fonction continue sur [0 ; 1] à valeurs réelles.

(a) Montrer que :

lim
n→+∞

1
n

n∑
k=1

(−1)kf

(
k

n

)
= 0.

(b) Montrer que :

lim
n→+∞

1
2n

n∑
k=0

(
n

k

)
f

(
k

n

)
= 0.

588 Mines-Ponts PC 2024

Déterminer une fonction f de classe C∞ sur ] − ∞ ; 1[ telle que :

∀x ∈ ]0 ; 1[, f(x) = 1√
x

ln
(

1 +
√
x

1 −
√
x

)
.

589 Mines-Ponts PC 2024

Soit f : [0 ; 1] → R une fonction dérivable différente de la fonction nulle. On suppose
qu’il existe M > 0 tel que :

∀x ∈ [0 ; 1], |f ′(x)| ⩽M |f(x)|.

Montrer que la fonction f ne s’annule en aucun point de [0 ; 1].

590 Mines-Télécom PC 2019

On définit f : R → R par f(0) = 0 et f(x) = x3 sin
(1
x

)
si x ̸= 0.

Déterminer un développement limité de f en 0 à un ordre le plus grand possible.
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591 X MP 2022

Soit f une fonction continue de [a ; b] dans R, telle que f(a) = f(b).
1. Pour n entier supérieur à 2, montrer qu’il existe (a′; b′) ∈ [a ; b]2 tel que :

f(a′) = f(b′) et b′ − a′ = b− a

n
.

2. En supposant de plus f dérivable sur ]a ; b[, en déduire le théorème de Rolle.
3. Application : soit f : x 7→ e−x2 . Déterminer le nombre de points d’annulation

de f (n).

592 Centrale-Supéléc MP 2017

Soit
f(x) =

+∞∑
n=1

(−1)n ln
(

1 + x2

n(1 + x2)

)
.

1. Montrer que f est définie et continue sur R.
2. Montrer que f est de classe C1 sur R.
3. Déterminer lim

x→+∞
f(x).

593 Centrale-Supélec PSI 2015

On définit g sur ]0 ; 1[ telle que g(x) = xx.
1. Trouver α réel tel que, en posant g(0) = α, g soit continue sur [0 ; 1].
2. Donner la représentation graphique de g.
3. Expliciter l’allure de g en 0 et donner son minimum.

4. Donner une valeur approchée de
∫ 1

0
g(x) dx.

5. Trouver une suite (an)n∈N telle que
∫ 1

0
g(x) dx =

+∞∑
n=0

an, puis donner la valeur

de
∫ 1

0
g(x) dx.

594 ENSAM PSI 2017

On note D = {z ∈ C | |z| ⩽ 1}. Soit f définie sur D par :

∀z ∈ D, f(z) = |cos(z)|2.

1. Montrer que f est bornée sur D.
2. Exprimer f(z) en fonction de Re(z) et de Im(z).

On rappelle que cos(z) = 1
2(eiz + e−iz).

3. Déterminer le maximum et le minimum de f sur D.

127



595 CCINP PC 2016

Soit ϕ(x) = exp(exp(x) − 1). On admet le développement suivant :

ϕ(x) = 1 + x+ x2 + 5
6x

3 + o(x3).

1. Calculer ϕ(n)(0) pour n ∈ {0; 1; 2; 3}.
2. On définit, par récurrence la suite (Pn)n∈N, par :

P0 = 1 et ∀n ∈ N, Pn+1 =
n∑

k=0

(
n

k

)
Pk.

Calculer P1, P2 et P3.
3. Montrer que Pn ⩽ n!.

4. Soit f(x) =
+∞∑
k=0

Pn

n! x
n. Montrer que le rayon de convergence de f est différent

de 0.
5. Prouver que f ′(x) = exp(x)f(x).
6. En déduire le développement en série entière de ϕ.

596 CCINP PSI 2017

Montrer que la fonction

f : x 7−→
+∞∑
n=0

x√
n(1 + nx2)

est définie sur R et dérivable sur R∗.

597 Centrale-Supélec PSI 2013

Soit f ∈ C1(R,R). Étudier les implications entre les propositions suivantes :
i) lim

x→+∞
f(x) = +∞

ii) lim
x→+∞

f ′(x) = +∞

iii) La fonction f est strictement croissante au voisinage de +∞.

598 X PC 2008

Calculer :
lim
x→0

tan(sin(x+ 3
√
x))

sinh(tanh(2x+ sin(x)) .

599 Mines-Télécom PC 2019

Montrer que arccos(1 − x) ∼
√

2x quand x → 0+.

600 CCINP PSI 2015

Soit f une fonction dérivable sur [0 ; 1] telle que f(0) = f(1) = f ′(0) = 0. On définit la

fonction g qui à x associe
f(x)
x

.

1. Montrer que g admet un prolongement par continuité en 0.
2. Montrer que f admet une tangente passant par l’origine.
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601 CCINP PC 2015

On considère la fonction f définie sur ]0 ; 1] par

f(t) = 1 − t3

t
.

1. Calculer f ′. En déduire que f réalise une bijection de ]0 ; 1] vers [0 ; +∞[.
2. On pose u la bijection réciproque de f . Montrer que, pour tout x ⩾ 0 :

(u(x))3 + xu(x) − 1 = 0.

3. Montrer que u est dérivable sur ]0 ; +∞[ et que, pour tout x > 0 :

u′(x) = −u(x)
3(u(x))2 + x

.

4. Montrer que u(1) ⩾
1
2 à l’aide de 2, puis que |u′| ⩽

1
3u.

5. Montrer que u(x) est équivalent en +∞ à
1
x
.

6. Montrer l’existence de
∫ +∞

0

√
1
x

− u(x) dx.

602 Mines PC 2022

Existe-t-il une fonction continue et surjective de E vers F si
1. E = [0 ; 1] et F = ]0 ; 1[ ?
2. E = ]0 ; 1[ et F = [0 ; 1] ?

603 Mines-Ponts PC 2022

Soit f ∈ C1([0 ; b],R) telle que f(0) = a > 0 et

∀x ∈ [0 ; b], f ′(x) ⩾ f 3(x).

Montrer que b ⩽
1

2a2.

604 ENS MP 2017

Soit φ ∈ C1(R∗
+,R∗

+). On suppose que :

lim
x→+∞

(
xφ′(x)
φ(x)

)
= β ∈ R∗

+.

1. Montrer que :

∀λ > 0, lim
x→+∞

(
φ(λx)
φ(x)

)
= λβ.

2. On suppose désormais que φ′ est croissante. Montrer la réciproque.
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605 Mines-Télécom MP 2018

Soit f une fonction dérivable sur R. On suppose qu’elle admet une limite en +∞, une
limite en −∞ et qu’elles sont égales. Montrer qu’il existe c ∈ R tel que f ′(c) = 0.

606 Mines-Ponts MP 2018

1. Soit f et g deux fonctions continues sur [a ; b] telles que f < g. Prouver qu’il
existe un polynôme P tel que f < P < g.

2. Soit n ∈ N∗. On suppose f et g de classe n et pour tout k ∈ [[1 ;n]], f (k) < g(k).
Prouver qu’il existe un polynôme P tel que pour tout k ∈ [[1 ;n]] :

f (k) < P (k) < g(k).

607 Mines-Télécom PSI 2018

Lorsque cela est possible, on pose :

f(x) =
+∞∑
n=1

(−1)n ln
(

1 + x

n

)
.

1. Donner le domaine de définition de f .
2. La fonction f est-elle continue sur son domaine de définition ? Est-elle de classe
C1 sur son domaine de définition ?

608 X MP 2021

Soit f une fonction de R dans R. On dit que f est semi-continue inférieurement (s.c.i.)
si, pour tout α ∈ R, f−1(] − ∞ ;α]) est fermé dans R.

1. Montrer que, si f est continue, alors f est s.c.i.
2. Donner un exemple de fonction f s.c.i. mais non continue.
3. Montrer que f est s.c.i. si et seulement si, pour tout x ∈ R et tout ε ∈ R∗

+, il
existe un voisinage V de x dans R tel que, pour tout y ∈ V , f(y) > f(x) − ε.

609 X MP 2021

Soit C ∈ R∗
+ et f : R → R telle que x 7→ f(x) + Cx2

2 et x 7→ −f(x) + Cx2

2 soient
convexes.

1. Montrer que f est dérivable.
2. Montrer que f n’est pas nécessairement deux fois dérivable.
3. Montrer que f est de classe C1.

610 CCINP PC 2021

Pour x ∈ ] − 1 ; +∞[, on pose f(x) =
+∞∑
n=1

(−1)n

n+ x
.

1. Montrer que f est définie et de classe C1 sur ] − 1 ; +∞[.
2. Déterminer les limites de f en −1 et en +∞.
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611 X PC 2025

Soit P,Q ∈ R[X] tels que P − P ′ = Q. On suppose que Q est positif sur R. Montrer
que P est positif sur R.

612 CCINP PSI 2018

Montrer que la fonction

f : x 7−→
+∞∑
n=1

x√
n(1 + n2x2)

est définie sur R et dérivable sur R∗.

613 X MP 2017

Soit f une fonction de [0 ; 1] dans R.
1. On suppose que la fonction f vérifie la propriété suivante :

∀(a; b) ∈ [0 ; 1]2, ∃(c; d) ∈ R2, f([a ; b]) = [c ; d].

(a) La fonction f est-elle continue ?
(b) On suppose de plus que, pour tout y ∈ R, f−1({y}) est fermé. Montrer que

f est continue.
2. On suppose que f est une dérivée. Montrer qu’elle vérifie la première propriété.

614 ENS Ulm MP 2019

Soit f :
[

1
4 ; 1

]
→ R une fonction vérifiant xf(x) = f(x) pour tout x ∈

[
1
4 ; 1

]
.

Montrer que f est uniformément continue.

615 Mines-ponts MP 2025

Soit f ∈ C([0 ; 1],R). Étudier la continuité de la fonction F définie sur [0 ; 1] par :

F (x) = 1√
π

∫ x

0

f(t)√
x− t

dt.

616 ENS MP 2015

Soit F une fonction continue croissante de R dans R telle que :

∀x ∈ R, F (x+ 1) = F (x) + 1.

Montrer que :
lim

n→+∞

F n(x) − x

n
= ℓ,

où F n désigne l’itéré nème de F , et ℓ ∈ R.
Question subsidiaire : montrer que ℓ est réel et indépendant de x.

617 Mines-Ponts PC 2025

Soit I un intervalle de R et soit f : I → R continue et injective.
Montrer que f est strictement monotone.
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618 CCINP MP 2018

1. Soit fn : [a; b] → R convergeant uniformément vers f telle que pour tout n, la
fonction fn est continue en x0 ∈ [a ; b]. Montrer que f est continue en x0.

2. Soit gn définie sur [0 ; 1] par g(x) = xn.
La suite (gn)n∈N converge-t-elle uniformément sur [0 ; 1] ?

619 X MP 2017

Soit
∑
n⩾0

αn une série à termes positifs convergente, et (an)n∈N ∈ [0 ; 1]N une suite injec-

tive dense dans [0 ; 1]. On pose :

f(x) =
∑

n∈N, αn<x

αn.

Déterminer les points de continuité et les points de discontinuité de f .

620 Mines-Ponts MP 2017

Soit la suite réelle (an)n∈N∗ définie par :

∀n > 0, an =
∫ +∞

n

tanh(t)
t2

dt.

Soit la série entière f associée à cette suite, i.e. f(x) =
+∞∑
n=0

anx
n.

1. Quel est le domaine de définition de f ?
2. La fonction f est-elle continue en −1 ?
3. La fonction f est-elle continue à gauche en 1 ?

621 Mines-Ponts MP 2018

Soit P ∈ R[X] scindé dans R[X].
1. Montrer que toute racine multiple de P ′ est aussi racine de P .
2. Déterminer le signe de PP ′′ − (P ′)2 sur R.

622 Mines-Ponts MP 2025

Soit P ∈ C[X] non constant et H un demi-plan de C contenant une racine de P ′.
1. Montrer que ZP ′ ⊂ conv(ZP ).
2. Montrer que H contient une racine de de P .
3. En déduire que P (H) = C.

623 Mines-Télécom MP 2019

Soit P (X) scindé simple dans R[X], avec deg(P ) ⩾ 2.
1. Montrer que P ′ est aussi scindé simple dans R[X].
2. Comparer les moyennes arithmétiques des racines de P et de P ′.
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624 CCINP PSI 2021

Soit x 7→
+∞∑
n=1

cos(nx)
x2 + n2 .

1. Montrer que f est bien définie sur R.
2. Montrer que f est C1 sur R \ 2πZ.
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3 Calcul intégral

625 X-ENS

Étudier la suite (un)n∈N définie par :

un =
∫ 1

0
xnex dx.

En déduire que le nombre d’Euler est irrationnel.

626 ENS Lyon

Pour tout n ∈ N, on considère l’intégrale suivante :

In = 1
n!

∫ π

0
xn(π − x)n sin(x) dx.

1. Montrer que In est un polynôme à coefficients entiers en π, de degré inférieur
ou égal à n.

2. En déduire que π est irrationnel.

627 Mines PC

Calculer ∫ 1

0
x
⌊1
x

⌋
dx,

où ⌊a⌋ désigne la partie entière de a.

628 X

Déterminer un équivalent lorsque n tend vers +∞ de

In =
∫ 1

0

(
t

1 + t2

)n

dt.

629 X PC 2019

On suppose que le graphe d’un polynôme de degré 6 est tangent à une droite en trois
points A,B,C avec B le milieu de AC. Montrer que les aires délimitées par les segments
AB, BC et la courbe sont égales.

630 ENSEA/ENSIIE MP 2023

Justifier l’existence puis calculer la valeur de∫ +∞

0

ln(t)
1 + t2

dt.
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631 ENS PC 2024

Soit P ∈ R[X]. Pour tout nombre réel x, on pose :

Q(x) = e−x
∫ x

0
P (t)et dt.

Montrer que Q est polynomiale si et seulement si
+∞∑
k=0

(−1)kP (k)(0) = 0.

632 X-ENS

Soit A ∈ Mn(C).
Calculer, pour r ∈ R∗

+ suffisamment grand,
∫ 2π

0
reiθ det(reiθIn − A) · (reiθIn − A)−1 dθ,

de deux manières différentes. En déduire le théorème de Cayley-Hamilton.

633 CCP MP

Pour tout n ∈ N∗, on pose fn(x) = (x2 + 1)nex + xe−x

n+ x
.

1. Démontrer que la suite de fonctions (fn)n∈N∗ converge uniformément sur [0 ; 1].

2. Calculer lim
n→+∞

∫ 1

0
fn(x) dx.

634 X PC 2021

Calculer, pour n ∈ N, In =
∫ π

0
cos(nt) cosn(t) dt.

635 Mines-Ponts

Soit f : R+ → R uniformément continue telle que
∫ +∞

0
f(x) dx converge.

Montrer que lim
x→+∞

f(x) = 0.

636 Mines-Télécom

Soit n ∈ N. Calculer l’intégrale

In =
∫ π

2

0

sinn(x)
sinn(x) + cosn(x) dx.

637 Mines-Ponts MP 2021

Soit f : [0 ; 1] → R continue telle que, pour tout x ∈ [0 ; 1],
∫ 1

x
f(x) dx ⩾

1 − x2

2 .

Montrer que
∫ 1

0
f(t)2 dt ⩾ 1

3.
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638 Mines-Ponts MP

Soit a ∈ R avec |a| ̸= 1.

1. Montrer que a2n − 1 = (a2 − 1)
n−1∏
k=1

(
a2 − 2a cos

(
kπ

n

)
+ 1

)
.

2. En déduire la valeur de I(a) =
∫ π

0
ln(a2 − 2a cos(t) + 1) dt.

639 Mines-Télécom

Calculer :
I(θ) =

∫ π
2

0

1
1 + cos(t) cos(θ) dt, θ ∈ [0 ; π[.

640 Mines-Ponts MP 2023

Étudier la convergence de
I =

∫ +∞

−∞

1
1 + x6 dx.

Si l’intégrale converge, calculer sa valeur.

641 Mines-Ponts MP 2023

Soit a > 0 et b > 0. Étudier la convergence de

I =
∫ +∞

0

e−at − e−bt

t
dt.

Si l’intégrale converge, calculer sa valeur.

642 Mines-Ponts MP 2023

Soit a > 0. Étudier la convergence de

I =
∫ +∞

0

arctan(ax) + arctan
(

x
a

)
1 + x2 dx.

Si l’intégrale converge, calculer sa valeur.

643 X MP

L’objectif est de montrer que π /∈ Q.
À tout polynôme f ∈ R[X], on associe F =

∑
k∈N

(−1)kf (2k).

1. Calculer
∫ π

0
f(t) sin(t) dt en fonction de F (0) et F (π).

On suppose que π = a

b
avec (a; b) ∈ N∗2 et on pose pour n ∈ N∗ :

∀x ∈ [0 ; π], fn(x) = xn(a− bx)n

n! .

2. Tracer le graphe de fn sur [0 ;π].

3. Montrer que
∫ π

0
fn(t) sin(t) dt ∈ N∗ et en déduire que π /∈ Q.
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644 Mines-Ponts PC 2022

Soit f : x 7→ ln(x)
x− 1.

1. Montrer que f est prolongeable par continuité en 1.

2. Montrer que I =
∫ 1

0
f(x) dx est convergente.

3. Montrer que f est développable en série entière.
4. Calculer I.

645 X-ENS

Soit F = {f ∈ C1([0 ; 1],R) | f(0) = 0, f(1) = 1}.
Déterminer :

inf
f∈F

∫ 1

0
|f ′(x) − f(x)| dx.

646 X

Calculer : ∫ +∞

0

ln(1 + t)
t
√

1 + t
dt.

647 Mines-Ponts PSI 2023

On définit
f : t ∈ R 7−→ t2 − 1

(1 + t2)
√

1 + t4

et
F : x ∈ R+ 7−→

∫ x

0
f(t) dt.

1. Donner le développement limité d’ordre 3 en 0 de F .

2. Calculer, si existence,
∫ +∞

0
f(t) dt.

648 X

Soit (u; v) ∈ R2 et r ∈ R \ {|u|; |v|}. Calculer :

Ir(u; v) =
∫ 2π

0

1
(u− reiθ)(v − reiθ) dθ.

649 Mines

Pour tout x ∈ [2 ; +∞[, on pose :

Li(x) =
∫ +∞

2

1
ln(t) dt. (logarithme intégral)

Trouver un développement asymptotique à n termes lorsque x → +∞.
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650 X-ENS

1. Soit P,Q appartenant C[X] avec deg(P ) ⩽ deg(Q) − 2. On suppose de plus que
Q ne s’annule pas sur R. Montrer que∫ +∞

−∞

P (t)
Q(t) dt =

∑
α∈Ω

ε(α)µ(α)

où Ω est l’ensemble des pôles de P
Q

, ε(α) le signe de la partie imaginaire de α et

µ(α) le coefficient de 1
X − α

dans la décomposition en éléments simples de F .

2. Application : calculer
∫ +∞

−∞

t2

1 + t4
dt.

651 X-ENS

1. Démontrer l’existence ou la non-existence d’une fonction f continue et bornée
de R+ dans R telle que :

∀x ⩾ 0, f(x) = 1 +
∫ x

0

e−t2

1 + f(t)2 dt.

2. Étudier la suite de fonctions fn : R+ → R définie par f0(x) = 0 et pour tout
(n; x) appartenant à N × R+ par :

fn+1(x) = 1 +
∫ x

0

e−t2

1 + fn(t)2 dt.

652 Mines-Ponts PC 2024

1. Soit n ∈ N. Calculer Jn =
∫ π

4

0
tann(x) dx.

2. Étudier la convergence de la série
∑
n⩾0

(−1)nJn et calculer sa somme de plusieurs

manières différentes.

653 Mines-Télécom PSI 2019

Montrer que l’intégrale
∫ +∞

0
ln
(

1 + t2

t2

)
dt converge et calculer sa valeur.

654 ENS PSI 2023

Pour tout a ∈ R, on pose I(a) =
∫ +∞

0
e−x2− a2

x2 dx.

Montrer que l’intégrale I(a) converge et calculer sa valeur.

655 Mines-Ponts PSI 2019

Soit T : x 7→
∫ +∞

0

eitx − 1
t

e−t dt.

Montrer que T est définie sur R et calculer T (x) pour tout x ∈ R.
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656 CCP MP

Soit α et β deux nombres réels. Posons

I1 =
∫ +∞

0

ln((1 + x)α)
xβ

dx et I2 =
∫ +∞

0

(1 + x)α − xα

xβ
dx.

1. Pour quelles valeurs de α et β l’intégrale I1 est-elle convergente ?
2. Même question pour l’intégrale I2.

657 Mines

Pour tout n ∈ N, soit In =
∫ +∞

0
e(1−i)ttn dt.

1. Montrer l’existence de In et exprimer In en fonction de n.

2. En déduire la valeur de
∫ +∞

0
e−t

1
4 sin

(
t

1
4
)
tn dt.

658 Mines-Ponts

Soit f : [0 ; +∞[→ R une fonction continue et s0 ∈ R tels que∫ +∞

0
f(t)e−s0t dt

converge.
1. Soit F une primitive de t 7→ f(t)e−s0t sur R+.

Démontrer que F est bornée sur R+.

2. En déduire que pour tout s > s0,
∫ +∞

0
f(t)e−st dt converge.

3. Sur le même modèle, démontrer que si g : [1 ; +∞[ → R est une fonction telle

que
∫ +∞

1
g(t) dt converge, alors

∫ +∞

1

g(t)
t

dt converge.

659 Centrale

Soit f ∈ C1([0 ; 1],R) vérifiant f(1) = 0.

Montrer que
∫ 1

0
f 2(t) dt ⩽ 1

2

∫ 1

0
(f ′(t))2 dt.

660 X MP

Soit E = {f ∈ C1([0 ; 1],R) | f(0) = f(1) = 0}.
1. Montrer que

I1 =
∫ 1

0
f(x)f ′(x) cot(πt) dt et I2 =

∫ 1

0

f(t)2

tan2(πt) dt

existent. Comparer I1 et I2.

2. Montrer que pour tout f ∈ E,
∫ 1

0
(f ′(t))2 dt ⩾ π2

∫ 1

0
f 2(t) dt.

(Inégalité de Wirtinger)

3. Caractériser le cas d’égalité de l’inégalité de Wirtinger.
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661 Mines-Ponts PSI 2019

Soit n ∈ N∗. Pour tout x ∈ R+, on note

un(x) =

√
2 +

√
2 +

√
2 + · · · +

√
2 + 2x,

où l’on a n racines carrées. Calculer :

lim
n→+∞

∫ 1

0

1
un(x) dx.

662 X

Calculer : ∫ +∞

0

1
(1 + t2)2 dt.

663 Centrale

Soit (p; q) ∈ N2. Donner un algorithme permettant de calculer l’intégrale suivante :

Ip,q =
∫ +∞

0

tp

(1 + t2)q dt.

664 CCP

Soit a et b deux réels tels que a < b.

1. Soit f ∈ C1([a ; b],R). Montrer que lim
λ→+∞

∫ b

a
f(t)eiλt dt = 0.

2. Reprendre la question précédente en supposant que f ∈ C([a ; b],R).

665 X MP

Soit f ∈ C1(R,C) une fonction 2π-périodique ne s’annulant pas sur R. On considère :

I(f) = 1
2π

∫ 2π

0

f ′(t)
f(t) dt.

1. En considérant l’application ψ : t 7→ exp
(∫ t

0
f ′(θ)
f(θ) dθ

)
, montrer que I(f) est un

entier. (On appelle I(f) l’indice de f .)
Soit P ∈ C[X]. On note fP (t) = P (eit).
On admet le théorème de d’Alembert-Gauss en deuxième question, mais pas en
troisième question.

2. Caractériser I(fP ) à l’aide des zéros de P .
3. En utilisant P (reit) pour r variable, donner une démonstration du théorème de

d’Alembert-Gauss.
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666 X-ENS

1. Soit P ∈ R[X] de degré m. Considérons, pour t ∈ R,

I(t) =
∫ t

0
et−uP (u) du.

Montrer que :
I(t) = et

m∑
j=0

P (j)(0) −
m∑

j=0
P (j)(t).

2. Soit n ∈ N∗ et q0, . . . , qn des entiers naturels avec q0 ̸= 0.

Soit encore Q =
n∑

k=0
qkX

k.

On suppose que Q(e) = 0.
Pour p ∈ N, on pose :

P (X) = Xp−1(X − 1)p(X − 2)p · · · (X − n)p.

Soit encore
J =

n∑
k=0

qkI(k).

Montrer que J ∈ N. De plus, montrer que (p− 1)! divise J , et que pour tout p
suffisamment grand, J ̸= 0.

3. Montrer qu’il existe C ∈ R tel que, pour tout p ∈ N, |J | ⩽ Cp.
Trouver une minoration de |J |. Conclure que e est un nombre transcendant,
c’est-à-dire que e ne peut pas être racine d’un polynôme non nul à coefficients
dans Q.

667 Mines-Ponts MP 2024

Montrer l’existence de
I =

∫ +∞

0

∫ +∞

x

sin(t)
t

dt dx

et calculer la valeur de I.

668 Mines-Ponts PC 2023

Pour tout entier n ⩾ 2, on pose :

In =
∫ +∞

0

1
(t+ 1) · · · (t+ n) dt.

Montrer l’existence de In, puis calculer In.

669 ENS

1. Calculer F (s) =
∫ +∞

0

sin(x)
x

e−sx dx.

2. En déduire
∫ +∞

0

sin(x)
x

dx.
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670 Centrale PC 2005

1. Justifier l’existence de

J =
∫ +∞

0

sin3(t)
t2

dt et I(x) =
∫ +∞

x

sin3(t)
t2

dt

pour x ∈ R∗
+.

2. Déterminer deux réels α et β tels que, pour x ∈ R∗
+ :

I(x) = α
∫ +∞

x

sin(t)
t2

dt+ β
∫ +∞

x

sin(3t)
t2

dt.

3. En déduire que, pour tout x ∈ R∗
+ :

I(x) =
∫ 3x

x

3 sin(t)
4t2 dt.

4. Montrer que

lim
x→0+

(∫ 3x

x

sin(t)
t2

dt−
∫ 3x

x

1
t

dt
)

= 0

et en déduire la valeur de J .
5. Montrer que I peut se prolonger en une application dérivable sur R+, et préciser

la dérivée en 0.

671 Mines-Télécom MP 2024

Soit f : x 7→
∫ +∞

0

e−t

x+ t
dt.

1. Donner le domaine de définition de f .
2. La fonction f est-elle

(a) continue ?
(b) de classe C1 ?

3. Étudier la croissance de f . Calculer les limites au bord du domaine de définition.
4. Donner un équivalent de f en +∞.
5. Donner un équivalent de f en 0.

672 ENS Lyon MP 2024

Trouver un équivalent de la suite récurrente (xn)n∈N définie par :
x0 = 1
xn+1 = xn +

∫ +∞

xn

e−t2 dt
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673 CCP

Étudier l’intégrabilité de
f : x 7−→ e−x

√
x2 − 1

sur l’intervalle ]1 ; +∞[.

674 CCP

1. Démontrer que pour tout n ∈ N, la fonction

t 7−→ 1
1 + t2 + tne−t

est intégrable sur [0 ; +∞[.
2. On pose :

un =
∫ +∞

0

1
1 + t2 + tne−t

dt.

Calculer lim
n→+∞

un.

675 Mines-Ponts

Pour tout t ⩾ 0, calculer : ∫ +∞

0

cos(tx)
1 + x2 dx.

676 X PC 2019

Déterminer la limite de
In =

∫ +∞

0

1 + tn√
t+ t2n

dt

quand n tend vers +∞.

677 CCP 2015

Soit a ∈ R. On considère la fonction

f : t 7−→ 1
cosh(t) + cosh(a) .

Montrer que f est intégrable sur R+ et calculer
∫ +∞

0
f(t) dt.

Indication : on pourra faire le changement de variable u = et.

678 Mines 2015

Justifier l’existence de l’intégrale I =
∫ +∞

0

sin(t)√
t

dt.
En écrivant I comme somme d’une série alternée, déterminer le signe de I.

679 Centrale 2015

Soit f ∈ C1([0 ; 1],R). Donner une condition simple pour que l’intégrale
∫ 1

0

f(t)
t

dt
converge.
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680 CCP 2015

Soit x ∈ [0 ; 1], p ∈ N∗ et n ∈ N.

1. Montrer que
n∑

k=0
(−1)kxpk = 1 + (−1)nxp(n+1)

1 + xp
.

2. En déduire que
n∑

k=0

(−1)k

1 + pk
=
∫ 1

0

1
1 + xp

dx+ (−1)n
∫ 1

0

xp(n+1)

1 + xp
dx.

3. Montrer que
n∑

k=0

(−1)k

1 + pk
=
∫ 1

0

1
1 + xp

dx.

681 CCP 2015

Justifier l’existence puis calculer la valeur de∫ +∞

0
e−t

(
ln(t) − 1

t
+ 1

1 − e−t

)
dt.

682 Petites Mines

On considère la fonction f : t 7→ 1
t

ln
(1 − t

1 + t

)
.

1. La fonction f est-elle intégrable sur ] − 1 ; 1[ ?
2. Développer en série entière la fonction t 7→ ln(1 − t) − ln(1 + t).

3. Calculer
∫ 1

−1
f(t) dt sachant que ζ(2) =

π2

6 .

683 CCP MP

1. Prouver que, pour tout entier naturel n, fn : t 7→ tn ln(t) est intégrable sur ]0 ; 1]
et calculer In =

∫ 1

0
tn ln(t) dt.

2. Prouver que f : t 7→ et ln(t) est intégrable sur ]0 ; 1] et que
∫ 1

0
et ln(t) dt = −

+∞∑
n=1

1
nn! .

Indication : utiliser le développement en série entière de la fonction exponentielle.

684 CCP MP

On pose, pour tout x ∈ ]0 ; +∞[ et pour tout t ∈ ]0 ; +∞[, f(x; t) = e−ttx−1.
1. Démontrer que, pour tout x ∈ ]0 ; +∞[, la fonction t 7→ f(x; t) est intégrable sur

]0 ; +∞[.

On pose alors, pour tout x ∈ ]0 ; +∞[, Γ(x) =
∫ +∞

0
e−ttx−1 dt.

2. Pour tout x ∈ ]0 ; +∞[, exprimer Γ(x+ 1) en fonction de Γ(x).
3. Démontrer que Γ est de classe C1 sur ]0 ; +∞[ et exprimer Γ′(x) sous forme

d’intégrale.
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685 CCP MP

On considère la fonction F : x 7→
∫ +∞

0

e−2t

x+ t
dt.

1. Prouver que F est définie et continue sur ]0 ; +∞[.
2. Prouver que x 7→ xF (x) admet une limite en +∞ et déterminer la valeur de

cette limite.
3. Déterminer un équivalent, au voisinage de +∞, de F (x).

686 CCP 2016

1. Résoudre dans R l’équation (E) : ex − e−x = 2.

2. On pose : ∀n ∈ N, Jn =
∫ α

0
(sinh(t))n dt où α = ln(1 +

√
2).

Montrer que Jn est bien définie, et calculer lim
n→+∞

Jn.

3. Trouver une relation liant Jn+2, Jn et
√

2.
En déduire un équivalent de Jn quand n tend vers +∞.

687 CCP MP

On considère la fonction H définie sur ]1 ; +∞[ par H(x) =
∫ x2

x

1
ln(t) dt.

1. Montrer que H est C1 sur ]1 ; +∞[ et calculer sa dérivée.

2. Montrer que la fonction u définie par u(x) =
1

ln(x) −
1

x− 1 admet une limite
finie en x = 1.

3. En utilisant la fonction u de la question 2, calculer la limite en 1+ de H.

688 ENS 2016

On considère la fonction f : x 7→
∫ +∞

0

1
tx(1 + t) dt.

1. Déterminer le domaine de définition (réel) de f .
2. Montrer que f est continue sur son domaine de définition.
3. Trouver un équivalent de f en 0.
4. Montrer que le graphe de f admet pour axe de symétrie la droite ∆ d’équation
x = 1

2 .
5. Déterminer la borne inférieure de f .

689 Petites Mines 2016

Soit f ∈ C(R+,R). On suppose que la fonction g : x 7→
∫ x

1
f(t) dt est bornée sur R+.

Montrer que l’intégrale
∫ +∞

1

f(t)
t

dt est convergente.
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690 Mines 2016

On considère la fonction f : x 7→
∫ 2x

x

1
t2 + t4

dt.

1. Quel est le domaine de définition de f ? Peut-on réduire son domaine d’étude ?
2. Montrer que f est de classe C1. Étudier ses variations.
3. Étudier la limite de f en +∞. Calculer un équivalent de f en +∞.
4. Étudier la limite de f en 0+.

Peut-on prolonger f en une fonction continue sur R ?

L’intégrale
∫ +∞

0
f(x) dx est-elle définie ? Si oui, la calculer.

691 CCP 2016

1. Montrer l’existence de I =
∫ π

4

− π
4

cos(u)√
4 − 3 sin2(u)

du.

2. Calculer I.

692 Mines 2016

On considère la fonction f : x 7→
∫ x

0

et

x+ t
dt.

1. Montrer que f est définie sur ]0 ; +∞[.
2. Étudier ses limites au bornes.
3. Trouver un équivalent de f(x) quand x tend vers +∞.

693 CCP 2016

1. Montrer que l’intégrale
∫ +∞

0

sin5(t)
t2

dt est définie.

2. Montrer que :

sin5(t) =
1
16 (sin(5t) − 5 sin(3t) + 10 sin(t)) .

3. Montrer que pour tout a > 0 :
∫ +∞

a

sin5(t)
t2

dt = − 5
16

∫ 5a

3a

sin(u)
u2 du+ 10

16

∫ 3a

a

sin(u)
u2 du.

En déduire la valeur de
∫ +∞

0

sin5(t)
t2

dt.

694 ENSAM 2016

On considère la fonction f : x 7→
∫ 1

0

tx − 1
ln(t) dt.

1. Déterminer le domaine de définition de cette fonction.
2. Étudier la dérivabilité de f . En déduire f ′(x) puis f(x).
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695 Mines 2016

Montrer que pour tout x > 0,
∫ +∞

0

arctan
(

x
t

)
1 + t2

dt =
∫ x

0

ln(t)
t2 − a

dt.

696 CCP 2016

Soit f ∈ C([0 ; +∞[,R).
On suppose qu’il existe c > 0 et a ∈ R tels que, pour tout t ∈ [0 ; +∞[, |f(t)| ⩽ ceat.
On considère l’intégrale F (x) =

∫ +∞

0
f(t)e−xt dt.

1. Montrer que F (x) est définie pour tout x > a.
2. On suppose dans toute cette question que a ⩽ 0.

Calculer lim
x→+∞

xF (x) et en déduire un équivalent de F en +∞.
On suppose de plus que lim

x→+∞
f(x) = L.

Montrer que lim
x→+∞

xF (x) = L et en déduire un équivalent de F en 0+.

697 X-ENS PSI 2017

1. Montrer l’existence et calculer l’intégrale
∫ 1

0
xn ln(x) dx pour tout n entier na-

turel.

2. Montrer que J =
∫ 1

0
ln(x) ln(1 − x) dx =

+∞∑
n=1

1
n(n+ 1)2 .

3. Déterminer trois réels a, b et c tels que

1
x(x+ 1)2 = a

x
+ b

x+ 1 + c

(x+ 1)2

et donner la valeur de J .

On admettra que ζ(2) =
π2

6 .

698 Centrale PSI 2017

Pour tout x ∈ R∗, on pose : f(x) =
∫ x

−x

1√
(1 + t2)(x2 − t2)

dt

1. Démontrer que l’intégrale f(x) converge pour tout x ∈ R∗.
2. Étudier la parité de f .
3. La fonction f admet-elle une limite en 0 ?
4. La fonction f admet-elle une limite en +∞ ? Si oui, la calculer.
5. Développer f en série entière en précisant le domaine de validité de ce dévelop-

pement.
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699 CCINP 2024

1. La fonction x 7→
e−x

√
x2 − 4

est-elle intégrable sur ]2 ; +∞[ ?

2. Soit a un réel strictement positif.

La fonction x 7→
ln(x)√
1 + x2a

est-elle intégrable sur ]0 ; +∞[ ?

700 TPE/EIVP 2012

Calculer lim
n→+∞

∫ +∞

0

xn

1 + xn+2 dx.

701 Mines-Ponts 2012

Déterminer les polynômes P ∈ Rn[X] tels que :

∀n ∈ N,
∫ n+1

n
P (t) dt = n2 + 1.

702 Mines-Ponts 2012

Calculer
∫ 1

0

ln(1 + x+ · · · + xp)
x

dx.

703 X PC

Soit f ∈ C(R+,R+) intégrable sur R+.

Montrer que lim
x→+∞

1
x

∫ x

0
tf(t) dt = 0.

704 CCP 2017

Déterminer la nature des intégrales :

A =
∫ +∞

1

esin(t)

t
dt et B =

∫ +∞

0
sin(t) sin

(1
t

)
dt.

705 CCP PSI 2021

1. Prouver que, pour tout n ∈ N∗, l’intégrale

Jn =
∫ +∞

0

3
√
n sin

(
t

3√n

)
1 + t3

dt

est convergente.

2. Montrer que la suite des réels Jn converge vers le réel K =
∫ +∞

0

t

1 + t3
dt.

3. À l’aide d’un changement de variable, prouver que K =
∫ +∞

0

1
1 + t3

dt et en
déduire la valeur du réel K.
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706 CCP PSI

Calculer, si existence,
∫ +∞

0
xe−⌊x⌋ dx.

707 Centrale PSI

On considère la fonction F : x 7→
∫ +∞

0
e−xt · sinh(t)

t
dt.

1. Déterminer l’ensemble de définition de F .
2. Déterminer la limite de F en +∞.

708 CCP PSI

Pour tout n ∈ N, on pose Un =
∫ 1

0

xn

1 + xn
dx.

Montrer que Un ∼
n→+∞

ln(2)
n

.

709 CCP

On considère la fonction f : x 7→
∫ +∞

0

1 − e−xt

t
√
t

dt.

1. Étudier le domaine de définition Df de f .
2. Étudier la dérivabilité de f sur Df . Expliciter f ′(x).
3. En déduire un équivalent de f en +∞.

710 ENSAM PSI

Soit deux fonctions f ∈ C([0 ; 1],R) et g continue et intégrable sur R+. Montrer que :

lim
n→+∞

n
∫ 1

0
f(t)g(nt) dt = f(0)

∫ +∞

0
g(t) dt.

711 TPE/EIVP PSI

Après avoir justifié l’existence de l’intégrale, montrer que :
∫ +∞

0
e−x cos(

√
x) dx =

+∞∑
n=0

(−1)n n!
(2n)! .

712 X FUF 2024

Soit n ∈ N∗. On pose :

In =
∫ 1

0

x2n

1 + xn
dx et Jn =

∫ 1

0

x2n−1

1 + xn
dx.

1. Calculer lim
n→+∞

In.

2. Montrer que, pour tout n ⩾ 1, |In − Jn| ⩽
1

2n2.

3. Calculer Jn.
4. En déduire un équivalent simple de In.
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713 X FUF 2024

Soit f ∈ C1(R+,R∗
+) telle que :

f ′(x)
f(x) ∼

+∞

2
x
.

Montrer que
∫ x

0
f(t) dt ∼

+∞

xf(x)
3 .

714 Mines-Télécom 2022

On pose, pour tout x ∈ R∗
+, F (x) =

∫ +∞

0

e−tx

1 + t2
dt.

1. Montrer l’existence de F .
2. Montrer que F est classe C2 sur R∗

+.

3. Montrer que F est solution de y′′ + y =
1
x

(E).

4. Montrer que F est la seule solution de (E) de limite nulle en +∞.

715 CCINP MP 2025

On considère l’intégrale suivante :

I =
∫ π

0

sin(t)
t

dt.

1. Montrer que I est bien définie.
2. Estimer I à 10−2 près. (On pourra développer I sous forme d’une série entière.)

716 CCINP PSI 2024

1. Soit f(x) =
∫ +∞

0
txe−t dt.

(a) Vérifier que f est bien définie sur [0 ; +∞[.
(b) Montrer que f est continue sur [0 ; +∞[.
(c) Montrer que, pour tout x ⩾ 1, f(x) = xf(x− 1).

2. Soit Vn =
∫ n

n−1
ln(f(u)) du et ϕ(x) =

∫ x

x−1
ln(f(u)) du.

(a) Montrer que ϕ est dérivable et calculer ϕ′.
(b) Montrer que, pour tout x ⩾ 1, ϕ′(x) = ln(x).
(c) En déduire la limite de ϕ en +∞.

(d) En déduire la nature de la série
∑ (−1)n

Vn

.

717 Mines-Ponts PC 2024

Montrer la convergence des deux intégrales suivantes et les calculer :

I =
∫ +∞

0

x

sinh(x) dx et J =
∫ +∞

0

x

cosh(x) dx.
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718 Mines-Télécom MP 2024

Étudier la convergence de
∫ +∞

0
x3 sin(x8) dx.

719 Mines-Ponts MP 2024

Étudier la convergence de ∫ +∞

0

sin(x)√
x− sin(x) dx.

720 CCINP PC 2024

Soit f une fonction de classe C1 sur [1 ; +∞[ telle que
∫ +∞

1
|f ′(t)| dt converge.

1. Soit a ⩾ 1. À l’aide du changement de variable t = ex, calculer
∫ a

1

ln(t)
t

dt.

2. Soit n ∈ N∗. Montrer que :∫ n+1

n
f(t) dt = f(n) +

∫ n+1

n
(n+ 1 − t)f ′(t) dt.

En déduire que : ∣∣∣∣∫ n+1

n
f(t) dt− f(n)

∣∣∣∣ ⩽ ∫ n+1

n
|f ′(t)| dt.

3. Si n ∈ N∗, on pose vn =
∫ n+1

n
f(t) dt− f(n).

Étudier la nature de la série
∑

|vn|.

En déduire que
∑
n⩾1

f(n) converge si et seulement si
(∫ n

1
f(t) dt

)
n⩾1

converge.

4. (a) Montrer que
∫ +∞

1

cos(t)
t

dt converge.

(b) En utilisant les mêmes procédés qu’auparavant, prouver que
∑
n⩾1

cos(
√
n)

n
converge.

5. Montrer qu’il existe ℓ ∈ R tel que :
n∑

k=1

ln(k)
k

= 1
2 ln2(n) + ℓ+ o(1).

721 CCINP MP 2022

Pour tout t > 0, on définit f(t) =
ln(t)

(1 + t)2.

1. Montrer que f est intégrable sur ]0 ; 1], puis sur [1 ; +∞[.

2. Calculer
∫ 1

0
f(t) dt et

∫ +∞

1
f(t) dt.
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722 CCINP MP 2022

1. Montrer que, pour tout u ∈ R, |arctan(u)| ⩽ |u|.

2. On pose F (x) =
∫ +∞

0

arctan(xt)
t(1 + t2) dt.

(a) Quel est le domaine de définition de F ?
(b) Quel est le domaine de continuité de F ?
(c) Quel est le domaine de dérivabilité de F ?
(d) Déterminer F ′.
(e) En déduire F .

723 CCINP PC 2023

Trouver une primitive de

f : ]0 ; 1[ −→ R

x 7−→
1
x2 ln(1 − x2)

724 CCINP MP 2021

On pose, pour x dans R∗
+, f(x) =

∫ 2x

x

1√
t3 + t

dt.

1. Montrer que f est de classe C1.
2. Donner le tableau de variations de f .
3. Calculer la limite de f en 0+.
4. Calculer la limite de f en +∞.
5. Tracer la courbe représentative de f .

725 TPE/EIVP MP 2017

Soit f de classe C2 sur R+ telle qu’il existe a > 0 tel que, pour tout x ⩾ 0, f ′′(x) ⩾ a.
Montrer que

g : R+ −→ R

x 7−→
1

1 + |f(x)|
est intégrable sur R+.

726 X MP 2018

Montrer que, pour tout a > 2,∫ π
2

0
cos(ax) (cos(x))a−2 dx = 0.

727 TPE/EIVP MP 2016

Étudier l’existence de ∫ +∞

2
π

ln
(

cos
(1
x

))
dx.
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728 Mines-Ponts PC 2024

Soit f ∈ C1(R+,R) telle que :∫ +∞

0
(f ′(t))2 dt < +∞ et

∫ +∞

0
t2f 2(t) dt < +∞.

Montrer que ∫ +∞

0
f 2(t) dt < +∞

et que

∫ +∞

0
f 2(t) dt ⩽ 2

√∫ +∞

0
(f ′(t))2 dt

√∫ +∞

0
t2f 2(t) dt . (Inégalité de Heisenberg)

729 CCINP MP 2024

On définit une suite (un)n⩾2 de fonctions en posant :

∀n ⩾ 2, ∀t ∈ ]0 ; 1], un(t) = tn−1 ln(t)
n

.

1. Calculer ∥un∥∞.

2. Montrer que la fonction f : t 7→
ln(t) · ln(1 − t)

t
est intégrable sur ]0 ; 1[.

3. En déduire que
∫ 1

0
f(t) dt =

+∞∑
k=1

1
k3 .

730 CCINP PC 2022

Soit I =
∫ +∞

0
ln
(

1 + 1
t2

)
dt.

Montrer la convergence de I et calculer I.

731 Mines-Ponts MP 2024

Soit r ∈ ] − 1 ; 1[. Montrer l’existence de f ∈ C1(R,R) telle que :

∀n ∈ N, rn =
∫ 2π

0
f(t) cos(nt) dt.

732 Mines-Ponts MPI 2024

Soit f : R+ → R une fonction de classe C1 telle que (f ′)2 soit intégrable.

Montrer que t 7→
f 2(t)
t2

est intégrable sur [1 ; +∞[.

733 Mines-Ponts MP 2017

Montrer que
∫ 1

0
xx dx =

+∞∑
n=1

(−1)n−1

nn
.
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734 CCINP PSI 2023

Soit I =
∫ +∞

0

sin(t)
sinh(t) dt.

1. Montrer que I converge.
2. Soit t ∈ ]0 ; +∞[. Vérifier que :

sin(t)
sinh(t) = 2e−t sin(t)

+∞∑
n=0

e−2nt.

3. Montrer que :

I =
+∞∑
n=0

2
(2n+ 1)2 + 1 .

4. En déduire que :
π

4 < I < 1 + π

4 .

735 CCINP MP 2024

1. Soit (a; b) ∈ R∗
+

2. Calculer
∫ 1
au2 + b

du.

2. Soit t tel que cos( t
2) ne s’annule pas. On pose u = tan( t

2). Déterminer cos(t) en
fonction de u.

3. On définit :
f : ]1 ; +∞[ −→ R

x 7−→
∫ π

0
ln(x+ cos(t)) dt

Montrer que f est de classe C1 sur ]1 ; +∞[, puis montrer que :

∀x ∈ ]1 ; +∞[, f ′(x) = π√
x2 − 1

.

736 Mines-Ponts MP 2019

Soit λ > 0. On pose Iλ =
∫ π

0

1
λ2 + cos2(θ) dθ.

1. Calculer cette intégrale.

2. Pour tout n ∈ N, soit un(λ) =
∫ π

0

eθ

λ2 + cos2(nθ) dθ.

Prouver que la suite (un(λ))n∈N converge et calculer sa limite.

737 Mines-Télécom PC 2022

1. Montrer l’existence de l’intégrale
∫ 1

0
x

√
x dx. Sa valeur est notée I.

2. Montrer l’égalité :

I =
+∞∑
n=0

(−1)n(
n
2 + 1

)n+1 .
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738 Mines-Télécom MP 2023

Montrer que ∫ b

a

1
xn + (1 − x)n

dx ∼
n→+∞

π

4
2n

n
.

Indication : on pourra effectuer le changement de variable x = 1
2

(
1 + t

n

)
.

739 Centrale-Supélec PC 2017

Montrer que
I(x) =

∫ π
2

0
ln(cos2(t) + x2 sin2(t)) dt

est définie pour tout x ∈ R∗
+. Calculer cette intégrale.

740 Mines-Télécom MP 2022

Étudier l’existence et la valeur de :

I =
∫ +∞

0

+∞∑
n=1

(−1)n

1 + n2t2
dt.

741 Mines-Ponts MP 2016

1. Étudier la convergence de
∫ π

4

0

ln(cos(t) − sin(t))
1 + t2

dt.

2. Soit F (x) =
∫ x

0

ln(cos(t) − sin(t))
1 + t2

dt.

(a) Donner le domaine de définition de F .
(b) Étudier la continuité de cette fonction.

742 Mines-Télécom MP 2023

Soit F (x) =
∫ +∞

0
ln(t)e−xt dt.

1. Déterminer le domaine de définition de F .
2. Montrer que F est de classe C1 sur R∗

+.
3. Déterminer une équation différentielle dont F est solution sur R∗

+, puis résoudre
cette équation différentielle.

743 CCINP PC 2022

Soit
I =

∫ π
2

0

cos(x)
(sin(x) + cos(x))2 dx et

∫ π
2

0

sin(x)
(sin(x) + cos(x))2 dx.

1. Montrer que I et J existent.
2. Montrer que I = J .
3. Calculer I et J .
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744 ENS MP 2019

Soit f :
[
−1

2 ; 3
2

]
→ R une fonction continue. Montrer que :

∫ 3
2

− 1
2

xf(3x2 − 2x3) dx = 2
∫ 1

0
xf(3x2 − 2x3) dx.

745 TPE/EIVP PC 2018

Soit
I =

∫ +∞

0

1
1 + t4

dt et J =
∫ +∞

0

t2

1 + t4
dt.

1. En utilisant le changement de variable u = 1
t
, montrer que I = J .

2. Calculer I.
Indication : on remarquera que I = I+J

2 , et on utilisera le changement de variable
x = t− 1

t
.

746 Mines-Ponts PSI 2017

Justifier la convergence et calculer :

I =
∫ π

2

0

√
tan(t) dt.

747 CCINP PSI 2022

Soit F (x) = −
∫ x

0

ln(1 − t)
t

dt.

1. Déterminer le domaine de définition de F .
2. Montrer que :

∀x ∈ [−1 ; 1], F (x) =
+∞∑
n=1

xn

n2 .

3. Montrer la relation :

∀x ∈ ]0 ; 1[, F (x) + F (1 − x) = π2

6 − ln(x) ln(1 − x).

748 Mines-Ponts MP 2016

Soit P un polynôme réel de degré supérieur ou égal à 2.

1. Déterminer la nature de I =
∫ +∞

0
cos(P (x)) dx.

2. Déterminer la nature de J =
∫ +∞

0

∣∣∣ cos(P (x))
∣∣∣ dx.

3. Déterminer le signe de I pour P = X2.
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749 Mines-Télécom MP 2023

Justifier la convergence de l’intégrale∫ +∞

0

(
1 − t arctan

(1
t

))
dt,

puis calculer sa valeur.

750 CCINP PSI 2024

Soit b > 0. Pour x > 0, on pose :

I(x) =
∫ +∞

0

e− x
t

√
t

e−bt dt.

1. La fonction I est-elle bien définie ? continue ?
2. Montrer que I est de classe C1 sur R∗

+.
3. Montrer que pour x > 0 :

I(x) = 2
∫ +∞

0
e− x

u2 e−bu2 du, I ′(x) =
∫ +∞

0
−2e− x

u2 e−bu2

u2 du.

4. Montrer, à l’aide d’un changement de variable judicieux, que :

∀x > 0, I ′(x) = −
√
b

x
I(x).

5. En déduire l’expression de I.

751 CCINP MP 2024

Soit k > 0 et
f : x ∈ R 7−→

∫ 1

0
tk sin(xt) dt.

1. Montrer que f est définie et continue sur R.
2. Montrer que f est dérivable sur R, puis prouver que f vérifie la relation :

∀x ∈ R, xf ′(x) + (k + 1)f(x) = sin(x).

3. Déterminer le développement en série entière de y : R → R telle que, pour tout
x ∈ R, xy′(x) + (k + 1)y(x) = sin(x). Donner ensuite le rayon de convergence
du développement en série entière d’une telle fonction y.

752 Mines-Ponts MP 2024

Donner les deux premiers termes du développement asymptotique de :

In =
∫ +∞

0
e−nx ln(n+ x) dx.
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753 CCINP PC 2022

Déterminer la nature de l’intégrale ∫ +∞

1

ln(x)
xn

dx

selon la valeur de l’entier n et calculer cette intégrale quand elle existe.

754 CCINP MP 2023

On pose :

∀x ∈ [0 ; +∞[, F (x) =
∫ 1

0

e−x2(1+t2)

1 + t2
dt et G(u) =

∫ x

0
e−u2 du.

1. Montrer que F est de classe C1 sur [0 ; +∞[ et exprimer F ′(x).

2. Montrer que G2(x) = −π

4 − F (x).

3. En déduire la valeur de
∫ +∞

0
e−u2 du.

755 Mines 2024

Montrer que : ∫ π
4

0

√
sin(2x) dx <

√
2 − π

4 .

756 CCP 2024

Soit a ∈ ]0 ; 1[.

1. Montrer que l’intégrale I(a) =
∫ a

0

x− ln(1 − x)
x2 dx converge.

2. Montrer que I(a) = −
+∞∑
n=1

an

n(n+ 1).

3. En déduire la valeur de
∫ 1

0

x− ln(1 − x)
x2 dx.

757 Mines 2022

Pour x ∈ R, on pose f(x) =
∫ +∞

0

x sin(x+ t)
1 + (xt)3 dt.

1. Montrer que f possède une limite en +∞.
2. Donner un équivalent de f(x) lorsque x → +∞.

758 Mines 2023

Soit f ∈ C(R,R+) telle que :

∀x ∈ R, f(x) = 2
∫ x

0

√
f(t) dt.

1. Montrer que f est croissante sur R et nulle sur R−.
2. Montrer qu’il existe c ∈ R tel que, pour tout x ∈ [c ; +∞[, f(x) = (x− c)2.
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759 Mines 2022

Pour x > 0, on pose s(x) =
∫ +∞

0

sin(t)
ext − 1 dt.

1. Développer s en série de fractions rationnelles.
2. En déduire un équivalent de s(x) lorsque x → 0+.

760 CCP 2023

Soit I =
∫ +∞

0

t sin(t)
t2 + 1 dt.

1. Justifier l’existence de I.

2. Pour x ∈ R, on pose J(x) =
∫ x

0

t|sin(t)|
t2 + 1 dt. Montrer que :

J(nπ) =
n−1∑
k=0

∫ π

0

(u+ kπ) sin(u)
(u+ kπ)2 + 1 du.

3. L’intégrale I est-elle absolument convergente ?

761 Centrale 2023

1. Donner une condition nécessaire et suffisante sur α et β pour que les intégrales
suivantes convergent : ∫ 1

0

1
xα

dx et
∫ +∞

1

1
xβ

dx.

2. (a) Donner le domaine de définition (réel) D de la fonction gamma Γ définie
par :

Γ(x) =
∫ +∞

0
tx−1e−t dt.

Montrer que pour tout x ∈ D, Γ(x) > 0.
(b) Montrer que Γ est l’unique fonction f : D → R vérifiant :

• f(1) = 1 ;
• f(x+ 1) = xf(x) ;
• ln ◦f est convexe.

762 Mines-Télécom MP 2022

Pour tout n ∈ N, on pose :
In =

∫ +∞

0

e−ttn√
t

dt.

1. Montrer que In est bien définie.
2. Calculer In.

763 Mines-Ponts MP 2021

Donner le domaine de définition de f : x 7→
∫ +∞

0
sin(tx) dt.
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764 Mines-Télécom MP 2023

soit
I =

∫ +∞

0

tanh(3x) − tanh(2x)
x

dx

et
F (t) =

∫ +∞

0

tanh(x) − tanh(tx)
x

dx.

1. Montrer que I est bien définie.
2. Montrer que F est de classe C1 sur [2 ; 3].

765 CCINP MP 2022

Soit Γ(x) =
∫ +∞

0
tx−1e−t dt.

1. Montrer que Γ est définie sur ]0 ; +∞[.
2. Montrer que Γ est de classe C1 sur ]0 ; +∞[ et donner Γ′.
3. Montrer que :

∀x > 1, ∀λ ∈ ] − 1 ; 1[,
∫ +∞

0

tx−1e−t

1 − λe−t
dt =

+∞∑
n=0

λnΓ(x)
(n+ 1)x

.

766 Centrale-Supélec PC 2017

Montrer que
I(x) =

∫ π
2

0
ln(cos2(t) + x2 sin2(t)) dt

est définie pour tout x ∈ R∗
+. Calculer cette intégrale.

767 Mines-Télécom MP 2018

Justifier l’existence de : ∫ 1

−1

√
1 + t

1 − t
dt.

Calculer cette intégrale.

768 Mines-Ponts MP 2021

Soit f(x) = ex2
∫ +∞

x
e−t2 dt. Trouver un équivalent de f en +∞.

769 ENS MP 2019

Soit f ∈ C(R+,R) de carré intégrable. Déterminer lim
x→+∞

e−x
∫ x

0
f(t)et dt.

770 Mines-Télécom MP 2018

Soit f(x) =
∫ 1

0
txt dt.

1. Quel est l’ensemble de définition de f ?
2. Déterminer le développement en série entière de f en 0.
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771 Mines-Télécom MP 2023

On considère : f : t 7→
∫ 1

0

xt

√
1 − x2

dx.

1. Donner Df .
2. Montrer que f est continue sur [0 ; +∞[.
3. Trouver une relation entre f(t) et f(t− 2), en supposant que t et t− 2 sont tous

deux dans Df .

772 Mines-Télécom PSI 2023

Soit F la fonction définie par :

∀x ∈ R∗
+, F (x) =

∫ +∞

0

ln(t)
t2 + x2 dt.

Montrer que F est de classe C1.

773 Mines-Ponts MP 2022

On note f(x; y) =
∫ 1

0
ln(tx + ty) dt.

1. Donner l’ensemble de définition de f .
2. La fonction f admet-elle des extrema ?

774 Mines-Télécom MP 2025

On définit :

∀n ∈ N∗, ∀x ∈ R∗
+, fn(x) =

ln
(
1 + x

n

)
x(1 + x2) .

1. Montrer que fn est intégrable sur ]0 ; +∞[.

2. Calculer lim
n→+∞

∫ +∞

0
fn(x) dx.

3. Calculer lim
n→+∞

n
∫ +∞

0
fn(x) dx.

775 Mines-Télécom PSI 2018

Montrer que pour tout a > 0 :
∫ 1

0

1
1 + ta

dt =
+∞∑
k=0

(−1)k

ka+ 1 .

776 CCINP MP 2013

Calculer :
I(a; b) =

∫ π

0
ln
(
a− cos(x)
b− cos(x)

)
dx,

où a, b ∈ ]1 ; +∞[.

161



777 Mines-Ponts PC 2023

Soit n ∈ N et
Jn : x 7−→

∫ π

0
cos(nt− x sin(t)) dt.

1. Donner la parité de Jn en fonction de n.
2. Montrer que Jn est de classe C∞ sur R.
3. Montrer que :

∀x ∈ R, Jn(x) =
+∞∑
p=0

(−1)pπ

p!(n+ p)!

(
x

2

)2p+n

.

4. Déterminer pn ∈ R2[X] tel que Jn vérifie l’équation différentielle suivante :

x2y′′ + xy′ + pn(x)y = 0.

778 Mines-Télécom MP 2023

1. Montrer que, pour tout x ∈ R, ex ⩾ 1 + x.
En déduite que :

∀t ∈ R, 1 − t2 ⩽ e−t2
⩽

1
1 + t2

.

Soit n ∈ N. On pose :

I =
∫ +∞

0
e−t2 dt, In =

∫ 1

0
(1 − t2)n dt, Jn =

∫ +∞

0

1
(1 + t2)n dt.

2. Justifier l’existence de ces intégrales et montrer que :

∀n ∈ N, In ⩽
I√
n
⩽ Jn.

Pour tout n ∈ N, on pose :

Wn =
∫ π

2

0
cosn(t) dt.

3. Soit n ∈ N∗. Montrer que In = W2n+1 et Jn = W2n−2.
4. Déterminer une relation de récurrence entre Wn+2 et Wn.
5. En déduire que la suite ((n+ 1)Wn+1Wn)n∈N est constante.
6. Montrer que Wn+1 ∼ Wn et en déduire la valeur de I.

779 Mines-Ponts MP 2016

Calculer :
lim

n→+∞

∫ n

0
x− 1

n

(
1 − x

n

)n

dx.
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780 ENSEA/ENSIIE MP 2022

Soit F la fonction définie par :

F (x) =
∫ +∞

0
cos(xt2)e−t dt.

1. Montrer que F est définie sur R.
2. Montrer que F ∈ C∞(R,R).
3. Pour tout k ∈ N, calculer F (k)(0) puis donner, si possible, le développement en

série entière de F .

781 CCINP MP 2021

Soit f(x) =
∫ +∞

0

e−t

√
t
eitx dt.

1. Montrer que f est de classe C1 sur R.
2. Déterminer une équation différentielle vérifiée par f .
3. Calculer f à l’aide de fonctions usuelles.

On admet que
∫ +∞

0
e−u2 du =

√
π

2 .

782 CCINP PSI 2021

Soit f : x ∈ R 7→
∫ +∞

0

te−tx

et − 1 dt.

1. Donner le domaine de définition de f .
2. Déterminer la limite de f en +∞.
3. Pour tout x > 0, calculer f(x− 1) − f(x).
4. En déduire une expression de f sous la forme d’une série de fonctions.
5. Proposer une autre méthode pour décomposer f(x) à l’aide d’une série.

Obtient-on la même série ?

783 Mines-Ponts MP 2014

Pour tout n ∈ N et pour tout x ∈ R+, on considère l’intégrale :

Jn(x) = 1
n!

∫ x

−x
(x2 − t2)net dt.

1. Montrer que Jn peut s’écrire :

Jn(x) = An(x)ex +Bn(x)e−x,

où An et Bn sont des polynômes de degré au plus n.
2. Montrer que er /∈ Q si r ∈ Q∗.
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784 Mines-Ponts MP 2018

Soit f(x) =
∫ π

2

0
ln(1 + x cos2(θ)) dθ.

1. Déterminer l’ensemble de définition de f .
2. Montrer que f est dérivable sur ] − 1 ; +∞[.
3. Déterminer f(x).

785 Mines-Ponts MP 2021

1. Pour t réel, linéariser sin5(t).
2. Montrer la convergence et calculer :

∫ +∞

0

sin5(t)
t

dt.

786 Mines-Télécom 2019

On considère l’intégrale : ∫ 1

0

ln(1 − t2)
t2

dt.

Justifier son existence et la calculer.
Indication : on pourra effectuer une intégration par parties.

787 Mines-Ponts MP 2018

On considère l’intégrale : ∫ +∞

0
|sin(t)|e−xt dt.

1. Étudier l’existence de cette intégrale.
2. Si existence il y a, calculer cette intégrale.

788 X MP 2018

1. Calculer
∫ +∞

0
xne−x dx.

2. Montrer que
∫ n

0
xne−x dx < n!

2 .

3. Montrer que
∫ n+1

0
xne−x dx > n!

2 .

789 Mines-Télécom MP 2023

Montrer que : ∫ +∞

0

x

e2x − e−x
=

+∞∑
n=0

1
(3n+ 2)2 .

790 Mines-Télécom PC 2022

Pour tout n ∈ N, soit In =
∫ 1

0

tn+1 ln(t)
1 − t2

dt.

1. Exprimer In comme somme d’une série.
2. Trouver un équivalent de In.
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791 CCINP PSI 2021

Soit φ : R → R continue. On suppose qu’il existe C ∈ R tel que :

∀x ∈ R, |φ(x)| ⩽ C

1 + x2 .

On pose :

∀x ∈ R, f(x) = φ(x) +
+∞∑
n=1

(φ(x+ n) + φ(x− n)).

1. Montrer que f est définie et continue sur R.
2. Montrer que f est 1-périodique.
3. Soit g une fonction 1-périodique continue de R dans R. Montrer que φg est

intégrable sur R et que :∫ +∞

−∞
φ(x)g(x) dx =

∫ 1

0
f(x)g(x) dx.

792 ENS PC 2025

On pose :
∀n ∈ N, ∀t ∈ R, An(t) =

∫ 1

0
sin2(2xt)xn−2 dx.

Donner un équivalent de An(t) quand t → +∞.

793 CCINP PC 2022

1. Montrer que, pour tout x ∈ ]0 ; +∞[ :

arctan(x) + arctan
(1
x

)
= π

2 .

2. Soit f : x 7→
∫ π

2

0
arctan(x tan(θ)) dθ.

(a) Montrer que f est définie et impaire sur R.
(b) Montrer que f est continue sur [0 ; +∞[.
(c) Montrer que f est croissante sur R+.

3. (a) Montrer que f est dérivable sur R+ et donner la dérivée de f .
(b) En posant u = x tan(θ), montrer que :

f(x)
x

⩾
π

4

∫ 1

0

u

u2 + x
du.

4. Montrer que
f(x) + f

(1
x

)
= π2

4
et en déduire lim

x→+∞
f(x).
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794 CCINP PSI 2017

On considère, pour n ∈ N∗, l’application :

fn : ]0 ; 1] −→ R

x 7−→

(
1 + x

n

)n
− 1

x

1. Montrer l’existence de In =
∫ 1

0
fn(x) dx.

2. Montrer que lim
n→+∞

In =
+∞∑
k=1

1
k · k! .

795 CCINP PC 2018

Soit f(x) =
∫ 4x

x

sin(t)
1 + t

dt.

1. Donner l’ensemble de définition de f .
2. Montrer que f y est de classe C1 et préciser un équivalent en 0.

796 Mines-Ponts MP 2015

Soit f(x) =
∫ +∞

0
e−t sinh(x

√
t) dt.

1. Donner l’ensemble de définition de f .
2. Donner un développement en série entière de f .
3. Exprimer f à l’aide de fonctions usuelles.

797 Mines-Ponts

1. Soit f : [a ; b] → R une fonction deux fois dérivable, dont la dérivée seconde
est intégrable, et h : [a ; b] → R une fonction deux fois dérivable de dérivée
intégrable. On pose, pour x ∈ [a ; b], H(x) =

∫ x
a h(t) dt. Montrer que :∫ b

a
f(t)h′(t) dt− [f(t)h(t)]ba =

∫ b

a
f ′′(t)H(t) dt− [f ′(t)H(t)]ba.

2. On suppose que, pour tout x ∈ [a ; b], |f ′′(x)| ⩽ M . Montrer l’approximation
par la méthode des trapèzes :∣∣∣∣∣

∫ b

a
f(x) dx− f(a) + f(b)

2 (b− a)
∣∣∣∣∣ ⩽M

(b− a)3

12 .

3. Que devient l’égalité de la question 1 s’il existe c ∈ ]a ; b[ tel que lim
x→c−

h(x) et
lim

x→c+
h(x) existent, mais sont différentes ?

4. On suppose de nouveau que, pour tout x ∈ ]a ; b[, |f ′′(x)| ⩽ M . Montrer
l’approximation par la méthode du point milieu :∣∣∣∣∣

∫ b

a
f(x) dx− f

(
a+ b

2

)
(b− a)

∣∣∣∣∣ ⩽M
(b− a)3

24 .
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798 Mines-Ponts

Soit f ∈ C1(R+,R∗
+). On suppose qu’il existe a < 0 tel que lim

x→+∞

f ′(x)
f(x) = a.

Montrer que les fonctions f et f ′ sont intégrables.

799 Mines-Télécom MP 2025

Soit θ ∈ ]0 ;π[. Calculer :

I(θ) =
∫ 2π

0

1
1 + cos(x) cos(θ) dx.

800 Mines

Soit a ∈ R et f : [a ; +∞[ → R que l’on suppose intégrable sur [a ; +∞[.
1. Montrer que si f admet une limite en +∞, alors celle-ci est nécessairement nulle.
2. Montrer que si la fonction f est uniformément continue sur [a ; +∞[, alors f

admet nécessairement une limite nulle en +∞.
3. Le résultat de la question précédente est-il vrai si l’on suppose que f est sim-

plement continue ?

801 CCINP MP 2025

1. Rappeler la formule de Stirling.

2. Pour tout n ∈ N, on pose un =
∫ π

2

0
cos2n+1 t dt. Calculer u0.

3. Trouver une relation de récurrence vérifiée par (un)n∈N, puis exprimer un à l’aide
de factorielles.

4. Sur [0 ; +∞[, on pose fn : x 7→
(

1 − x2

n

)n

si 0 ⩽ x ⩽
√
n et 0 sinon. Montrer

que :
lim

n→+∞

∫ +∞

0
fn(x) dx =

∫ +∞

0
e−x2 dx.

5. Montrer que
∫ √

n

0
fn(x) dx =

√
nun.

En déduire la valeur de
∫ +∞

0
e−x2 dx.

802 Mines-Télécom MP 2025

Soit f : x 7→ ln(1 + tan(x)).
1. Donner le domaine de définition de f et montrer que le graphe de f admet un

point de symétrie.
2. Justifier l’existence et calculer : ∫ π

4

− π
4

f(x) dx.
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803 Mines-Télécom MP 2018

1. Pour tout n ∈ N, calculer :

In =
∫ π

2

0
sin2n+1(t) dt.

2. Calculer la somme de la série de terme général :

an = 22n(n− 1)!n!
(2n+ 1)! .

804 Mines-Ponts PSI 2023

Soit f : x ∈ R 7→
∫ +∞

0
e−t2 cos(2xt) dt.

1. Montrer que f est définie et de classe C1 sur R.
2. Trouver une relation entre f et f ′.

3. Sachant que f(0) =
√
π

2 , déterminer f et donner sa limite en +∞.

805 Mines-Ponts MP 2023

Soit f ∈ C(R+,R+) décroissante et intégrable sur son intervalle de définition.
1. Montrer que lim

x→+∞
xf(x) = 0.

2. La réciproque est-elle vraie ?

806 X ESPCI 2017

1. Soit x ∈ R. Étudier la convergence de

I(x) =
∫ +∞

0
cos

(
t3

3 + xt

)
dt.

2. Étudier la dérivabilité de I.

807 Mines-Télécom MP 2024

Donner une condition nécessaire et suffisante d’existence de∫ +∞

0
xα
(

1 − e
1√
x

)
dx

quand α ∈ R.

808 Mines-Ponts MP 2024

Soit f ∈ C([0 ; π],R) telle que :

∀n ∈ N,
∫ π

0
cos(nt)f(t) dt = 0.

Que dire de f ?
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809 ENS MP 2024

Soit P ∈ C[X] avec P (0) ̸= 0. Montrer que :

∀r > 0, 1
2π

∫ 2π

0
ln|P (reiθ)| dθ = ln|P (0)| +

∑
α∈Ir

multP (α) · ln
(
r

|α|

)

où Ir = {α ∈ C | P (α) = 0 et |α| < r} et multP (α) est la multiplicité de α en tant que
racine de P .

810 Mines-Ponts MP 2019

Montrer que x 7→ exp(x2) n’admet pas de primitive de la forme x 7→ F (x) exp(x2), où
F est une fraction rationnelle.

811 CCINP MP 2018

Soit ℓ ∈ R et f : R → R une fonction continue, intégrable sur [0 ; +∞[ et ayant pour
limite ℓ en −∞. Soit a et b deux nombres réels tels que a < b. Pour tout u ∈ R, on
pose :

I(u) =
∫ +∞

u
(f(a+ x) − f(b+ x)) dx.

1. Montrer que, pour tout u ∈ R, I(u) est bien définie et vaut
∫ b+u

a+u f(t) dt.
2. On prend ici f :

x 7−→


ℓ si x < 1

2ℓ
1 + x2 si x ⩾ 1

Calculer lim
u→−∞

I(u).

3. On revient au cas général. Calculer lim
u→−∞

I(u) si l’on suppose que ℓ = 0.

4. Déduire lim
u→−∞

I(u) dans le cas où ℓ est quelconque.

5. Soit a′ et b′ deux nombres réels tels que 0 < a′ < b′. Trouver α et β tels que :

X

(1 + a′X)(1 + b′X) = α

1 + a′X
+ β

1 + b′X
,

puis simplifier l’expression

ex

(1 + a′ex)(1 + b′ex) .

6. Déduire des questions précédentes :

lim
u→−∞

∫ +∞

u

ex

(1 + a′ex)(1 + b′ex) dx.

812 Mines-Ponts MP 2021

Soit (m;n) ∈ N2. Déterminer lim
x→0+

∫ 2x

x

sinm(t)
tn

dt.
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813 Mines-Ponts PSI 2021

Soit f une fonction continue de R+ dans R+ et ℓ un nombre réel strictement positif.
On suppose que :

lim
x→+∞

f(x)
∫ x

0
f 2(t) dt = ℓ.

1. Si f admet une limite en +∞, que vaut-elle ?
2. Donner un exemple de fonction f vérifiant la condition de l’énoncé.
3. Calculer un équivalent de f(x) en +∞.

814 Centrale PC 2024

Soit
E =

{
u ∈ C(R+,R)

∣∣∣ ∫ +∞

0
u2(x) dx < +∞

}
.

1. Montrer que E est un espace vectoriel réel.
2. Soit f ∈ C2(R+,R) telle que f et f ′′ soient dans E. Montrer que f ′ est aussi

dans E.
3. Montrer que :

∫ +∞

0
(f ′(x))2 dx ⩽

√∫ +∞

0
(f(x))2 dx

√∫ +∞

0
(f ′′(x))2 dx

et préciser le cas d’égalité en supposant f(0) = 0.

815 Mines-Télécom MP 2019

1. Décomposer
1

(x− 1)2(x2 − 2x+ 5) en éléments simples.

2. Calculer
∫ x

0

1
(t− 1)2(t2 − 2t+ 5) dt.

816 CCINP PSI 2023

Soit In =
∫ 1

0
ln(1 + tn) dt.

1. Déterminer lim
n→+∞

In.

2. Montrer que In ∼ 1
n

∫ 1

0

ln(1 + u)
u

du.

3. On admet que
+∞∑
k=1

1
k2 = π2

6 .

Montrer que In ∼ π2

12n .

817 Mines-Ponts MPI 2023

Soit f : x 7→
∫ 1

0

1
1 − xt+ xt2

dt.

1. Déterminer l’ensemble de définition de f .
2. Déterminer un développement en série entière de f avec les coefficients explicités.
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818 CCINP MP 2023

Soit F la fonction définie par :

F (x) =
∫ +∞

0

e−xt

√
t(1 + t)

dt.

1. Montrer que F est définie sur [0 ; +∞[, de classe C1 sur ]0 ; +∞[.
2. Calculer F (0).

3. (a) Soit γ =
∫ +∞

0

e−u

√
u

du.

Montrer que F vérifie l’équation différentielle y′ − y = − γ√
x

.

(b) Montrer que F (x) = πex − γex
∫ x

0

e−u

√
u

du.

(c) En déduire la valeur de γ.

819 CCINP PSI 2025

Soit F : x 7→
∫ 1

0

ln(1 + xt)
t

dt.

1. Montrer que ] − 1 ; 1[ ⊂ DF .
2. Montrer que F est développable en série entière et exprimer ce développement.
3. Justifier la dérivabilité de F sur ]0 ; 1[.
4. Déterminer F ′ sous une forme simple.
5. Trouver F ′ à l’aide d’une autre méthode.

820 Mines-Télécom PSI 2019

Pour tout x réel, on pose :

S(x) =
∫ +∞

0
sin(xt)e−t2 dt et C(x) =

∫ +∞

0
t cos(xt)e−t2 dt.

1. Montrer que C et S sont bien définies sur R. Sont-elles continues ?
2. Montrer que S est dérivable. Exprimer S ′(x) au moyen de C(x).
3. Montrer que :

∀x ∈ R, C(x) = 1
2 − x

2S(x).

4. En déduire S(x) et C(x), exprimées au moyen d’une intégrale.

821 Centrale-Supélec MP

Soit
f(x) =

∫ x

0
e−t2 dt et g(x) =

∫ 1

0

e−x2(1+t2)

1 + t2
dt.

1. Quelles sont les propriétés de f et g ?
2. Montrer que f 2 + g est constante. Quelle est sa valeur ?

3. En déduire la valeur de
∫ +∞

0
e−x2 dx.
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822 Mines-Télécom PC 2019

Soit p ∈ N∗ et on pose pour x dans R :

Ip(x) =
∫ +∞

0
cos(xt)e−pt dt et Jp(x) =

∫ +∞

0
sin(xt)e−pt dt.

1. Montrer que Ip et Jp sont définies sur R.
2. Montrer que Ip est dérivable sur R.
3. Soit x ∈ R. Calculer lim

p→+∞
Ip(x).

4. Exprimer Jp(x) en fonction de x pour tout x ∈ R.
5. Soit a ∈ R. Pour quelles valeurs de a, la série

∑
p⩾1

Jp(ap) converge-t-elle ?

823 Mines-Télécom MP 2017

1. Énoncer soigneusement le théorème de continuité des intégrales à paramètre.
2. Démontrer que la fonction

f : x 7−→
∫ +∞

−∞
cos(xt)e−t2 dt

est continue sur R.

824 Mines-Télécom PC 2019

Soit
F (x) =

∫ +∞

0
g(xt)e−x2t dt,

où g une fonction bornée, impaire et continue.

1. Étudier la convergence de
∫ +∞

0
e−αt dt en fonction du réel α.

2. (a) Montrer que F est définie sur R.
(b) Quelle est la parité de F ?

3. (a) Énoncer le théorème de continuité d’une intégrale à paramètre.
(b) La fonction F est-elle continue sur R ?

4. On pose g = sin.
(a) Calculer F .
(b) Montrer que F est de classe C∞ sur R∗.

825 ENSEA/ENSIIE MP 2013

Montrer l’existence et calculer :∫ π
2

0
sin(2x) ln(tan(x)) dx.
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826 Mines-Ponts MP 2014

Pour tout x ∈ ]0 ;π[, soit

F (x) =
∫ x

0
ln(sin(x− t)) dt.

La fonction F est-elle intégrable sur [0 ; π] ? Si oui, calculer l’intégrale.

827 Mines-Ponts MP 2016

Déterminer lim
n→+∞

n
∫ 1

0
ln(1 + tn) dt.

828 Mines-Télécom MP 2017

1. Démontrer la convergence de l’intégrale I =
∫ π

2

0
ln(sin(t)) dt.

2. Calculer J =
∫ π

2

0
ln(cos(t)) dt et K =

∫ π

0
ln(sin(t)) dt en fonction de I.

3. Déterminer L =
∫ π

2

0
ln(sin(t) cos(t)) dt en fonction de I, J,K. En déduire les

valeurs de I, J,K, L.

829 Mines-Télécom MP 2017

Pour tout entier naturel n et tout t ∈
[
0 ; π

2

]
, posons fn(t) =

1 + tn√
1 − t2

.

Déterminer lim
n→+∞

∫ 1
2

0
fn(t) dt de deux manières :

1. Par convergence uniforme.
2. Avec le théorème de convergence dominée.

830 Mines-Ponts MP 2017

Soit f : [0 ; 1] → R continue. Montrer que :

exp
(∫ 1

0
f(t) dt

)
⩽
∫ 1

0
exp(f(t)) dt.

831 Mines-Ponts MP 2017

Calculer
∫ +∞

0

ln2(x)
1 + x2 dx à l’aide d’une somme.

832 Mines-Ponts MP 2019

Soit f une fonction continue sur [0 ; 1], à valeurs strictement positives. Pour tout a réel
positif, on pose :

I(a) =
∫ 1

0
f(t)a dt.

1. Montrer que la fonction I est dérivable et préciser la valeur de I ′(0).

2. Trouver la limite de I(a)
1
a quand a tend vers 0.
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833 Mines-Ponts PC 2019

Soit f une fonction continue sur [1 ; +∞[, à valeurs réelles, de carré intégrable. Montrer
que

1√
x

∫ x

1
f(t) dt

tend vers 0 lorsque x tend vers +∞.

834 Centrale PC 2017

Montrer que
∫ x

0
et2 dt ∼ ex2

2x quand x → +∞.

835 Mines-Ponts PC 2018

Soit f(x) =
∫ 1

0

t− 1
ln(t) t

x dt.

1. Donner le domaine de définition de f .
2. Donner la limite de f en +∞.

836 Mines-Ponts MP 2018

Soit E l’ensemble des fonctions continues de R dans R+ telles que :

∀x ∈ R, f(x) =
∫ x

0

√
f(t) dt.

1. Montrer que, si f ∈ E, alors f est croissante sur R, et nulle sur R−.
2. Montrer que, si f ∈ E et ne s’annule pas sur un intervalle I, alors il existe c tel

que :
∀x ∈ I, f(x) = (x− c)2

4 .

3. Décrire E totalement.

837 X-ENS

Soit f ∈ C2[a ; b],R). Montrer que :∣∣∣∣∣
∫ b

a
f(t) dt− b− a

2 (f(a) + f(b))
∣∣∣∣∣ ⩽ (b− a)2

12 ∥f ′′∥∞.

838 Mines-Télécom MP 2017

Pour tout n ∈ N∗, on pose :

In =
∫ π

0

cos(nx) − cos(ny)
cos(x) − cos(y) dx avec y ∈ ]0 ; π[.

Donner la valeur de In.
Indication : on pourra chercher une relation de récurrence entre In + In+2 et In+1.
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839 Centrale-Supélec MP 2021

On donne c =
∫ +∞

0
e−t ln(t) dt.

1. Montrer l’existence de c.
2. Montrer que c < 0.

3. (a) Montrer que c = lim
n→+∞

∫ n

0

(
1 − t

n

)
ln(t) dt.

(b) En déduire que la suite
(

n∑
k=1

1
k

− ln(n)
)

n∈N∗

converge.

840 Mines-ponts MP 2021

On pose :
F : (x; y) 7−→

∫ x

0
ln(x+ y cos(t)) dt.

1. Déterminer le domaine de définition DF de F .
2. Calculer quand cela est possible la valeur de F (x; x).
3. Montrer que F est de classe C1 sur l’intérieur de DF .
4. Déterminer une expression de F sans intégrales.

841 CCINP MP 2023

Soit, pour n un entier naturel non nul :

In =
∫ +∞

0

1
(1 + t4)n

dt.

1. Montrer que In est défini, puis que la suite (In)n⩾1 converge vers une limite à
déterminer.

2. Trouver une relation de récurrence entre In et In+1. En déduire une deuxième
façon de déterminer la limite de la suite (In)n⩾1.

842 CCINP MP 2023

Soit a et b deux réels strictement positifs.
1. Calculer l’intégrale suivante : ∫ b

a

1
t

3
2 + t

1
2

dt.

Indication : poser u =
√
t.

2. Justifier l’existence de Rn =
+∞∑

k=n+1

1
k

3
2 + k

1
2
.

3. Montrer les inégalités suivantes :

2 arctan
(

1√
n+ 1

)
⩽ Rn ⩽ 2 arctan

(
1√
n

)
.

4. En déduire un équivalent simple de Rn au voisinage de +∞.
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843 CCINP MP 2017

Soit n ∈ N, n ⩾ 2. On définit la fonction :

fn : x 7−→ fn(x) = 2 sinh(x)
enx − 1 .

1. Montrer que la suite (In)n⩾2 telle que :

In =
∫ +∞

0
fn(x) dx

est définie pour n ⩾ 2.
2. Démontrer que :

∀n ⩾ 2, In = 2
+∞∑
k=1

sinh(x)e−knx dx.

3. Calculer
+∞∑
k=1

1
4k2 − 1.

844 Mines-Ponts MP 2017

Soit F (x) =
∫ 1

0

ln(1 + 2t cos(x) + t2)
t

dt.

1. Montrer que F est définie et de classe C1 sur
[
0 ; π

2

]
.

2. Calculer F ′(x) pour x ∈
[
0 ; π

2

]
.

845 Mines-Ponts MP 2013

Calculer
∫ +∞

0

sin3(t)
t2

dt.

846 Mines-Ponts PC 2023

Soit f ∈ C(R,R). On suppose que f admet une limite ℓ en −∞ et que l’intégrale∫ +∞

0
f(x) dx existe. Pour tout (a; b) ∈ R2, montrer que l’intégrale

∫ +∞

−∞
(f(a+ x) − f(b+ x)) dx

existe et déterminer sa valeur.

847 Mines-Ponts MP 2017

On définit f par :
f(x) =

∫ +∞

0

sinh(xt)
t cosh(t) dt.

1. Donner le domaine de définition de f . Montrer que f est C∞.
2. Montrer que f(x) ∼ − ln(1 − x) quand x → 1−.
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848 Centrale-Supélec PSI 2013

On définit l’application suivante :

f : R∗
+ −→ R

x 7−→
∫ 1

x

0

1
x+ sin2(t) dt

1. Montrer que f est bien définie. Étudier sa monotonie.
2. Trouver lim

x→0
f(x).

3. Trouver lim
x→+∞

f(x).

4. Donner un équivalent de f en 0. (On pourra faire le changement de variable
u = tan(t).)

849 Centrale-Supélec PSI 2013

Soit E = {f ∈ C(R,C) | f(x) = f(x+ 2π)}. On pose sur E :

∥f∥ = sup{|f(u)| | u ∈ R}

et
G(f) : x 7−→

∫ +∞

0
e−tf(x+ t) dt.

1. Montrer que G est un endomorphisme.
2. (a) Montrer que G est C1.

(b) Donner une équation différentielle vérifiée par G.
3. La fonction G est-elle :

(a) injective ?
(b) surjective ?

4. Résoudre G(f) = λf , d’inconnues (f ;λ) ∈ E × C.

850 ENS

Soit
In(x) =

∫ 1

−1
(1 − x2)n cos(xt) dt.

1. Montrer que :

∀n ∈ N, ∃Pn, Qn ∈ Z2n[X], In(x) = n!
x2n+1 (Pn(x) cos(x) +Qn(x) sin(x)).

2. En déduire que
π

2 est irrationnel.

851 X MP 2017

On note Pn = dn

dXn
((X2 − 1)n).

Montrer que pour n ̸= m,
∫ 1

−1
Pn(t)Pm(t) dt = 0.
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852 CCINP PC 2019

Soit n ∈ N. Étudier l’intégrale suivante :∫ +∞

0

1
1 + t2 + tn

dt.

853 Mines-Ponts MP 2021

Soit f la fonction d’une variable réelle à valeurs dans C telle que :

f(x) =
∫ +∞

0

e−t(1+ix)
√
t

dt.

1. Montrer que f est définie sur R.
2. Trouver une équation différentielle et déterminer f .

854 Mines-Ponts MP 2021

Soit a > 0. On note :
fa : ] − a ; a[ −→ R

x 7−→
√

1 + x2
√
a2 − x2

Calculer lim
a→0+

∫ a

−a
fa(x) dx.

855 Mines-Ponts MP 2021

1. Calculer lim
x→1+

∫ 2 ln(x)

ln(x)

et

t
dt.

2. Soit
F : ]1 ; +∞[ −→ R

x 7−→
∫ 2 ln(x)

ln(x)

et

t
dt

Montrer que F est injective.

856 CCINP PSI 2021

Soit f : x 7→
∫ +∞

0

1
tx(1 + t) dt.

1. Donner le domaine de définition Df de f .
2. La fonction f est-elle continue sur Df ?
3. Montrer que si x ∈ Df , alors 1 − x ∈ Df et f(1 − x) = f(x).
4. Trouver un équivalent de f en chacune des bornes de Df .

857 Mines-Télécom MP 2018

On note I =
∫ 1

0
t3
√

t

1 − t
dt.

Étudier l’existence et la valeur de I.
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858 Mines-Ponts MP 2025

Soit α ∈ R∗
+. Soit b une fonction continue par morceaux de période 1. Pour tout ε > 0,

on pose :
Iε =

∫ +∞

−∞
b
(
x

ε

)
1[0;α](x) dx.

Montrer que :
lim

ε→0+
Iε = α

∫ 1

0
b(y) dy.

859 CCINP MP 2023

1. Soit M > 0 et u : [1 ; +∞[→ R de classe C1 telle que, pour tout x ∈ [1 ; +∞[,

|u(x)| ⩽M . Montrer que
∫ +∞

1

u′(t)
t

dt converge.

2. Montrer que
∫ +∞

1

sin(t)
t

dt et
∫ +∞

1
sin(t2) dt convergent.

3. Montrer que
∫ +∞

1
sin(t3) dt converge.

860 CCINP 2023

On note I =
∫ +∞

0

ln(t)
1 + t2

dt.

1. Étudier l’existence et la valeur de I.
2. Soit a > 0 tel que a ̸= 1. Trouver des réels α et β tels que :

1
(1 + t2)(a2 + t2) = α

1 + t2
+ β

a2 + t2
.

3. Calculer I(a) =
∫ +∞

0

ln(t)
(1 + t2)(a2 + t2) dt.

4. Rappeler le théorème de la convergence dominée.

L’utiliser pour calculer
∫ +∞

0

ln(t)
(1 + t2)2 dt.

861 Mines-Ponts MP 2022

1. Montrer la convergence de l’intégrale suivante :

I =
∫ +∞

0

(
arctan(t)

t

)2

dt.

2. À l’aide d’une intégrale à paramètres, calculer I.

862 X-ENS

Calculer
∫ π

4

0
ln(1 + tan(x)) dx.
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863 Centrale-Supélec MP 2018

Pour tout n ∈ N, on pose :

In =
∫ +∞

0

1
cosh(x)2n+2 dx.

1. Montrer que In est définie pour tout n ∈ N.
2. Montrer que :

∀n ∈ N, In+1 = 2n+ 2
2n+ 3In.

Calculer I0.

3. Calculer S =
+∞∑
n=1

n2n(
2n
n

) .

864 CCINP MP 2018

Pour (α; β) ∈ R2, on définit :

f : ]0 ; 1[ −→ R

x 7−→
|ln(x)|β

(1 − x)α

1. (a) Trouver un équivalent en 0 et en 1 de f .
(b) Déterminer les valeurs de α et β telles que f se prolonge par continuité à

l’intervalle [0 ; 1].
(c) Déterminer les valeurs de α et β telles que f soit intégrable sur ]0 ; 1[.

2. Soit I =
∫ 1

0

ln(x)√
1 − x

dx. Montrer que I existe puis calculer I.

865 Mines-Ponts MP 2019

Soit f : R → R+ de classe C1. Montrer que :∣∣∣∣∫ 1

0
f 3(x) dx− f(0)2

∫ 1

0
f(x) dx

∣∣∣∣ ⩽ ∥f ′∥
∫ 1

0
f(x) dx,

où ∥f ′∥ désigne la norme infinie de f ′ sur [0 ; 1].

866 Mines-Ponts MP 2016

Étudier l’existence et la valeur de∫ π
2

0

1
1 + tanα(x) dx,

où α > 0 est donné.
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867 Mines-Ponts MP 2016

Soit f ∈ C1([a ; b],R) telle que :

∀t ∈ [a ; b], f ′(t) ∈ [0 ; 1] et f(a) = 0.

Montrer que f 2(x) ⩽ 2
∫ x

a
f(t) dt pour tout x ∈ [a ; b].

868 Centrale-Supélec PC 2016

On considère l’intégrale f(x) =
∫ x2

1
x

1√
1 + t3

dt.

1. Donner l’ensemble de définition de f .
2. Étudier f aux bornes de son ensemble de définition.
3. Étudier les variations de f .

869 Centrale-Supélec MP 2016

Donner un résultat du cours relatif aux sommes de Riemann. Donner une démonstration
de ce résultat dans le cas où f est de classe C1.

870 ENSEA/ENSIIE PSI 2015

Soit n un entier naturel. Soit f une fonction continue sur [a ; b] à valeurs dans R.
On suppose que, pour tout p ∈ [[0 ;n]],

∫ b

a
tpf(t) dt = 0.

Montrer que f possède au moins n+ 1 racines entre a et b.

871 Mines-Ponts MP 2015

Montrer que : ∫ +∞

0
ln(tanh(x)) dx = −

+∞∑
k=0

1
(2k + 1)2 .

872 CCINP MP 2019

1. Montrer l’intégrabilité de f : x 7→
(ln(x))2

1 + x2 sur ]0 ; 1].

2. On pose un(x) = x2n(ln(x))2 pour n entier et x ∈ ]0 ; 1].

Pour n entier, montrer l’intégrabilité de un sur ]0 ; 1] et calculer
∫ 1

0
un(x) dx.

3. Déterminer une expression de I =
∫ 1

0

(ln(x))2

1 + x2 dx sous forme de somme.

4. Soit ε > 0. Proposer une méthode de calcul de I à ε près.

873 CCINP MP 2015

On pose F (x) =
∫ +∞

0

ln(t)
x2 + t2

dt.

1. Donner le domaine de définition de F .
2. Calculer F (1).
3. Calculer F (x) pour tout x.
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874 Mines-Ponts MP 2013

Soit b > a > 0 et f(x) =
∫ bx

ax

1 − cos(u)
u3 du.

Déterminer lim
x→0+

f(x).

875 X MP 2017

Soit f ∈ C∞(R,R∗
+) une fonction intégrable. On suppose que ln ◦f est concave.

1. Montrer qu’il existe x0 ∈ R tel que f croît sur ]−∞ ; x0[ et décroît sur ]x0 ; +∞[.
2. Montrer que :

∃c, k > 0,∀x ∈ R, f(x) ⩽ ke−c|x|.

3. On considère g ∈ C∞(R,R∗
+) intégrable telle qu’il existe x1 ∈ R tel que g croît

sur ] − ∞ ; x1[ et décroît sur ]x1 ; +∞[.
On définit :

f ∗ g : x 7−→
∫ +∞

−∞
f(x− y)g(y) dy,

produit de convolution de f et g.
Montrer qu’il existe x2 ∈ R tel que h croît sur ]−∞ ; x2[ et décroît sur ]x2 ; +∞[.

876 ENSEA/ENSIIE PSI 2023

Pour tout n ∈ N, on pose :

In =
∫ 1

0
(ln(1 + x))n dx.

1. Montrer que, pour tout n ∈ N, In est bien définie et que :

0 ⩽ In ⩽ (ln(2))n.

2. Montrer que, pour tout n ∈ N,

In+1 = 2(ln(2))n+1 − (n+ 1)In.

3. Étudier la convergence de la série
∑ In

n! .

4. Déterminer le rayon de convergence de la série entière
∑ In

n!x
n.

877 Mines-Ponts PSI 2017

Soit
f : x 7−→

∫ x

0

ln|1 − y|
y

dy.

1. Donner le domaine de définition de f .
2. La fonction f est-elle développable en série entière au voisinage de 0 ? Quel est

son rayon de convergence ? Calculer f(1).
3. La fonction f est-elle dérivable ?
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878 Mines-Télécom PSI 2018

1. Justifier que la fonction

t 7−→ 1
t2

− 1
(arctan(t))2

est intégrable sur [0 ; 1[.
2. En déduire un équivalent simple de

Φ(α) =
∫ 1

α

1
(arctan(t))2 dt quand α → 0+.

879 Mines-Télécom PSI 2017

Soit Γ : x ∈ R∗
+ 7→

∫ +∞

0
tx−1e−t dt.

1. Montrer que :
Γ(x) = lim

n→+∞

∫ n

0
tx−1

(
1 − t

n

)n

dt.

2. Montrer que :
Γ(x) = lim

n→+∞

n!nx

x(x+ 1) · · · (x+ n) .

880 Centrale-Supélec PSI 2015

Soit f ∈ C(R+,R). Pour tout x ∈ R+, on pose :

F (x) =
∫ x

0
f(t) dt et g(x) = f(x) + F (x).

1. On suppose que f admet une limite finie en +∞. Déterminer quand est-ce que
F admet une limite finie en +∞ ?

2. On suppose que F admet une limite finie en +∞. La fonction f admet-elle
forcément une limite finie en +∞ ?

3. On suppose que g admet une limite finie en +∞. Montrer que f admet alors
forcément une limite finie en +∞. Déterminer cette limite.

881 Mines-Ponts PSI 2015

Soit
f : x 7−→

∫ x

0

1 − cos(t)
t2

dt.

Montrer que pour tout n ∈ N∗, il existe an ⩾ 0 tel que f(an) =
1

n+ 1.

882 Mines-Ponts MP 2021

Soit f : [0 ; +∞[→ R continue et bornée. Montrer que :

lim
n→+∞

∫ +∞

0

nf(x)
1 + n2x2 dx = π

2 f(0).
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883 TPE/EIVP PSI 2015

Soit a > 0, f continue sur [1 ; +∞[ et admettant une limite finie ℓ en +∞. On s’intéresse

à la convergence de
∫ +∞

1

f(at) − f(t)
t

dt.

1. Montrer que pour tout x ∈ [1 ; +∞[ on a :
∫ x

1

f(at) − f(t)
t

dt =
∫ ax

a

f(t)
t

dt−
∫ a

1

f(t)
t

dt.

2. En déduire la convergence de l’intégrale recherchée et expliciter sa limite en
fonction de

∫ a

1

f(t)
t

dt.

884 Centrale-Supélec PC 2015

Trouver tous les polynômes P de R[X] tels que :

∀k ∈ Z,
∫ k+1

k
P (t) dt = k + 1.

885 Mines-Ponts MP 2016

Soit (an)n∈N telle que :

∀n ∈ N, an =
∫ √

(n+1)π
√

nπ
sin(t2) dt.

1. Montrer que
∑

an converge.

2. Montrer que l’application x 7→
∫ x

0
sin(t2) dt a une limite en +∞.

886 Mines-Ponts MP 2019

Tracer la courbe représentative de la fonction définie par :

f(x) =
∫ x2

x

1
t
√
t2 − 1

dt.

887 Mines-Ponts MP 2019

On considère la fonction

(x; y) 7−→
∫ π

0
ln(x+ y cos(t)) dt.

1. Donner le domaine de définition de f .
2. Montrer que f est différentiable.
3. Comment expliciter l’intégrale∫ π

0

1
x+ y cos(t) dt = ∂f

∂x
(x; y) ?
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888 Mines-Ponts MP 2015

Soit P la fonction de ] − 1 ; 1[×R dans R définie par :

P (r; t) = 1 − r2

1 − 2r cos(t) + r2 .

1. Soit t ∈ R fixé. Montrer que la fonction qui à r associe P (r; t) est développable
en série entière sur ] − 1 ; 1[. Calculer ce développement.

2. Soit r appartenant ]0 ; 1[ fixé.
(a) Justifier que la fonction qui à t associe P (r; t) est continue, positive, paire

et 2π-périodique.
(b) Montrer que 1

2π

∫ π

−π
P (r; t) dt = 1.

3. Soit a ∈ [0 ;π]. Montrer que :

lim
r→1−

∫ a

−a
P (r; t) dt = 1.

4. Soit f ∈ C(R,R) 2π-périodique. Montrer que :

lim
r→1−

1
2π

∫ π

−π
f(x+ t)P (r; t) dt = f(x).

889 Mines-Ponts MP 2014

Calculer :
lim
x→0

∫ x2

x

1
ln(cos(t)) dt.

890 Mines-Ponts MP 2014

Soit φ(t) =
∫ 1

0

1
(1 + x+ x2)t

dx.

1. Donner le domaine de définition de φ et montrer que lim
t→+∞

φ(t) = 0.

2. Donner un équivalent de φ en +∞.

891 Centrale-Supélec MP 2014

1. Montrer que

F (x) =
∫ +∞

0

(
e−t

t
− e−tx

1 − e−t

)
dt

converge pour tout x ∈ R∗
+.

2. Montrer que F est monotone.
3. Déterminer la limite de F lorsque x tend vers +∞.
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892 X-ENS Cachan PSI 2017

Soit a = (a1; . . . ; an) ∈ Rn. On pose :

f(a) =
∫ +∞

0
e−x(1 + a1x+ · · · + anx

n)2 dx.

1. Montrer que f est définie, de classe C1, positive.
2. Montrer que f(a) → +∞ quand ∥a∥ → +∞.
3. Montrer que f admet un minimum.

On note a∗ = (a∗
1; . . . ; a∗

n) un point où ce minimum est atteint.
4. Montrer que :

∀i ∈ [[1 ;n]], i! + (i+ 1)!a∗
1 + · · · + (i+ n)!a∗

n = 0.

5. Soit P (X) = 1 + a∗
1(X + 1) + a∗

2(X + 1)(X + 2) + · · · + a∗
n(X + 1) · · · (X + n).

Montrer que P (X) = a∗
n(X − 1) · · · (X − n).

Calculer P (−1), puis en déduire que a∗
n =

(−1)n

(n+ 1)!.

6. Montrer que :

f(a∗
1; . . . ; a∗

n) = 1 +
∫ +∞

0
e−x(1 + a∗

1x+ · · · + a∗
nx

n) dx.

En déduire que f(a∗) =
1

n+ 1.

893 X MP 2017

1. Soit f ∈ C([0 ; 1],R). On suppose que :

∀k ∈ [[0 ;n− 1]],
∫ 1

0
f(t)tk dt = 0.

Montrer que f s’annule au moins n fois sur [0 ; 1].
2. Soit f de R dans R, 2π-périodique. On suppose que :

∀k ∈ [[0 ;n− 1]],
∫ 2π

0
f(t) cos(kt) dt = 0 =

∫ 2π

0
f(t) sin(kt) dt.

Montrer que f s’annule au moins 2n fois.

894 Mines-Télécom MP 2017

Soit f : R+ → R continue, décroissante et intégrable sur R+.
1. Montrer que f(x) tend vers 0 quand x tend vers +∞.

2. Montrer que f(x) =
+∞

o
(1
x

)
.
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895 CCINP MP 2018

Soit α ∈ R et
f : R∗

+ −→ R

x 7−→
sin2(x)
xα

1. On suppose 1 < α < 3. Montrer que f est intégrable sur R∗
+.

2. On suppose α ⩽ 1. En utilisant les nombres∫ (n+1)π

nπ
f(t) dt,

montrer que f n’est pas intégrable sur R∗
+.

3. Déterminer les valeurs de α pour lesquelles f est intégrable sur R∗
+.

896 Mines-Ponts MP 2018

Soit f : R+ → R+ continue, bornée et intégrable.

1. Justifier l’existence de un =
∫ +∞

0
fn(t) dt pour tout n ∈ N∗.

2. Discuter la convergence de
∑

un en fonction de ∥f∥∞.

897 CCINP PC 2021

Si x ∈ R et n ∈ N, on pose :

Jn(x) =
∫ π

2

0
sinx(t) cosn(t) dt.

1. Pour quelles valeurs de x l’intégrale Jn(x) est-elle définie ?
2. (a) Calculer Jn(1).

(b) Soit x tel que −1 < x ⩽ 1. Montrer que Jn(x) ⩾ Jn(1). En déduire la nature
de la série de terme général Jn(x) quand −1 < x ⩽ 1.

(c) i. Montrer que si n ∈ N et b > 0, la fonction

f : t 7−→ ln(sin(t)) sinb(t) cosn(t)

est intégrable sur
[
0 ; π

2

]
.

ii. Montrer que Jn est de classe C1 sur R∗
+.

(d) Soit gx(t) = sinx(t)
1 − cos(t) où x > 1.

Montrer que gx est intégrable sur
[
0 ; π

2

]
et calculer

∫ π
2

0
g2(t) dt.

(e) En déduire la nature de la série de terme général Jn(x).

898 Mines-Ponts 2012

Montrer que
f(x) =

∫ +∞

x

1
t(e

√
t − 1)

dt

est définie sur R+. Y est-elle continue ? intégrable ?
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899 Mines-Ponts MP 2017

Soit f(x) =
∫ +∞

0

cos(xt)
1 + t2

dt.

1. La fonction f est-elle C1 sur R∗ ?
2. Montrer que :

xf ′(x) − f(x) + 2
∫ +∞

0

cos(xt)
(1 + t2)2 dt = 0.

900 Mines-Ponts PSI 2021

Soit f : R+ → R telle que lim
x→+∞

f(x) = 0.

1. Prouver que
∫ +∞

0
f(x) dx converge si et seulement si la suite n 7→

∫ n

0
f(x) dx

converge et que dans ces conditions :∫ +∞

0
f(x) dx = lim

n→+∞

∫ n

0
f(x) dx.

2. Que se passe-t-il si on enlève l’hypothèse lim
x→+∞

f(x) = 0 ?

901 Mines-Ponts PSI 2018

Soit
F : x 7−→

∫ +∞

0
e−xt · 1 − cos(t)

t2
dt.

1. Montrer que F est définie et continue sur R+, de classe C2 sur R∗
+.

2. Déterminer la limite de F, F ′ et F ′′ en +∞.
3. Calculer F (x) pour x ∈ R∗

+.

4. En déduire la valeur de
∫ +∞

0

sin(t)
t

dt.

902 Centrale-Supélec PSI 2018

Soit
f : x 7−→

∫ π

0
ln(1 − 2x cos(t) + x2) dt.

1. Donner l’ensemble de définition de f .

2. Soit n ∈ N∗. On pose, pour k ∈ [[0 ;n− 1]], ak =
kπ

n
.

(a) Montrer que :

(x+ 1)
n−1∏
k=0

(1 − 2x cos(ak) + x2) = (x− 1)(x2n − 1).

(b) Calculer f à l’aide d’une somme de Riemann.
3. Calculer f(1).
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903 Centrale-Supélec 2012

1. Étudier les convergences simple et uniforme de la suite de fonctions définies par :

fn(x) = 1
1 + |x− n|

.

2. Étudier l’existence et la valeur de
∫ +∞

−∞
f 2

n(x) dx.

3. Soit g ∈ C(R,R), de carré intégrable.

Montrer que lim
n→+∞

∫ +∞

−∞
fn(x)g(x) dx = 0.

On prendra soin de justifier l’existence des intégrales mises en jeu.

904 Mines-Ponts MP 2021

Soit n ∈ N∗ et x1 < y1 < · · · < xn < yn des nombres réels.
1. Soit P ∈ Rn−1[X]. Montrer que :

∀i ∈ {1; . . . ;n},
∫ yi

xi

P (t) dt = 0 =⇒ P = 0.

2. Montrer qu’il existe un polynôme non nul P ∈ Rn[X] tel que :

∀i ∈ {1; . . . ;n},
∫ yi

xi

P (t) dt = 0.

905 CCINP MP 2022

1. Soit α ∈ R∗
+. Montrer que

∫ +∞

1

eit

tα
dt converge.

2. En déduire la nature de
∫ +∞

1
sin(t2) dt.

3. Montrer que
∫ +∞

1

√
t sin(t)

t+ cos(t) dt converge.

906 Centrale-Supélec PC 2023

Pour tout x ∈ ]0 ; +∞[, on pose :

f(x) =
∫ +∞

1

t− 1
ln(t) t

−x−3 dt.

1. Montrer que la fonction f est bien définie.
2. Déterminer la limite de f en +∞.
3. Montrer que f est de classe C1 sur ] − 1 ; +∞[ et donner ses variations.
4. Déterminer la limite de f en −1.
5. Exprimer la fonction f .
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907 Mines-Ponts MP 2018

Soit
F (x) =

∫ v(x)

u(x)
f(x; t) dt

avec u, v ∈ C([a ; b],R) et f ∈ C([a ; b] × R,R).
La fonction F est-elle continue sur [a ; b] ?

908 CCINP PC 2024

On pose g(t) =
sin(t) − t

t2
pour tout t ∈ R∗.

1. Montrer après prolongement par continuité en 0 que g est continue sur R.

2. On pose Ip =
∫ +∞

0

sinp(t)
t2

dt, où p ∈ N.
Pour quelles valeurs de p ∈ N, l’intégrale Ip converge-t-elle ?

3. (a) Montrer que :
∀t ∈ R, sin3(t) = 3

4 sin(t) − 1
4 sin(3t).

(b) Montrer que : ∫ +∞

x

sin3(t)
t2

dt = 3
4

∫ 3x

x

sin(t)
t2

dt.

On suppose désormais que p = 3.
4. Soit f : R → R continue. Soit U et V des fonctions continues sur R telles qu’il

existe a ∈ R tel que U(a) = V (a). Montrer que :

lim
x→a

∫ V (x)

U(x)
f(t) dt = 0.

5. Déduire des questions précédentes la valeur de Ip.

909 CCINP PC 2025

Calculer :
lim

a→0+

∫ 3a

a

cos(t)
t

dt.

910 X MP

Soit (m;n) ∈ N2. Après avoir justifié son existence, calculer l’intégrale suivante :

Im,n = 1
2π

∫ π

−π

sin
(
(2m+ 1) t

2

)
sin

(
t
2

) ·
sin

(
(2n+ 1) t

2

)
sin

(
t
2

) dt.

911 Mines-Ponts MP 2021

Soit
f : x 7−→

∫ +∞

−∞

arctan(x+ t)
1 + t2

dt.

Calculer f .
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912 Mines-Ponts MP 2018

Soit (a; b) ∈ R2 tels que a < b. Soit E l’espace vectoriel des fonctions continues de [a ; b]
dans R, muni de la norme infinie. Soit B la boule fermée de centre O et de rayon 1
pour cette norme. Soit enfin f ∈ E. Montrer que :

sup
g∈B

∫ b

a
f(t)g(t) dt =

∫ b

a
|f(t)| dt.

913 ENSEA/ENSIIE PSI 2018

Soit la fonction :
f : x 7−→

∫ +∞

0

e−t − e−xt

t
dt.

1. Déterminer le domaine de définition de f .
2. Étudier le caractère C1 de f et déterminer f ′.
3. En déduire une expression simple de f .

914 Mines-Ponts PSI 2021

Soit f : x 7−→
∫ 1

0
cos

(
πt

x+ t

)
dt.

1. Montrer que f est continue sur R+ et C1 sur R∗
+.

2. Déterminer f(0) et lim
x→+∞

f(x).

3. Montrer que f est C1 sur R+ par deux changements de variables.

915 Mines-Ponts MP 2022

Selon la valeur du paramètre réel p, discuter la convergence de l’intégrale :∫ +∞

1

tp − 1
t2 ln(t) dt.

Calculer sa valeur en cas de convergence.

916 Mines-Télécom PSI 2022

Pour tout n ∈ N, soit fn : x 7→
x2n+1 ln(x)
x2 − 1 .

1. Pour tout n ∈ N, montrer que fn est intégrable sur ]0 ; 1[.

On pose In =
∫ 1

0
fn(t) dt.

2. Déterminer lim
n→+∞

In.

3. Pour tout k ∈ N, calculer Ik − Ik+1. En déduire que :

∀n ∈ N, In = 1
4

+∞∑
k=n+1

1
n2 .
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917 Mines-Ponts PSI 2023

Soit n ∈ N, ω = −
1
2 − i

√
3

2 et In =
∫ +∞

0
tneωt dt.

1. Calculer In pour tout entier naturel n.
2. En déduire une expression de la fonction g ∈ C(R+,R) telle que :

∀k ∈ N,
∫ +∞

0
tkg(t) dt = 0.

3. Soit (a; b) ∈ R2 un couple de réels tels que a < b et f ∈ C([a ; b],R) une fonction
telle que :

∀k ∈ N,
∫ b

a
tkf(t) dt = 0.

En admettant le résultat suivant :

∀ε > 0, ∃P ∈ R[X], ∀x ∈ [a ; b], |f(x) − P (x)| < ε,

montrer que f = 0.

918 ENS MP 2014

Soit (ρn)n∈N une suite de fonctions de R dans R positives, continues et 2π-périodiques.
On suppose de plus que, pour tout naturel n :

• 1
2π

∫ 2π

0
ρn(x) dx = 1 ;

• ∀δ > 0, lim
n→+∞

∫ 2π−δ

δ
ρn(x) dx = 0.

Soit alors f une fonction de R dans R continue par morceaux et 2π-périodique. On
pose, pour tout entier naturel n :

fn(x) = 1
2π

∫ 2π

0
f(x− t)ρn(t) dt.

Montrer que :
lim

n→+∞

∫ 2π

0
(fn(x) − f(x))2 dx = 0.

919 Mines-Ponts MP 2017

On définit R : h ∈ C(R+,R) 7→ R(h) tel que si x ∈ R+, R(h)(x) = 2
π

∫ π
2

0
h(x sin(t)) dt

et S : g ∈ C1(R+,R) 7→ S(g) tel que si x ∈ R+, S(g)(x) = g′(0) + 2
π

∫ π
2

0
g′(x sin(t)) dt.

1. Montrer que R et S sont des applications linéaires à valeurs dans C(R+,R).

2. On pose Wn =
∫ π

2

0
sinn(t) dt. Trouver une relation entre Wn+2 et Wn.

3. Soit P un polynôme. Montrer que (S ◦R)(P ) = P .
4. Montrer que pour tout g ∈ C1(R+,R), (S ◦R)(g) = g.
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920 Mines-Ponts MP 2025

Soit f ∈ C(R,R) et g la fonction définie pour tout x > 0 par :

g(x) = 1
x

∫ x

0
cos(x− y)f(y) dy.

1. Déterminer la limite de g en 0.
2. On suppose que f a une limite en +∞. Déterminer celle de g.

921 Mines-Ponts PSI 2024

Si n ∈ N, on définit fn : R+ → R par :

fn(x) = xn

n! e−x.

1. Étudier la convergence simple de la suite (fn)n∈N.
2. Étudier la convergence uniforme de la suite (fn)n∈N.

3. Calculer, pour n ∈ N, In =
∫ +∞

0
fn(x) dx.

4. Déterminer lim
n→+∞

In. Est-ce cohérent avec les théorèmes du cours ?

922 Mines-Télécom MP 2018

Pour tout n ∈ N∗, on pose :

un =
∫ +∞

0

(
1 + x2

n

)−n

dx.

1. Montrer que la suite (un)n∈N∗ converge vers
∫ +∞

0
e−x2 dx.

2. Calculer lim
n→+∞

un.

En déduire la valeur de
∫ +∞

0
e−x2 dx.

On admet que
∫ π

2

0
cosn(t) dt ∼

n→+∞

√
π

2n .

923 CCINP PSI 2019

Soit n ∈ N∗, x ∈ R et fn(x) =
1

coshn(x).

1. Montrer que les fn sont intégrables sur [0 ; +∞[.

2. Soit In =
∫ +∞

0

1
coshn(x) dx.

Montrer que la suite (In)n∈N∗ converge et déterminer sa limite.
3. Déterminer la nature des séries de terme général (−1)nIn et In.
4. Quel est le rayon de convergence de la série entière

∑
n⩾1

Inx
n ?
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924 Mines-Ponts MP 2019

On pose I(x) =
∫ +∞

0

e−xt2

1 + t2
dt.

1. Déterminer l’ensemble de définition de I.
2. Déterminer un équivalent de I en +∞.

925 Centrale

Pour tout x ∈ ]0 ; 1[, on pose :

φ(x) =
∫ x2

x

1
ln(t) dt.

1. Montrer que φ est bien définie et que cette fonction se prolonge par continuité
en 0 et en 1.

2. En déduire la valeur de ∫ 1

0

x− 1
ln(x) dx.

926 Mines-Télécom MP 2016

Soit f : x 7→
∫ +∞

1

e−xt

√
1 + t2

dt.

1. Quel est le domaine de définition de f ?

2. Pour x ∈ ]0 ; 1[, calculer
∫ 1

x

1√
u2 + x2

.

On pourra effectuer le changement de variable u = 1
x

et utiliser la fonction
t 7→ ln(t+

√
1 + t2).

3. Montrer que
∫ 1

0

1√
u2 + x2

du ∼ − ln(x) quand x → 0+.

4. Montrer que f(x) ∼ − ln(x) quand x → 0+.

927 X ESPCI PC 2015

Soit f une fonction continue sur R+ dans R, intégrable sur R+ et telle que f(x) = O
(

1
x2

)
en +∞. Soit a > 0.
Montrer que x 7→ f

(
x+ a

x

)
et x 7→ f

(√
x2 + a2

)
sont intégrables sur R+ et que leur

intégrale sont égales.

928 CCINP PC 2014

Soit
F : x 7−→

∫ 1

0

tx

1 + t
dt.

1. Déterminer l’ensemble de définition de F .
2. Avec le changement de variable t = u2, calculer F

(
1
2

)
.

3. En déduire F
(

3
2

)
.
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929 X ESPCI PC 2013

Étudier l’intégrabilité de x 7→ 1
ln(x) en 0, en 1 et en +∞.

930 ENSEA/ENSIIE PSI 2021

Pour tout n ∈ N, soit fn : x ∈ [0 ; 1] 7→ n2xe−nx.
1. Étudier la convergence simple de la suite (fn)n∈N.

2. Déterminer lim
n→+∞

∫ 1

0
fn(t) dt.

931 Mines-Télécom MP 2022

Montrer que : ∫ +∞

0

sin(t)
et − 1 dt =

+∞∑
n=1

1
n2 + 1 .

932 CCINP PSI 2025

On pose :
f(x) =

∫ +∞

x

e−t

t
dt.

1. Montrer que f est bien définie et continue sur ]0 ; +∞[.
Déterminer f ′.

2. (a) Montrer que :

∀x > 0, f(x) ⩽ e−x

x
.

(b) Montrer que :

∀x > 0, f(x) = e−x ln(x) +
∫ +∞

0
e−t ln(t) dt.

(c) Montrer que f est intégrable sur ]0 ; +∞[.

3. Calculer
∫ +∞

0
f(t) dt à l’aide d’une intégration par parties.

933 TPE/EIVP MP 2012

Soit g : R+ → R telle que x 7→
ln(1 + x)

x2 si x ̸= 0 et 1 si x = 0.

1. La fonction g est-elle bornée ?
2. La fonction g est-elle décomposable en séries entières ?

3. Montrer que
∫ 1

0
g(x) dx =

π2

12.

On rappelle que
+∞∑
n=1

1
n2 =

π2

6 .

4. Soit Wn = n
∫ 1

0
ln(1 + tn) dt.

Calculer lim
n→+∞

Wn.
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934 ENS MP 2019

Calculer
∫ 1

0
xx dx.

935 ENSEA/ENSIIE PSI 2024

Pour tout n ∈ N, on pose :
fn(x) = (x ln(x))n

n! .

1. Montrer que
∑
n⩾0

fn converge simplement et exprimer sa somme.

2. Montrer que fn est intégrable sur ]0 ; 1] et calculer
∫ 1

0
fn(t) dt.

3. Montrer l’intégrabilité de x 7→ xx sur ]0 ; 1].

936 CCINP PSI 2023

Soit a, b ∈ R tels que a < b et f : [a ; b] → R de classe C1.
1. Pour tout n ∈ N∗, on pose :

In =
∫ b

a
f(x) sin(nx) dx.

Montrer que lim
n→+∞

In = 0.

On pose I =
∫ +∞

0

sin(x)
x

dx.

2. (a) Montrer que I converge.

(b) Soit, pour tout k ∈ N∗, Kn =
∫ π

2

0

sin(nx)
x

dx.
Montrer que lim

n→+∞
Kn = I.

(c) On introduit Jn =
∫ π

2

0

sin(nx)
sin(x) dx.

Montrer que lim
n→+∞

(Jn −Kn) = 0.
(d) Montrer que, pour tout p ∈ N∗, J2p+1 = J2p−1.
(e) En déduire la valeur de I.

937 X MP 2019

Pour tous n ∈ Z et x ∈ R, on pose :

Jn(x) = 1
2πin

∫ 2π

0
ei(x cos(θ)+nθ) dθ.

1. Montrer que les Jn sont à valeurs réelles.
2. Montrer que les Jn sont développables en série entière sur R et donner l’expres-

sion de leur développement.
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938 Mines-Ponts MP 2021

Soit b ∈ R∗
+. On considère une fonction continue f : [0 ; b] → R et une fonction continue

b-périodique g : R → R. On pose :

ω(f ; t) = sup{|f(x) − f(y)|, |x− y| ⩽ t}.

1. Montrer que pour tout n ∈ N∗,∫ b

0
f(x)g(nx) dx = 1

b

∫ b

0
f(x) dx

∫ b

0
g(x) dx+ ϵn(f ; g),

où ϵn(f ; g) tend vers 0 lorsque n tend vers +∞.

2. Déterminer lim
n→+∞

∫ π

0

sin(x)
1 + 3 cos2(nx) dx.
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4 Équations différentielles

939 CCP MP

Soit l’équation différentielle (E) : 4x2y′′ − 8xy′ + 9y = x2 + 1.
1. Trouver une solution polynomiale de degré 2 à (E).
2. Résoudre l’équation sur R∗

+. On pourra poser x = et.
3. Résoudre l’équation sur R∗

−.

940 X PC 2019

Résoudre l’équation différentielle y′′ + 2y′ + y = cos2(t).

941 Mines-Ponts MP

Soit f : R∗
+ → R, continue et bornée.

Soit l’équation différentielle :

xy′ − y + f(x) = 0.

1. Résoudre cette équation dans R∗
+.

Déterminer l’unique solution g telle que lim
x→+∞

g′(x) = 0.
Montrer que g est bornée sur R∗

+.

On suppose désormais que f 2 est intégrable sur R∗
+.

2. Montrer que g(x) =
x→+∞

o

(
1√
x

)
.

3. Montrer que g2 et gf sont intégrables sur R∗
+.

942 Centrale PSI

Soit l’équation différentielle :

(1 + x2)y′′ + xy′ − y = 0. (1)

1. Justifier qu’il existe une unique solution de (1) sur R vérifiant
y(0) =

√
2 et y′(0) = 0.

2. Déterminer les solutions de (1) qui sont développables en série entière.
3. En posant x = sinh(t), résoudre (1).

943 X

Résoudre l’équation différentielle

t2y′(t) + y(t) = t−n pour t > 0 et n ∈ N.
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944 ENS Lyon 2022

Soit q ∈ C(R+,R) telle que
∫ +∞

0
|q| < +∞.

Montrer que l’équation différentielle y′′ + q(t)y = 0 admet une solution non bornée.

945 CCP MP

Soit (a; b) ∈ R2 avec a ̸= b et n ∈ N∗.
1. Soit k ∈ R. Résoudre l’équation différentielle

(x− a)(x− b)y′(x) − nxy(x) = ky(x).

2. On définit f sur Rn[X] par :

∀P (X) ∈ Rn(X), f(P (X)) = (X − a)(X − b)P ′(X) − nkP (X).

Montrer que f est un endomorphisme de Rn[X] et déterminer ses valeurs
propres.

3. L’endomorphisme f est-il diagonalisable ? Calculer det(f).

946 CCINP 2018

Trouver toutes les fonctions f : R → R de classe C3 telles que f ′′′ = f .
Indication : justifier qu’il existe un nombre réel λ tel que f ′′(x) + f ′(x) + f(x) = λex

pour tout x ∈ R.

947 ENS PC 2015

Soit φ : R → R deux fois dérivable. On suppose :
• lim

x→+∞
φ(x) = l ∈ R ;

• ∃α > 0, ∀x ∈ R, φ(x) ⩾ α.
Montrer que l’équation différentielle

φy′′ = φ′′y

admet une solution qui tend vers +∞ en +∞.

948 Mines-Télécom MP

Montrer que les solutions du système d’équations différentielles
x′ = x+ y

y′ = −x+ 2y + z

z′ = x+ z

possèdent une limite en −∞.
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949 CCP MP

Soit f : x 7→
∫ π

2

0
cos(x sin(t)) dt et (E) : xy′′ + y′ + xy = 0.

1. Montrer que f est de classe C2 sur R.
2. Montrer que f vérifie l’équation différentielle (E).
3. Déterminer les solutions développables en série entière de (E).
4. En déduire le développement en série entière de f .

950 CCP MP

Soit F : t 7→ 2
π

∫ π
2

0

1√
1 − t2 sin2(θ)

dθ.

Pour tout n ∈ N∗, on pose Wn = 1 · 3 · · · (2n− 1)
2 · 4 · · · (2n) .

On admet que Wn = 2
π

∫ π
2

0
sin2n(θ) dθ.

1. Donner le développement en série entière de x 7→ 1√
1 − x

.

2. La fonction F est-elle développable en série entière ? Justifier.
Le cas échéant, calculer ce développement en série entière et donner son rayon
de convergence.

3. Montrer que F engendre l’espace vectoriel réel des solutions développables en
série entière, solutions de l’équation différentielle (t3 −t)x′′ +(3t2 −1)x′ +tx = 0.

951 Centrale MP

Soit q : R+ → R∗
+ et l’équation différentielle (E) : y′′(x) = q(x)y(x). Pour tout α ∈ R,

on note yα l’unique solution de (E) vérifiant yα(0) = 1 et y′
α(0) = α.

1. Montrer que pour tout x ∈ R∗
+, y0(x)y′

0(x) > 0.
Montrer que y0 est strictement croissante sur R+.

2. Montrer que :

∀α ∈ R, ∀x ∈ R, yα(x) = y0(x)
(

1 +
∫ x

0

α

y0(t)2 dt
)
.

3. Montrer qu’il existe α1 < 0 tel que, pour α ∈ R, les propriétés suivantes sont
équivalentes :
i) yα s’annule sur R+ ;
ii) α < α1.
Calculer α1.

952 CCP 2015

Résoudre l’équation différentielle x(x+ 1)y′′ + (x+ 2)y′ − y = 2.
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953 Centrale 2015

Résoudre l’équation différentielle

y′′ + 4y′ + 4y = e−2x

√
1 + x2

.

954 Mines 2015

Résoudre l’équation différentielle (1 + x2)y′′ + 4xy′ + 2y = 1.

955 Mines 2015

Résoudre dans R l’équation différentielle suivante :

(2x+ 1)y′′ + (4x− 2)y′ − 8y = 0.

On donne une solution particulière : x 7→ exp (−2x).

956 CCINP MPI 2025

1. Déterminer une primitive de la fonction x 7→ cos4(x).
2. Résoudre sur R l’équation différentielle y′′ + y = cos3(x) en utilisant la méthode

de variation des constantes.

957 CCP MP

Soit l’équation différentielle x(x− 1)y′′ + 3xy′ + y = 0.
1. Trouver les solutions de cette équation différentielle développables en série en-

tière sur un intervalle ] − r ; r[ de R, avec r > 0.
2. Est-ce que toutes les solutions de x(x − 1)y′′ + 3xy′ + y = 0 sur ]0 ; 1[ sont les

restrictions d’une fonction développable en série entière sur ] − 1 ; 1[ ?

958 CCP MP

1. Énoncer le théorème de dérivation sous le signe intégrale.

2. Démontrer que la fonction f : x 7→
∫ +∞

0
e−t2 cos(xt) dt est de classe C1 sur R.

3. (a) Trouver une équation différentielle linéaire (E) d’ordre 1 dont f est solution.
(b) Résoudre (E).

959 Centrale PSI 2017

1. Montrer que l’équation différentielle (E) : y′′ = (1 + x4)y admet une unique
solution f telle que f(0) = f ′(0) = 1.

2. Montrer que la fonction x 7→
1

f 2(x) est intégrable sur [0; +∞[.

3. Montrer que la fonction g : x 7→ f(x)
∫ +∞

x

1
f 2(t) dt est solution de (E).

4. En déduire les solutions de (E) en fonction de la fonction f .
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960 CCP 2017

Résoudre matriciellement le système différentiel :x′ = −x− 4y + 4et

y′ = x+ 3y

961 Centrale 2012

On considère l’équation différentielle (E) : x(x2 + 1)y′ + y + x = 0.
1. Trouver a, b, c ∈ R tels que, pour tout x ∈ R∗,

1
x(x2 + 1) = a

x
+ bx+ c

x2 + 1 .

2. Résoudre l’équation (E). Existe-t-il des solutions définies sur R ?

962 Mines 2012

Montrer que l’équation différentielle (E) : xy′ = x + y2 admet une unique solution
développable en série entière, et que son rayon de convergence appartient à l’intervalle
[1 ; 2].

963 Centrale 2012

Soit φ ∈ C(R+,R) intégrable. Montrer qu’il existe une unique solution de l’équation
différentielle y′′ + y = φ qui admet une limite en +∞. Préciser cette limite.

964 TPE/EIVP 2018

Déterminer les fonctions f : R → R de classe C1 vérifiant, pour tout x ∈ R,

f ′(x) − f(x) = ex
∫ 1

0
f(t) dt.

965 Mines-Ponts

Soit n ∈ N∗ et A ∈ Mn(R). On considère le système différentiel X ′(t) = AX(t) noté
(S). Démontrer que toutes les solutions de (S) sont polynomiales si et seulement si A
est nilpotente.

966 Mines

Soit a, b : R → R deux applications continues de R dans R périodiques de période 1.
On considère l’équation différentielle notée (E) donnée par y′ = a(x)y + b(x). On note
aussi, pour x ∈ R, A(x) =

∫ x

0
a(t) dt et I = A(1).

1. Trouver une condition sur I pour que A soit 1-périodique.
2. Soit y une solution de (E). Démontrer que x 7→ y(x+ 1) est aussi une solution

de (E).
3. Soit I ̸= 0. Démontrer que (E) admet une unique solution 1-périodique.
4. Si I = 0, que peut-on dire ?
5. Donner un exemple pour chacune des situations.
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967 Mines

Résoudre l’équation différentielle

y′′ − y = 1
1 + x2 .

Existe-t-il des solutions bornées ?

968 Centrale

Le but de cet exercice est de déterminer les fonctions f : ]0 ; +∞[ de classe C1 et
solutions de l’équation différentielle (non linéaire) E suivante :

xf ′ − |1 − f | = 1.

1. Résoudre l’équation différentielle xy′ − y = 0.
2. Soit f une solution de (E). Démontrer que f est strictement croissante.
3. On suppose que f est minorée par 1. Déterminer la forme de f , puis obtenir une

contradiction.
4. On suppose que f est majorée par 1. Déterminer la forme de f , puis obtenir une

contradiction.
5. En déduire qu’il existe un unique x0 ∈ ]0 ; +∞[ tel que f(x0) = 1. Déterminer

toutes les solutions de (E).

969 INP

On considère les deux équations différentielles suivantes :2xy′ − 3y = 0 (H)
2xy′ − 3y =

√
x (E)

1. Résoudre l’équation (H) sur ]0 ; +∞[.
2. Résoudre l’équation (E) sur ]0 ; +∞[.
3. L’équation (E) admet-elle des solutions sur [0 ; +∞[ ?

970 X MP 2019

Soit x une fonction continûment différentiable au voisinage de 0, telle que

x′(t) = 3x(t) + 85 cos(x(t)) et x(0) = 77.

Montrer que x se prolonge en une solution de cette équation différentielle sur R entier.

971 Mines-Télécom MP 2016

Résoudre le système différentiel 
x′ = y + z

y′ = x

z′ = x+ y + z
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972 Mines-Télécom MP 2024

Déterminer toutes les fonctions f développables en série entière sur R qui vérifient :

(E) : 2xy′′ + y′ − y = 0, y(0) = 1.

973 Mines-Télécom MP 2019

On considère sur R l’équation différentielle :

(E) : y′′ + sinh(x)y′ + y = 0.

1. Montrer que si y est solution de (E) sur R, alors z : x 7→ y(−x) est solution de
(E) sur R.

2. Montrer qu’il existe une unique solution paire sur R valant 1 en 0.

974 CCINP PC 2023

On considère l’équation différentielle :

(E) : cos(t)y + sin(t)y′ = − cos(t) sin(t).

Donner l’ensemble des solutions réelles de (E) sur I =
]
−π

2 ; π
2

[
.

975 ENSEA/ENSIIE PSI 2024

Résoudre l’équation différentielle

x′′ + 6x′ + 9x = 2te−3t,

où x : t 7→ x(t) est la fonction inconnue.

976 CCINP PSI 2022

On considère l’équation différentielle :

(E) : (x2 − 1)y′′ + 2xy′ − 2y = 0 sur l’intervalle ] − 1 ; 1[.

1. Chercher les solutions polynomiales.
2. Effectuer le changement y(x) = xz(x), où z est une fonction inconnue. En

déduire une équation différentielle vérifiée par z.
3. Donner (a; b; c) ∈ R3 tel que pour tout x ∈ ] − 1 ; 1[\{0} :

4x2 − 2
x(x2 − 1) = a

x
+ b

x+ 1 + c

x− 1 .

4. Donner l’expression de z.
5. Donner l’ensemble des solutions de (E) sur ] − 1 ; 1[.
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977 ENSEA/ENSIIE MPI 2023

Résoudre l’équation différentielle

t
dθ
dt − (1 + t)θ = t2

cosh(t) .

978 CCINP PC 2022

Résoudre l’équation différentielle 2xy′ + y = 1 sur R.

979 Mines-ponts MP 2018

Résoudre l’équation différentielle x′′(t) + x(t) = cot(t).

980 CCINP PSI 2024

1. Déterminer (a; b; c) ∈ R3 tel que

1
t(t2 − 1) = a

t
+ b

t− 1 + c

t+ 1 .

2. Déterminer les solutions de l’équation différentielle t(t2 − 1)x′ + 2x = t2.

981 Mines-Télécom MP 2021

Déterminer les fonctions x ∈ C2(R,R) vérifiant l’équation différentielle :

(t2 + 1)x′′ − 2x = 0.

982 Mines 2022

Montrer que la fonction :

f : R −→ R

x 7−→

e− 1
x2 si x ̸= 0

0 sinon

n’est solution d’aucune équation différentielle linéaire homogène normalisée à coeffi-
cients constants.

983 ENS 2023

Soit I un intervalle de R et deux fonctions a et b continues sur I.
1. Soit x une solution non nulle de y′′ + ay′ + by = 0 sur I. Montrer que les zéros

de x sont isolés.
2. On suppose a de classe C1. Montrer l’existence d’une fonction z : I → R deux

fois dérivable sur I telle que f(t) = x(t)ex(t) soit une solution d’une équation
différentielle de la forme y′′ + qy = 0, où q est continue sur I.

3. On note Eq l’ensemble des solutions de y′′ + qy = 0 sur I. Soit q1 et q2 deux
fonctions continues sur I, vérifiant q1 ⩽ q2. On considère y1 ∈ Eq1 \ {0} et
y2 ∈ Eq2 \ {0}, ainsi que α et β deux zéros consécutifs de y1. Montrer que y2
s’annule sur [α ; β].
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984 CCINP MP 2024

Soit
(E) : x2y′′ + 4xy′ + (2 − x2)y = 1

et
(H) : x2y′′ + 4xy′ + (2 − x2)y = 0.

1. Montrer qu’il existe une unique solution développable en série entière qui vérifie
(E) et la déterminer.

2. Montrer que g : x 7→ −
1
x2 est solution de (E).

3. On admet que h : x 7→
sinh(x)
x2 est solution de (H).

Déterminer toutes les solutions de (H).

985 Mines-Télécom MP 2024

On considère l’équation différentielle suivante :

xy′ + 3y = exp (−x−2)
x5 .

1. Résoudre cette équation différentielle dans R∗, puis dans R.
2. Déterminer un développement limité de la solution à l’ordre 4.

986 Mines-Télécom MP 2022

Soit l’équation différentielle (E) : 4xy′′ + 2y′ − y = 0.
1. Chercher les solutions sous forme de somme d’une série entière.
2. Faire le changement de variable x = t2 et montrer que (E) est équivalente à
z′′ − z = 0. En déduire les solutions sur R∗

+.
3. Faire le changement de variable x = −t2 et montrer que (E) est équivalente à
z′′ + z = 0. En déduire les solutions sur R∗

−.
4. Faire le raccordement des solutions puis en déduire la solution sur R.

987 Mines-Télécom MPI 2025

On considère l’équation différentielle suivante :

y′′ = (x4 − 1)y.

1. Montrer que s’il existe une fonction f solution de l’équation différentielle véri-
fiant f(0) = f ′(0) = 1, alors cette fonction est unique.

2. On suppose que la fonction x 7→ 1
f(x)2 est intégrable sur R+. On pose :

g(x) = f(x)
∫ +∞

x

1
f(t)2 dt.

Montrer que g est solution de l’équation différentielle.

3. Montrer que la fonction x 7→
1

f(x)2 est bien intégrable sur R+.
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988 CCINP TSI 2025

En posant z = ln
(

y

y + 1

)
, résoudre l’équation différentielle y′ = y(1 + y).

989 Mines-Télécom PSI 2019

Résoudre le système différentiel : 
x′ = x− 5z
y′ = y + z

z′ = x+ y + z

990 Mines-Ponts MP 2021

1. Résoudre sur D = ] − ∞ ; 1[ l’équation différentielle :

(E) : xy′ + y =
1

1 − x
.

2. L’équation (E) a-t-elle une solution de classe C∞ sur D ?

991 X MP 2017

Résoudre x2y′′ + 5xy′ + 4y = 0.

992 Centrale-Supélec PC 2017

On considère l’équation différentielle :
√

1 + t2y′′(t) + ty′(t) − y(t) = 0.

1. Tracer les solutions f et g soumises aux conditions initiales

(f(0); f ′(0)) = (0; 1) et (g(0); g′(0)) = (1; 0).

L’une d’entre elles vous semble-t-elle évidente ?
2. Chercher l’autre solution sous la forme d’une série entière.
3. Pour tout t ∈ ] − 1 ; 1[, prouver l’égalité g(t) =

√
1 + t2.

993 CCINP MP 2017

On considère l’équation différentielle suivante sur R+Re∗ :

(E) : x′′ + 2
t
x′ + x = 0.

1. Montrer que ϕ1 : t 7→ sin(t)
t

est solution de (E).

2. À l’aide du wronskien, chercher une autre solution de (E).
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994 CCINP TSI 2023

Résoudre l’équation différentielle :

y(4) − 2y′′ + y = 0.
On pourra poser z = y′′ − y.

995 Mines-Ponts PSI 2012

Trouver les solutions 2π-périodiques de l’équation différentielle :

y′′ + eixy = 0.

996 Centrale-Supélec PSI 2016

Soit p ∈ R. Trouver toutes les fonctions trois fois dérivables sur R et à valeurs réelles
telles que, pour tout t ∈ R :

f (3)(t) − f(t) = ept.

997 CCINP PC 2016

On considère l’équation différentielle :

(E) : 2(x− x2)y′′(x) + (x− 2)y′(x) − y(x) = 0.

1. Montrer que y0 : x 7→ x− 2 est solution.
Soit I l’intervalle ]1 ; 2[ ou ]2 ; +∞[.

2. Montrer que y est solution de (E) si et seulement si z : x 7→
y(x)
x− 2 est solution

d’une certaine équation différentielle d’ordre 2 que l’on explicitera.

3. (a) On pose φ : x 7→ −2
√
x− 1
x− 2 . Montrer que φ est dérivable sur I et calculer

φ′(x) sur I.
(b) Résoudre (E) sur I sachant que :

4 − 3x2

2x(x− 1)(x− 2) = 1
x

− 1
2(x− 1) − 2

x− 2 .

(c) Résoudre (E) sur ]1 ; +∞[.
(d) Résoudre (E) sur ]0 ; +∞[ ou sur R.

998 Mines-Ponts MP

1. Soit f une fonction de classe C1, à valeurs dans C, et a ∈ C tel que Re(a) > 0.
On suppose que f ′(t) + af(t) tend vers 0 quand t → +∞. Montrer que f tend
également vers 0 quant t → +∞.

2. Soit f une fonction de classe C2, à valeurs dans C, telle que f ′′(t) + f ′(t) + f(t)
tend vers 0 quand t → +∞. Montrer que la fonction f tend également vers 0
quand t → +∞.
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999 X MP 2022

Soit λ un réel.
1. Résoudre l’équation différentielle :

y′ = λ

1 − t
+ 1 + 2t

1 − t
y.

2. Soit f la fonction définie par f(t) = exp(−2t)
(1 − t)3 .

Justifier que la fonction f est développable en série entière et donner un équi-
valent des coefficients de ce développement.

1000 CCINP PSI 2023

On considère l’équation différentielle :

(E) : 5x′′(t) + 10x′(t) + 6x(t) = 0.

1. Résoudre cette équation différentielle dans R.
2. Soit x une solution non nulle de (E). Montrer qu’il existe t ∈ R tel que |x(t)| = 1.

3. Étudier les variations de ϕ(t) =
t2

1 + t4
sur R.

4. Soit x vérifiant (E). Montrer que l’application qui à t associe

x(t)2

1 + x(t)4

est bornée et atteint sa borne supérieure. Sa borne inférieure est-elle atteinte ?

1001 CCINP PSI 2022

Soit la fonction f(x) = arcsin(x)
√

1 − x2.
1. Montrer que cette fonction est C1 sur un intervalle que l’on précisera et donner

sa dérivée.
2. Trouver des polynômes non nuls a, b, c tels que f soit solution de l’équation

différentielle du premier ordre :

a(x)y′ + b(x)y = c(x).

3. Montrer que l’unique solution de cette équation, qui s’annule en 0, est une
fonction impaire développable en série entière au voisinage de 0.

4. En déduire que f est développable en série entière au voisinage de 0.
5. Donner ce développement en série entière.

1002 Mines-Ponts MP 2021

Résoudre sur R l’équation différentielle x3y′ − 2y = 0.
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1003 CCINP PC 2019

1. Soit x ∈ R. Préciser les parties réelle et imaginaire de
1

x+ i.

2. Résoudre l’équation différentielle y′ +
1

2(x+ i)y = 0.

3. On définit, pour x réel :

f(x) =
∫ +∞

0

eixte−t

√
t

dt.

Montrer que l’on définit ainsi une fonction f sur R. Montrer que f est continue.
Étudier le caractère C1 et exprimer f ′.

4. Montrer que, pour tout x ∈ R :

f ′(x) = − 1
2(x+ i)f(x).

5. Pour tout α ∈ R∗, on note :

Iα =
∫ +∞

0

e−αt sin(t)√
t

dt.

Montrer l’existence de Iα.
Exprimer Iα en fonction de f .
En déduire le signe de Iα.

1004 TPE/EIVP PSI 2016

On considère l’équation différentielle :

(E) : y′′ − (2 + 4x2)y = 0.

Soit f une solution de (E) telle que f(0) = 1. On suppose qu’il existe R > 0 et
(an)n∈N ∈ RN tels que :

a0 = 1 et ∀x ∈ ] −R ;R[, f(x) =
+∞∑
n=0

anx
n.

1. Déterminer a1.
2. Déterminer une relation entre an+1, an et an−1.
3. Déterminer a2 et a3. Faire une conjecture sur an et la démontrer.
4. Résoudre (E) en posant y(x) = f(x)z(x).

1005 Mines-Ponts PC 2015

Soit a ∈ R. Résoudre l’équation différentielle :

x(y′′ − y′) + ay = 0.
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1006 CCINP MP 2021

On considère l’équation différentielle :

(E) : (x2 − 4x)y′ + (2 − x)y = 4.

1. Trouver une solution de (E) sous la forme d’un polynôme.
2. Résoudre (E) sur les intervalles ] − ∞ ; 0[, ]0 ; 4[ et ]4 ; +∞[.
3. Trouver les solutions de (E) sur ] − ∞ ; 4[, ]0 ; +∞[ et R.

1007 Mines-Télécom PSI 2017

Résoudre l’équation différentielle xy′′ − 4y′ + y = 0.

1008 Mines-Télécom MP 2025

Résoudre : (
x′

y′

)
=
(

2 1
1 2

)(
x
y

)
.

1009 Mines-Télécom MPI 2024

Soit a > 0 et h ∈ C(R+,R) bornée. L’équation y′ − ay = h(t) admet-elle une solution
bornée dans R+ ? Donner ses solutions.

1010 CCINP PC 2023

Soit S l’ensemble des fonctions de classe C2 sur R vérifiant l’équation différentielle :

y′′(x) − (x4 + 1)y(x) = 0.

On pose f l’unique élément de S vérifiant f ′(0) = f(0) = 1.
1. Montrer que S est un sous-espace vectoriel de l’espace des fonctions de classe
C2 sur R.

2. Soit g : R → R, x 7→ f 2(x). Calculer g(0) et g′(0).
3. Montrer que, pour tout x ∈ R, g′′(x) ⩾ 0.
4. Montrer que f 2(x) ⩾ 1 pour tout x ∈ R+.

5. Posons h(x) = f(x)
∫ x

0

1
g(t) dt. Montrer que h est définie et que h ∈ S.

6. Montrer que {f ;h} est une base de S.

1011 ENSAM PSI 2016

On considère l’équation différentielle :

x(x+ 1)y′ + y = arctan(x).

1. Résoudre l’équation sur les intervalles ne contenant ni −1 ni 0.
2. Existe-t-il des solutions sur R ?
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1012 CCINP PC 2018

Le but de l’exercice est de déterminer les solutions sur R∗ de l’équation :

(E) : xy′′ + xy′ − y = 0.

1. Déterminer un réel α tel que hα : x 7→ xα soit solution de (E) sur R∗
+.

2. Montrer que
∫ +∞

1

e−t

t2
dt converge et que

∫ 1

0

e−t

t2
dt diverge.

3. Soit G : x 7→
∫ x

1

e−t

t2
dt. Étudier les variations de G sur R∗

+.

4. Soit f une fonction deux fois dérivables sur R∗
+ et s : x 7→ xf(x). Montrer que

s est solution de (E) sur R∗
+, si et seulement si f ′ est solution d’une équation

différentielle linéaire du premier ordre (E ′), que l’on précisera.
5. Résoudre (E ′) sur R∗

+.
6. Exprimer les solutions de (E) sur R∗

+ à l’aide de la fonction G.

1013 Mines-Ponts MP 2017

Donner le système à résoudre pour effectuer la variation des constantes dans le cas
d’une équation différentielle linéaire à coefficients constants d’ordre 2.

1014 X MP 2018

Soit x ∈ C2(R,R∗
+) vérifiant :

x′′ = 1 − x

x3 .

Trouver une condition nécessaire et suffisante sur x(0) et x′(0) pour que x soit bornée.

1015 CCINP MP 2015

On considère l’équation différentielle :

(E) : x(x+ 2)y′(x) + (x+ 1)y(x) = 1.

1. Rappeler la dérivée de x 7→ ln(x+
√
x2 − 1).

Résoudre (E) pour x > 0.
2. Montrer que (E) admet une solution f développable en série entière sur ]−2 ; 2[.

Donner ce développement.
3. En déduire à l’aide des questions précédentes une expression de f(x) pour x ⩾ 0.

1016 Mines-Ponts PC 2014

Résoudre :
x(x+ 1)y′′(x) − y′(x) − 2y(x) = 3x2.

1017 Mines-Ponts PSI 2022

Résoudre l’équation différentielle :y′′ + xy′ + 3y = 0
y(0) = 1, y′(0) = 0
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1018 Mines-Ponts MP 2015

Résoudre l’équation différentielle d’inconnue y :

x(x2 + 1)y′′ − 2(x2 + 1)y′ + 2xy = 0.

1019 Mines-Télécom PC 2022

On note (E) l’équation différentielle suivante :

xy′(x) + y(x) = ex.

1. Déterminer les solutions de (E) développables en série entière.
2. Soit (x0; y0) ∈ R2. On considère le problème de Cauchy :xy′(x) + y(x) = ex

y(x0) = y0

Sans calcul, déterminer le nombre de solutions de ce problème sur un intervalle
bien choisi.

3. Résoudre l’équation différentielle (E) sur les intervalles ] − ∞ ; 0[ et ]0 ; +∞[.
4. Dans le cas (x0; y0) = (0; 1), trouver toutes les solutions sur R du problème de

Cauchy de la question 2.

1020 TPE/EIVP MP 2018

Soit l’équation différentielle

(E) : y′′ + (2 − cos(t2))y = 0.

Soit f : R → R une solution de (E) à valeurs strictement négatives.
1. Montrer que f est convexe.
2. Soit a ∈ R. Donner une équation de la tangente à la courbe représentative de f

au point d’abscisse a.
En déduire une contradiction puis conclure.

1021 CCINP PSI 2016

On donne l’équation différentielle suivante :

(E) : x(1 − x)y′′ + (1 − 3x)y′ − y = 0.

1. (a) Déterminer les solutions de (E) développables en série entière.
(b) Pourquoi peut-on dire que (E) admet d’autres solutions ?

2. Résoudre entièrement l’équation différentielle en utilisant le changement de fonc-

tion inconnue y(x) =
z(x)
1 − x

. Effectuer les raccordements éventuels.
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1022 CCINP MP 2015

On considère l’équation différentielle

(E) : 2ty′ + y = 3t cos
(
t

3
2
)
.

1. Montrer qu’il existe une unique solution v de (E) sur R∗
+ développable en série

entière.
2. Résoudre (E) dans le cas général et un déduire une simplification de v.

1023 Mines-Ponts PSI 2024

On considère l’équation différentielle suivante :

(E) : x2y′ + y = x2.

1. Montrer que (E) n’a pas de solution développable en série entière (autour de
zéro).

2. Résoudre (E) sur R∗
+.

3. Montrer que (E) admet une unique solution y telle que lim
x→0+

y(x) = 0.

1024 Mines-Ponts PC 2016

Résoudre l’équation différentielle suivante :

xy′′ − (x+ 3)y′ + 3y = 0.

Indication : on commencera par chercher une solution développable en série entière
telle que y(0) = 1, dont on déterminera explicitement le rayon de convergence.

1025 ENSEA/ENSIIE MP 2018

On considère l’équation différentielle suivante :

(E) : x2y′′ − 3xy′ + 4x = x2

et on note (H) l’équation homogène associée.
1. Trouver les solutions polynomiales de (H).
2. Trouver toutes les solutions de (H) sur ]0 ; +∞[.
3. Trouver toutes les solutions de (E) sur ]0 ; +∞[.

1026 Mines-Télécom MP 2019

Résoudre le système différentiel suivant :
x′(t) = −3x(t) + y(t) − z(t)
y′(t) = −7x(t) + 5y(t) − z(t)
z′(t) = −6x(t) + 6y(t) + 2z(t)
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1027 CCINP PC 2017

Pour tout t > 0, on pose φ(t) = 1
t
e− 1

t .

1. Montrer que lim
t→0+

φ(t) = 0.

2. En déduire que pour tout x > 0, l’intégrale
∫ x

0
φ(t) dt existe.

3. Montrer que les solutions de x2y′(x) + y(x) = x sur ]0 ; +∞[ sont les fonctions
de la forme

x 7−→ e
1
x (h(x) + k),

où k est une constante réelle.
4. Pour tout x > 0, montrer l’égalité suivante :

e
1
xh(x) = x

∫ +∞

0

e−u

1 + xu
du.

On pourra considérer le changement de variable t =
x

1 + xu
.

5. Montrer que la fonction

f : x 7−→
∫ +∞

0

e−u

1 + xu
du

est définie et continue sur [0 ; +∞[.
6. Montrer que g : x 7→ xf(x) est solution de x2y′(x) + y(x) = x sur [0 ; +∞[ et

que c’est la seule.
7. Montrer que g est de classe C∞ sur [0 ; +∞[.
8. Trouver la limite de g en +∞.

1028 CCINP MP 2015

Résoudre le système différentiel suivant par résolution matricielle (diagonalisation) :x′ = 3x− 4y − exp(−t)
y′ = x− 2y

1029 Mines-Ponts PC 2016

Résoudre le système différence homogène X ′ = AX avec

A =


3 −1 · · · −1

−1 . . . . . . ...
... . . . . . . −1

−1 · · · −1 3

 ∈ Mn(R).

Quelle méthode utiliser dans le cas où il y a un second membre ?
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1030 CCINP PC 2018

Soit r > 0. Soit f une fonction développable en série entière sur ] − r ; r[. Soit α > 0.
On considère l’équation différentielle suivante :

(E) : y′ + α

x
y = f(x)

x
.

Pour tout x ∈ ]0 ; r[, on pose :

Tα(f)(x) = 1
xα

∫ x

0
uα−1f(u) du.

1. Déterminer l’ensemble des solutions sur ]0 ; +∞[ de l’équation y′ + α

y
= 0.

2. Pour tout x ∈ ]0 ; r[, montrer l’existence de Mx ⩾ 0 tel que, pour tout t ∈ [0 ; x],
|f(t)| ⩽ Mx. En déduire que pour tout x ∈ ]0 ; r[, la fonction u 7→ uα−1f(u) est
intégrable sur ]0 ; x].

3. Montrer que la fonction Tα(f) est solution de (E) sur ]0 ; r[, puis résoudre (E)
sur cet intervalle.

4. Montrer qu’il existe une suite (an)n∈N telle que :

∀x ∈ ]0 ; 1[, Tα(f)(x) =
+∞∑
n=0

an

n+ α
xn.

5. Montrer que (E) admet une unique solution sur ]0 ; r[ qui possède une limite
finie en 0.

1031 Mines-Télécom PSI 2016

On considère l’équation différentielle :

x2y′′ + 4xy′ + 2y = ln(1 + x).

Déterminer une solution développable en série entière et l’exprimer à l’aide de fonctions
usuelles.

1032 Mines-Ponts 2013

On considère le problème suivant :y′ = 1 + x2y2

y(0) = 0

1. Montrer que cette équation différentielle admet une unique solution maximale.
On note f cette solution.

2. Montrer que f est impaire.
3. Montrer que f est définie sur un intervalle ] − a ; a[ avec a ∈ R.
4. Tracer l’allure de f .
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1033 Mines-Télécom MP 2024

On pose an =
4n

(2n+ 1)!(n!)2 pour tout n ∈ N et f(x) =
+∞∑
n=0

anx
2n+1.

1. Justifier que f est définie et de classe C∞ sur ] − 1 ; 1[.
2. En déterminant une relation de récurrence entre an+1 et an, montrer que f vérifie

l’équation différentielle :

f ′(x) = 1 + x2f ′(x) + xf(x).

En déduire l’expression de f .

1034 TPE/EIVP PC 2015

On considère l’équation différentielle y′′ + xy = 0 avec y(0) et y′(0) = 0. Résoudre
l’équation différentielle en utilisant des séries entières.

1035 X ESPCI PC 2013

On considère une solution f bornée de l’équation différentielle suivante :

y′′ + xy

1 + x3 = 0.

Montrer que lim
x→+∞

f ′(x) = 0.

217



5 Fonctions de plusieurs variables

1036 CCP MP

Déterminer les coordonnées et la nature des extrema de :

f : R2 −→ R
(x; y) 7−→ x2 − (y3 − y)2

1037 Mines-Ponts/X MP

Soit (a; b) ∈ R2 et h ∈ C1(R2,R) telle que h = a
∂h

∂x
+ b

∂h

∂y
.

On suppose que h est bornée. Montrer que h est nulle.

1038 CCP 2015

On considère le disque D = {(x; y) ∈ R2 | x2 + y2 ⩽ 1} et la fonction f définie par :

∀(x; y) ∈ D, f(x; y) = x3 − 3x(1 + y2).

La fonction f admet-elle sur D des extrema globaux ou des extrema locaux ?

1039 CCP MP

1. Soit f une fonction de R2 dans R.
(a) Donner, en utilisant des quantificateurs, la définition de la continuité de f

en (0; 0).
(b) Donner la définition de « f différentiable en (0; 0) ».

2. On considère l’application définie sur R2 par :

f(x; y) =


xy
x2 − y2

x2 + y2 si (x; y) ̸= (0; 0)

0 si (x; y) = (0; 0)

(a) Montrer que f est continue sur R2.
(b) Montrer que f est de classe C1 sur R2.

1040 CCP MP

On pose, pour tout (x; y) ∈ R2 \ {(0; 0)}, f(x; y) =
xy√
x2 + y2 et f(0; 0) = 0.

1. Démontrer que f est continue sur R2.
2. Démontrer que f admet des dérivées partielles en tout point de R2.
3. La fonction f est-elle de classe C1 sur R2 ? Justifier.
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1041 CCP MP

Soit α ∈ R. On considère l’application f définie sur R2 par :

f(x; y) =


y4

x2 + y2 − xy
si (x; y) ̸= (0; 0)

α si (x; y) = (0; 0)

1. Prouver que :
∀(x; y) ∈ R2, x2 + y2 − xy ⩾

1
2(x2 + y2).

2. (a) Quel est le domaine de définition de f ?
(b) Déterminer α pour que f soit continue sur R2.

3. Dans cette question, on suppose que α = 0.

(a) Justifier l’existence de
∂f

∂x
et
∂f

∂y
sur R2 \ {(0; 0)} et les calculer.

(b) Justifier l’existence de
∂f

∂x
(0; 0) et

∂f

∂y
(0; 0) et donner leur valeur.

(c) La fonction f est-elle de classe C1 sur R2 ?

1042 CCP MP

1. Soit E et F deux espaces vectoriels réels normés de dimension finie. Soit a ∈ E
et soit f : E → F une application.
Donner la définition de « f différentiable en a ».

2. Soit n ∈ N∗. Soit E un espace vectoriel réel de dimension finie n.
Soit e = (e1; . . . ; en) une base de E.

On pose : ∀x ∈ E, ∥x∥∞ = max
1⩽i⩽n

|xi|, où x =
n∑

i=1
xiei.

On pose : ∀(x; y) ∈ E × E, ∥(x; y)∥ = max(∥x∥∞; ∥y∥∞).
On admet que ∥·∥∞ est une norme sur E et que ∥·∥ est une norme sur E × E.
Soit B : E × E → R une forme bilinéaire sur E.
(a) Prouver que :

∃C ∈ R+, ∀(x; y) ∈ E × E, |B(x; y)| ⩽ C∥x∥∞∥y∥∞.

(b) Montrer que B est différentiable sur E×E et déterminer sa différentielle en
tout (u0; v0) ∈ E × E.

1043 Mines 2016

On considère l’ensemble ∆ = {(x; y) ∈ R2 | x ⩾ 0, y ⩾ 0, x + y ⩽ 6} et la fonction f
définie sur ∆ par :

∀(x; y) ∈ ∆, f(x; y) = x2y(x+ y − 4).
1. Représenter le domaine ∆.
2. Trouver les extrema locaux et globaux de f sur ∆.
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1044 CCINP 2024

Soit f la fonction définie sur R2 par :

∀(x; y) ∈ R2, f(x; y) = 2x3 + 6xy − 3y2 + 2.

1. La fonction f admet-elle des extrema locaux sur R2 ? Si oui, les déterminer.
2. La fonction f admet-elle des extrema globaux sur R2 ? Justifier.
3. On pose K = [0 ; 1] × [0 ; 1].

Justifier, oralement, que f admet un maximum global sur K, puis le déterminer.

1045 X-ENS/Mines-Ponts MP

Soit n ∈ N∗. Pour M ∈ Mn(R), on note : f(M) = (Tr(M); Tr(M2); . . . ; Tr(Mn)) ∈ Rn.
1. Montrer que f est différentiable sur Mn(R) et calculer sa différentielle df(M)

pour tout M ∈ Mn(R).
2. Comparer, pour tout M ∈ Mn(R), le rang de df(M) et le degré du polynôme

minimal annulateur de M , noté πM .
3. Montrer que l’ensemble {M ∈ Mn(R) | χM = πM} est un ouvert de Mn(R).

1046 Mines-Ponts MP

Soit f : Rn → Rn différentiable telle que lim
∥x∥→+∞

∥f(x)∥ = +∞ et que, pour tout

x ∈ Rn, df(x) est surjective. Soit a ∈ Rn et g : Rn → R, x 7→ ∥f(x) − a∥2.
1. Montrer que la fonction g est différentiable et exprimer dg(x) pour tout x ∈ Rn.
2. Montrer que la fonction g admet un minimum global.
3. En déduire que la fonction f est surjective.

1047 Mines-Ponts PSI

L’applicationH : R2 → R définie parH(x; y) =
x4y

x4 + y2 si (x; y) ̸= (0; 0), etH(0; 0) = 0
est-elle continue ? de classe C1 ?

1048 CCINP MP 2023

Soit f l’application de R2 dans R définie par f : (x; y) 7→ 4x2 + 12xy − y2.
Soit C = {(x; y) ∈ R2 | x2 + y2 = 13}.

1. Justifier que f atteint un minimum sur C.
2. Soit (u; v) ∈ C où f atteint l’un de ses extrema.

(a) Justifier avec un théorème de votre programme qu’il existe un réel λ tel que
le système (S) suivant soit vérifié :4u+ 6v = λu

6u− v = λv

(b) Montrer que (λ− 4)(λ+ 1) − 36 = 0.
3. Déterminer les valeurs possibles de (u; v), puis donner le maximum et le mini-

mum de f sur C.
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1049 CCINP PC 2017

On pose f(x; y) = x ln(y) − y ln(x) pour tout (x; y) ∈ R∗
+

2.
Déterminer les extrema de f sur R∗

+
2.

1050 Mines-Ponts MP 2021

Soit ∆ = {(x; y) ∈ R2 | xy = 0} et D =
{
(x; y) ∈ R2 | xy ∈

]
− π

2 ; π
2

[ }
.

1. Représenter ∆ et D dans R2.
2. Les ensembles ∆ et D sont-ils ouverts ? fermés ?
3. Montrer que

f : (x; y) 7−→


ln(1 + sin(xy))

xy
si (x; y) /∈ ∆

1 si (x; y) ∈ ∆

est de classe C∞ sur D.

1051 CCINP TSI

Soit
f : R2 −→ R

(x; y) 7−→ x4 + y4 − 4xy
Déterminer les points où f admet des extrema locaux.

1052 Mines 2024

Soit
f : R2 −→ R

(x; y) 7−→ min(x2; y2)
Quel est le domaine de continuité de f ? de différentiabilité de f ? La fonction f est-elle
de classe C1 ?

1053 Centrale-Supélec PC 2023

On pose :

∀x ∈ R, f(x) = x− ln(1 + x2) et ∀x, y ∈ R, F (x; y) = f(x) − f(y).

1. Montrer que f est de classe C1 et que l’équation f ′(x) = a d’inconnue x admet
au plus deux solutions.

2. Déterminer les points critiques de F .
3. Quelle est la nature des points critiques ?

1054 ENSEA/ENSIIE MP 2015

Rechercher les éventuels extrema de la fonction f(x; y) = (x− y)2 + x3 + y3.
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1055 Mines 2024

On munit R2 de la norme euclidienne et on considère la fonction :

f : R2 −→ R2

(x; y) 7−→
(

1
2 sin(x+ y);

1
2 cos(x− y)

)

1. Déterminer la différentielle de f .
2. Montrer que pour tout (x; y) ∈ R2 :

∥ df(x; y)∥ ⩽
1√
2
.

3. En déduire que le système 2x = sin(x+ y)
2y = cos(x− y)

admet au plus une solution.

1056 Mines 2023

Étudier l’existence, la continuité et les extrema de :

f : R × R∗
+ −→ R

(x; y) 7−→
∫ +∞

0

sin(t+ x)
t+ y

dt

1057 ENSEA/ENSIIE MPI 2023

Étudier les extrema de la fonction :

f : R∗
+ × R −→ R
(x; y) 7−→ x(y2 + ln2(x))

1058 Mines-Ponts MP 2022

On pose :
f(x; y) =

√
1 + x2 +

√
1 + y2 − xy√

2
.

La fonction f admet-elle des extrema globaux ? locaux ?

1059 Mines-Ponts MP 2022

Soit
f : R2 −→ R

(x; y) 7−→


sin(xy)
|x| + |y|

si (x; y) ̸= (0; 0)

0 sinon

La fonction f est-elle continue ? de classe C1 ?
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1060 Mines-Télécom MP 2024

Soit
f : R2 −→ R

(x; y) 7−→ 3xy − x3 − y3

Étudier les extrema de la fonction f .

1061 CCINP PSI 2019

Soit f : (x; y) 7→
x3 − y3

x2 + y2 si (x; y) ̸= (0; 0), et f(0; 0) = 0.

1. La fonction f est-elle continue sur R2 ?
2. La fonction f est-elle de classe C1 sur R2 ?

3. Étudier l’existence de
∂2f

∂x∂y
.

1062 Mines-Ponts MP 2023

1. Soit U un ouvert de R, x0 ∈ U et f : U → R dérivable en x0 telle que f admet
un extremum en x0. Montrer que f ′(x0) = 0.

2. Énoncer un théorème semblable pour U un ouvert de R2 et le démontrer.
3. Étudier les extrema de

f : (x; y) 7−→ |sin(x+ iy)|2

sur l’ensemble Ω = {(x; y) ∈ R2 | x2 + y2 ⩽ 1}.

1063 Mines-Ponts PSI 2025

On pose f(x; y) =
+∞∑
n=1

x2n

1 + y2n
.

1. Donner l’ensemble de définition de f et le représenter graphiquement.
2. Déterminer les dérivées partielles de f .

1064 CCINP PSI 2019

Soit
f : R2 −→ R2

(x; y) 7−→ x3y2(x+ y − 1)
1. Trouver les points critiques de f .
2. Déterminer les extrema locaux de f .

1065 CCINP MP 2027

Déterminer les extrema de la fonction f définie sur R2 par :

f(x; y) = x3 + 3xy2 − 15x− 12y.
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1066 CCINP PSI 2015

On considère les deux ensembles suivants :

K = {(x; y) ∈ R2 | 0 ⩽ x ⩽ π et 0 ⩽ y ⩽ π},
T = {(x; y) ∈ R2 | 0 < x < y < π}.

On considère la fonction F (x; y) = x(π− y) pour 0 ⩽ x ⩽ y ⩽ π et F (x; y) = y(π− x)
pour 0 ⩽ y ⩽ x ⩽ π.

1. La fonction F admet-elle des extrema locaux sur T ?
2. La fonction F admet-elle un minimum sur K ? un maximum ? Si oui, déterminer

leur valeur.

1067 CCINP MP 2022

On considère la fonction f définie sur R∗
+ × R par f(x; y) = x((ln(x))2 + y2) et Σ la

surface représentative de f dans un repère orthonormé.
1. Déterminer les points critiques de f . La fonction f admet-elle un extremum

global ?
2. Soit (a; b) un point critique de f . Déterminer l’équation du plan tangent à Σ en

(a; b; f(a; b)).
3. Exprimer l’équation du plan tangent en (1; 1; 1).
4. Exprimer la différentielle en (1; 1), puis g telle que g(x; y) = (f(x; y); f(x; y)).

1068 Mines-Ponts PSI 2014

Soit g : R2 → R continue. Soit C le cercle de centre O et de rayon R > 0.
1. Montrer qu’il existe deux points A et B de C diamétralement opposés tels que
g(A) = g(B).

2. En est-il de même pour deux points de C séparés d’un quart de tour ?

1069 CCINP PSI 2017

On note f la fonction :
(x; y) 7−→ x2y + ln(4 + y2).

1. Montrer que f admet sur R2 un unique point critique.
2. On note g : x 7→ f(x; x3) − f(0; 0). Trouver un équivalent simple de g en 0.
3. La fonction f admet-elle des extrema locaux ?

1070 Centrale-Supélec PC 2023

On définit :
f : [−2 ; 2] × R −→ R

(x; y) 7−→
x2

2 −
√

4 − x2 cos(y)

Montrer que f possède un maximum et un minimum, puis déterminer leur valeur.
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1071 CCINP PC 2019

Pour tout (x; y) ∈ R2, on pose :

f(x; y) = cosh(2x) − cos(2y).

On considère les deux ensembles suivants :

D = {(x; y) ∈ R2 | x2 + y2 ⩽ 1}
D′ = {(x; y) ∈ R2 | x2 + y2 < 1}

1. Pour tout t positif, montrer les inégalités sin(t) ⩽ t et sinh(t) ⩾ t.
2. Montrer que f admet un minimum nul sur R2.
3. Montrer que D est fermé et borné. En déduire que f admet un maximum sur
D.

4. Montrer que D′ est un ouvert et déterminer les points critiques de f dans D′.
5. En déduire qu’il existe t0 ∈

[
0 ; π

2

]
tel que le maximum de f sur D soit égal à

f(cos(t0); sin(t0)).
6. Étudier les variations sur

[
0 ; π

2

]
de la fonction g : θ 7→ f(cos(θ); sin(θ)).

Conclure.

1072 CCINP TSI 2019

Soit
f : R3 −→ R

(x; y; z) 7−→ (x2 + y2 + z2 + 3)2 − 16(x2 + y2)
et S la surface d’équation f(x; y; z) = 0.

1. Montrer que S est régulière en tout point.
2. Soit M(3; 0; 0). Trouver une équation cartésienne du plan tangent à S passant

par M .

1073 Centrale-Supélec PC 2016

Soit h une fonction de R dans R. On pose ∆ = {(x; y) ∈ R2 | x = y} et

f : (x; y) ∈ R2 \ ∆ 7−→ h(x) − h(y)
x− y

∈ R.

1. On suppose que h est de classe C1. Montrer que f se prolonge en une fonction
continue de R2 dans R.

2. On suppose que h est de classe C2. Montrer que f se prolonge en une fonction
de classe C1 de R2 dans R.

1074 Mines-Ponts MP 2023

On considère Rn muni de la structure euclidienne usuelle. Soit N une norme sur Rn et
a > 0. Soit f : Rn → R de classe C1 tel que pour tous x, y ∈ Rn :

⟨∇f(x) − ∇f(y), x− y⟩ ⩾ aN(x− y)2.

Montrer que f(x) tend vers +∞ quand N(x) tend vers +∞.
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1075 ENS MP 2022

1. Soit u ∈ C∞(Rn,R) telle que ∆u > 0 sur B(0, 1). Montrer que u atteint son
maximum sur la sphère S(0; 1).

2. Démontrer le même résultat en supposant uniquement que ∆u ⩾ 0 sur B(0, 1).
3. Soit V telle que :

∀x ∈ Rn, V (x) =


1 1 · · · 1
x1 x2 · · · xn
... ... ...

xn−1
1 xn−1

2 · · · xn−1
n

 .

Montrer que ∆V = 0.

1076 CCINP PC 2018

1. Soit
g : R∗

− −→ R

x 7−→ x exp
(

1
x

)
+ exp(x)

Montrer que g est croissante et calculer g(−1).
2. Soit

f : R2 −→ R
(x; y) 7−→ x exp(y) + y exp(x)

Montrer que si (x0; y0) est un point critique, alors x0 < 0, x0y0 = 1 et g(x0) = 0.
Déterminer le(s) point(s) critique(s).

3. Soit x 7→ f(−1 + ax; −1 + x) où a ∈ R. Donner un développement limité en 0
à l’ordre 2.

4. Montrer que f n’admet pas d’extremum local.
5. Notons D = {(x; y) ∈ R2 | |x| ⩽ 1 et |y| ⩽ 1}. Déterminer le minimum et le

maximum de f sur D en justifiant leur existence.

1077 Mines-Télécom PSI 2022

Étudier la continuité en (0; 0) de chacune des fonctions suivantes, toutes supposées
nulles en (0; 0). Elles sont définies pour tout (x; y) ∈ R2 \ {(0; 0)} par :

f(x; y) = x3y

x2 + y2 , g(x; y) = xy

x2 + y2 , h(x; y) = x3y

x2 + y2 + xy
.

1078 TPE/EIVP PSI 2017

Posons f(x; y) = (x− y)2(1 − x2 − y2) pour (x; y) ∈ R2.
1. Préciser le signe de f .
2. Déterminer les points critiques de f .
3. La fonction f possède-t-elle un minimum global ?
4. Montrer que f possède un maximum global et préciser les points où il est atteint.
5. Préciser les extrema locaux de f .
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1079 CCINP PC 2015

Soit
f : R2 −→ R

(x; y) 7−→ ex + ey + e−x−y

1. Montrer que :
∀t ∈ R, et ⩾ 1 + t.

2. Déterminer tous les points critiques de f et donner leur nature. Existe-t-il un
maximum ?

1080 CCINP MP 2023

On note, pour tous réels x et y :

f(x; y) = y2 sin
(
x

y

)
si y ̸= 0 et f(x; 0) = 0.

1. On pose X0 = (x0; 0) où x0 ∈ R.
(a) Montrer que f est continue en (x0; 0).
(b) Montrer que f est continue sur R2.

2. On considère X1 = (x1; y1) ∈ R2 avec y1 ̸= 0.
(a) Calculer les dérivées partielles de f en X1.
(b) La fonction f est-elle différentiable en X1 ? Si oui, donner la différentielle de

f en X1, puis en (0; 1).
3. Calculer les dérivées partielles de f en X0. Si on suppose que f est différentiable

en X0, que vaut sa différentielle ?

1081 CCINP MP 2012

1. Déterminer les extrema de la fonction

f : (x; y) 7−→ sin(x) cos(x) cos(x+ y)

sur le domaine

∆ =
{
(x; y) ∈ R2 | x ⩾ 0, y ⩾ 0 et x+ y ⩽ π

2

}
.

2. Soit (x; y; z) ∈ R3
+ tel que x+ y + z ⩽ π

2 .
Montrer que sin(x) sin(y) sin(z) ⩽ 1

8 .

1082 Mines-Ponts MP 2014

Montrer que

f(x; y) =
+∞∑
n=0

(n2 − nx− y)2

2n

est définie sur R2, qu’elle possède un minimum et trouver pour quel couple (x; y) elle
l’atteint.
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1083 CCINP PC 2024

Soit h une application de R dans R, à valeurs positives, de classe C2, convexe et de
dérivée strictement négative.

1. Montrer que x 7→ e−x vérifie ces hypothèses.
2. Soit

g : R −→ R
x 7−→ x+ h′(x)

(a) Montrer que g est strictement croissante, et vérifier que g(0) < 0.
(b) Montrer que l’équation g(x) = 0 a une et une seule solution. On la notera α.

3. Soit f l’application de classe C2 de R2 dans R, qui à (x; y) associe
x2 − 2xy + 2y2 + h(x).
(a) Montrer que

(
α; α

2

)
est l’unique point critique de f .

(b) Montrer que f admet un extremum local et déterminer sa nature.
4. On pose :

ϕ : ((x; y); (x′; y′)) 7−→ xx′ − xy′ − x′y + 2yy′.

On admet que ϕ est un produit scalaire sur R2. Montrer que :

∃k > 0, ∀(x; y) ∈ R2, x2 − 2xy + 2y2 ⩾ k(x2 + y2).

5. Montrer que l’extremum de f est global.

1084 ENSAM 2015

Déterminer les fonctions g ∈ C1(R,R) telles que le champ de vecteurs

V (x; y) =
(

(x2 + y2 − 1)g(x)
−2yg(x)

)

soit le gradient d’une fonction f . Calculer alors cette (ces) fonction(s) f .

1085 ENS MP 2019

On définit les intégrales doubles des fonctions de [0 ; 1]2 dans R continues : on intègre
successivement et les deux variables jouent des rôles équivalents i.e.∫ 1

0

∫ 1

0
f(x; y) dx dy =

∫ 1

0

∫ 1

0
f(x; y) dy dx.

On définit une norme :

∥f∥ =
√∫ 1

0

∫ 1

0
f(x; y)2 dy dx.

On considère l’ensemble A des g ∈ C([0 ; 1]2,R) telles qu’il existe r, s : [0 ; 1] → R avec,
pour tous x, y, g(x; y) = r(x)s(y).
Soit f ∈ C([0 ; 1]2,R). Supposons que, pour tout g ∈ A, ∥f + g∥ ⩾ ∥f∥.
Montrer que f est la fonction nulle.
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1086 CCINP PC 2024

Soit
f : R2 −→ R

(x; y) 7−→ x3 − y2

Soit l’ensemble C = {(x; y) | h(x; y) = 0}.
1. Montrer que h est une fonction de classe C1, puis montrer que (0; 0) est le seul

point critique de h. La fonction h admet-elle un extremum local en (0; 0) ?
2. Soit f : R2 → R, une fonction de classe C1 et telle que f(x; y) = 0 pour

(x; y) ∈ C.
(a) Justifier que pour tout t ∈ R, f(t2; t3) = 0.

(b) En déduire que
∂f

∂x
(0; 0) = 0.

3. Soit
φt : R −→ R

u 7−→ f(t2;u)

Justifier que φt est dérivable sur R et montrer qu’il existe γ(t) ∈ ] − t3 ; t3[ tel
que φ′

t(γ(t)) = 0.
4. Conclure que (0; 0) est un point critique pour f .
5. Représenter dans un repère orthonormé l’ensemble C.

1087 Mines-Ponts MP 2024

Posons D = R∗
+

2. Montrer que l’ensemble

S =
{
g ∈ C1(D,R) | ∃f ∈ C1(R∗

+,R), ∀(x; y) ∈ D, g(x; y) = f

(
x

y

)}

est l’ensemble des solutions sur D d’une équation aux dérivées partielles à préciser.

1088 CCINP PSI 2014

On pose D = {(x; y) ∈ R2 | x2 + 3
4y

2 + xy ⩽ 1}.
1. L’ensemble D est-il borné ?
2. À l’aide du changement de variable u = x+ y

2 et v = y√
2 , calculer l’aire de D.

1089 TPE/EIVP MP 2018

On définit :
f : (R∗

+)n −→ R

(x1; . . . ;xn) 7−→
(

n∑
i=1

xi

)(
n∑

i=1

1
xi

)
La fonction f admet-elle des extrema ? Si oui, lesquels ?

1090 Mines-Télécom MP 2018

Étudier la fonction f définie par :

f(x; y) = arctan(x) + arctan(y) − arctan
(
x+ y

1 − xy

)
.
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1091 Mines-Ponts MP 2019

Soit D = R × R∗
+ et ∆ = R∗

+ × R. On définit, pour tout (u; v) ∈ D :

ϕ(u; v) =
(
u2 + v2

2 ; u
v

)
.

1. Montrer que ϕ est une bijection de D dans ∆.
2. Montrer que ϕ et ϕ−1 sont de classe C1.

1092 Centrale-Supélec PC 2022

Soit f ∈ C2(]0 ; +∞[,R). On définit :

Φ : ]0 ; +∞[3 −→ R

(x; y; z) 7−→ f

(
x2 + y2

z2

)

Déterminer les choix de f tels que :

∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2 = 0.

1093 CCINP PC 2018

Soit g : R2 → R harmonique, c’est-à-dire g est de classe C2 et :

∂2g

∂x2 + ∂2g

∂y2 = 0.

1. Trouver a, b des réels tels que :

1
1 − t2

=
a

1 + t
+

b

1 − t
.

2. Résoudre l’équation différentielle suivante :

(1 − t2)y′′ − 2ty′ = 0.

Soit f : R → R une fonction dérivable deux fois et F = f ◦ g.

3. Exprimer
∂2F

∂x2 et
∂2F

∂y2 .

4. On suppose que f ′′ ne s’annule pas. Montrer que F est harmonique si et seule-
ment si g est une constante.
Soit h : R → R une fonction dérivable deux fois et :

G(x; y) = h

(
cos(x)
cosh(y)

)
.

5. Déterminer les applications h telles que G soit harmonique.
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1094 Mines 2015

Résoudre l’équation aux dérivées partielles

x
∂f

∂x
+ y

∂f

∂y
− f = −(x2 + y2)

dans le domaine U = R2 \ {(x; 0) | x ∈ R−}, en passant en coordonnées polaires.

1095 Mines-Ponts PSI 2019

Soit
f : (x; y) 7−→

+∞∑
n=2

(x+ y)n

n2 .

1. Quel est le domaine de définition de f ?
2. Déterminer les extrema locaux de f .

1096 ENS MP 2013

On suppose disposer d’une fonction f de deux variables (t;x) ∈ R2
+, positive, de classe

C1, telle que, pour tout x ∈ R+, f(0; x) = 0, et vérifiant l’inégalité :

∂f

∂t
− c

∂f

∂x
⩽ Kf,

où c et K sont deux constantes réelles avec c > 0. Montrer que f est nulle.

1097 ENS MP 2013

Soit v une fonction de deux variables (t;x) ∈ R+ × R, lipschitzienne et bornée.
Montrer qu’étant donnée une fonction u0 ∈ C1(R,R), il existe une unique fonction
u ∈ C1(R+ × R,R) vérifiant : 

∂u

∂t
+
∂(uv)
∂x

= 0
u(0; ·) = u0

1098 Centrale-Supélec MP 2013

On considère Rn comme espace euclidien.
Soit f une fonction croissante de R+ dans R de classe C1 avec f(0) = 1 et f ′(0) = 0.
On note N : x 7→ ∥x∥ et F : x 7→ f(∥x∥)x.

1. La fonction N est-elle de classe C1 sur Rn \ {0} ?
Quelle est la différentielle de N ?

2. La fonction F est-elle de classe C1 sur Rn \ {0} ?
Quelle est la différentielle de F ?

3. La fonction F est-elle continue en 0 ? Est-elle différentiable en 0 ?
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1099 CCINP MP 2023

Soit f : R2 → R telle que f(0; 0) = 0 et

∀(x; y) ∈ R2,
∂f

∂y
(x; y) >

∣∣∣∣∣∂f∂x (x; y)
∣∣∣∣∣ .

On pose u : x 7→ f(x;x), v : x 7→ f(x; −x) et wx : y 7→ f(x; y).
1. Calculer les dérivées de u, v et wx.
2. Montrer que pour tout x ∈ R, il existe un unique yx ∈ R tel que |yx| ⩽ |x| et
wx(yx) = 0.

3. On pose φ : x 7→ yx. On suppose que φ est dérivable.
Exprimer φ′(x) en fonction des dérivées partielles de f en (x;φ(x)). Montrer
que φ est de classe C1.

1100 ENS MP 2014

Soit µ ∈ C2(Rn,R), et χ ∈ C1(Rn,R) à support compact. Montrer que :∫
Rn

∥∇(χµ)∥2 =
∫
Rn

∥∇(χ)∥2µ2 −
∫
Rn
χ2µ∆µ.

1101 TPE/EIVP MP 2016

Soit S une matrice symétrique réelle. On note

R(X) = XTSX

XTX

pour tout vecteur colonne X non nul.
Montrer que P (x) = det(S−xIn) admet comme racines les valeurs prises par la fonction
R en ses points critiques.

1102 Mines-Ponts PC 2013

Soit
f : C −→ C \ {−2}

z 7−→
2z + 1
z + 2

On pose S = {z ∈ C | |z| = 1}, D = {z ∈ C | |z| ⩽ 1} et E = {z ∈ C | |z| < 1}.
1. Montrer que sous réserve de restrictions, f définit une bijection sur chacun de

ces ensembles.
2. On pose z = x+ iy, u : (x; y) 7→ Re(f(z)) et v : (x; y) 7→ Im(f(z)).

Montrer que u et v sont de classe C∞ sur R2 \ {(−2; 0)}.
3. Déterminer f−1.
4. Déterminer le jacobien de (x; y) 7→ (u(x; y); v(x; y)).

5. Calculer
∫∫

D

1
|(z + 2)4|

dxdy
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1103 CCINP PSI 2019

Soit
f : R2 −→ R

(x; y) 7−→

x
2 sin

(
y
x

)
si x ̸= 0

0 sinon

1. Montrer que f est continue sur R2.
2. Calculer les dérivées partielles de f . Montrer qu’elles sont continues en (0; 0).

3. Calculer
∂2f

∂x∂y
et

∂2f

∂y∂x
. Interpréter le résultat.

1104 CCINP MP 2022

Soit Ω = {(x; y) ∈ R2 | x > 0 et y > 0} et

Φ : Ω −→ Ω

(x; y) 7−→
(
xy;

x

y

)

1. Montrer que Φ est bijective et déterminer Φ−1.
2. On pose (u; v) = Φ(x; y) et f(x; y) = F (u; v).

Exprimer
∂f

∂x
,
∂f

∂y
,
∂2f

∂2x
et
∂2f

∂2y
en fonction des dérivées partielles de F .

3. Résoudre :
x
∂f

∂x
(x; y) + y

∂f

∂y
(x; y) − 2f(x; y) + 2 = 0.

4. Résoudre :

x2∂
2f

∂2x
− y2∂

2f

∂2y
= 0.

1105 CCINP MP 2022

Soit
f : R2 −→ R

(x; y) 7−→


xy√
x2 + y2 si (x; y) ̸= (0; 0)

0 sinon

1. Prouver que f ∈ C(R2,R).
2. On pose −→uθ = (cos(θ); sin(θ)) avec θ ∈ ] − π ; π].

Trouver les θ tels que la dérivée partielle de f en (0; 0) selon −→uθ existe.
3. Existe-t-il des dérivées partielles de f en (0; 0) ?

4. Calculer
∂f

∂x
(x; y) avec (x; y) ̸= (0; 0).

5. Est-ce qu’il existe des dérivées partielles d’ordre 2 de f sur R2 ?
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1106 Mines-Ponts PSI 2013

Soit f ∈ C1(R2,R), (p; q) ∈ R2 tel que (p; q) ̸= (0; 0), et c ∈ R.
Montrer que les restrictions de f aux droites d’équation px+ qy = c sont constantes si
et seulement si q∂f

∂x
= p

∂f

∂y
.

1107 Mines-Ponts MP 2016

Déterminer les extrema de la fonction f définie sur R2 par :

f : (x; y) 7−→ x4 + y4 − 2(x− y)2

et donner leur nature.

1108 Mines-Ponts MP 2021

Soit g ∈ C2(R,R). On considère la fonction f définie sur R2 par :

f(x; y) =


g(x) − g(y)
x− y

si x ̸= y

g′(x) si x = y

Montrer que f est de classe C1.
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6 Topologie

1109 CCP

Soit E un espace vectoriel normé. Soit A et B deux parties non vides de E.
1. (a) Rappeler la caractérisation de l’adhérence d’un ensemble à l’aide des suites.

(b) On suppose A ⊂ B. Montrer que A ⊂ B.
2. Montrer que A ∪B = A ∪B.
3. (a) Montrer que A ∩B ⊂ A ∩B.

(b) Montrer, à l’aide d’un exemple, que l’autre inclusion n’est pas forcément
vérifiée. On pourra prendre E = R.

1110 CCP MP

Énoncer quatre théorèmes différents ou méthodes permettant de prouver qu’une partie
d’un espace vectoriel normé est fermée et, pour chacun d’eux, donner un exemple
concret d’utilisation dans R2. Les théorèmes utilisés pourront être énoncés oralement
à travers les exemples choisis.
Remarques :

1. On utilisera au moins une fois des suites.
2. On pourra utiliser au plus une fois le passage au complémentaire.
3. Ne pas utiliser le fait que R2 et l’ensemble vide sont des parties ouvertes et

fermées.

1111 CCP MP

Les questions 1 et 2 sont indépendantes.
Soit E un espace vectoriel normé. Soit A une partie non vide de E. On note A l’adhé-
rence de A.

1. (a) Donner la caractérisation séquentielle de A.
(b) Prouver que, si A est convexe, alors A est convexe.

2. On pose, pour tout x ∈ E, dA(x) = inf
a∈A

∥x− a∥.

(a) Soit x ∈ E. Prouver que :

dA(x) = 0 =⇒ x ∈ A.

(b) On suppose que A est fermée et que, pour tout (x; y) ∈ E2, pour tout
t ∈ [0 ; 1],

dA(tx+ (1 − t)y) ⩽ tdA(x) + (1 − t)dA(y).
Prouver que A est convexe.

1112 X PC 2019

On considère l’ensemble des couples de vecteurs de R3 formant une famille libre. Mon-
trer que cet ensemble est ouvert dans R3 × R3.
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1113 Mines-Ponts MP 2024

Soit (E, ∥·∥) un espace vectoriel normé de dimension finie. Montrer qu’une intersection
décroissante de boules fermées de E est encore une boule fermée.

1114 CCP MP

Soit E = C([0 ; 1],R). On munit E des normes ∥·∥∞ et ∥·∥1 définies par :

∀f ∈ E, ∥f∥∞ = sup
t∈[0;1]

|f(t)| et ∥f∥1 =
∫ 1

0
|f(t)| dt.

On pose O = {f ∈ E | f(1) > 0} et F =
{
f ∈ F |

∫ 1
0 f(t) ⩽ 0

}
.

1. Montrer que O est ouvert pour la norme ∥·∥∞.
2. Montrer que F est fermé pour les normes ∥·∥∞ et ∥·∥1.
3. L’ensemble O est-il ouvert pour la norme ∥·∥1 ?

1115 CCINP 2024

On note E l’espace vectoriel des applications continues sur [0 ; 1] à valeurs dans R. Pour
tout f ∈ E, on pose :

∥f∥∞ = sup
t∈[0;1]

|f(t)| et ∥f∥1 =
∫ 1

0
|f(t)| dt.

1. Les normes ∥·∥∞ et ∥·∥1 sont-elles équivalentes ? Justifier.
2. Dans cette question, on munit E de la norme ∥·∥∞.

(a) Soit u : E → R, f 7→ f(0).
Prouver que u est une application continue sur E.

(b) On pose F = {f ∈ E | f(0) = 0}. Prouver que F est une partie fermée de
E pour la norme ∥·∥∞.

3. Dans cette question, on munit E de la norme ∥·∥1.
Soit c : [0 ; 1] → R, t 7→ 1.
Pour tout n ∈ N∗, on pose :

fn(t) =
nt si 0 ⩽ t ⩽ 1

n

1 si 1
n
< t ⩽ 1

(a) Soit n ∈ N∗. Calculer ∥fn − c∥1.
(b) On pose F = {f ∈ E | f(0) = 0} et on note F l’adhérence de F .

Prouver que c ∈ F . L’ensemble F est-il fermé pour la norme ∥·∥1 ?

1116 X-ENS

Soit A ⊂ R tel que tout a ∈ A est isolé. Montrer que l’ensemble A est au plus dénom-
brable.

1117 X-ENS

Donner un exemple de forme linéaire non continue.
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1118 CCP MP

Soit n ∈ N∗ et K le corps des réels ou des complexes.
1. Montrer que GLn(K) est un ouvert dense de Mn(K).
2. Montrer que On(R) est un compact d’intérieur vide de Mn(R).

1119 CCP MP

Soit A une partie non vide d’un espace vectoriel réel normé E.
1. Rappeler la définition d’un point adhérent à A, en termes de voisinages ou de

boules.
2. Démontrer que :

x ∈ A ⇐⇒ ∃(xn)n∈N telle que, ∀n ∈ N, xn ∈ A et lim
n→+∞

xn = x.

3. Démontrer que si A est un sous-espace vectoriel de E, alors A est un sous-espace
vectoriel de E.

4. Démontrer que si A est convexe, alors A est convexe.

1120 CCP MP

Soit E et F deux espaces vectoriels normés.
1. Soit f une application de E dans F et a un point de E.

Montrer que les deux affirmations suivantes sont équivalentes :
i) L’application f est continue en a.
ii) Pour tout suite (xn)n∈N d’éléments de E telle que lim

n→+∞
xn = a,

alors lim
n→+∞

f(xn) = f(a).

2. Soit A une partie dense dans E, et soit f et g deux applications continues de E
dans F . Démontrer que si, pour tout x ∈ A, f(x) = g(x), alors f = g.

1121 CCP MP

Soit E et F deux espaces vectoriels normés sur le corps R.
1. Démontrer que si f est une application linéaire de E dans F , alors les propriétés

suivantes sont équivalentes :
i) L’application f est continue sur E.
ii) L’application f est continue en 0E.
iii) Il existe k > 0 tel que : ∀x ∈ E, ∥f(x)∥F ⩽ k∥x∥E.

2. Soit E l’espace vectoriel des applications continues de [0 ; 1] dans R muni de la
norme définie par :

∥f∥∞ = sup
x∈[0;1]

|f(x)|.

On considère l’application φ de E dans R définie par :

φ(f) =
∫ 1

0
f(t) dt.

Démontrer que φ est linéaire et continue.
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1122 CCP MP

Soit E = C([0 ; 1],R) muni de la norme ∥·∥∞ définie par :

∀f ∈ E, ∥f∥∞ = sup
t∈[0;1]

|f(t)|.

On considère l’ensemble A =
{
f ∈ E | f(0) et

∫ 1
0 f(t) dt ⩾ 1

}
.

1. Montrer que A est une partie fermée de E.
2. Montrer que si f ∈ A, alors ∥f∥∞ > 1.
3. Soit n > 1. On considère

fn : x 7→


1
α

(
1 + 1

n

)
x si x ⩽ α

1 + 1
n

si x > α

Montrer que l’on peut choisir α ∈ [0 ; 1] tel que fn ∈ A.
En déduire la distance de OE à A.

1123 CCINP 2024

1. Rappeler, oralement, la définition, par les suites de vecteurs, d’une partie com-
pacte d’un espace vectoriel normé.

2. Démontrer qu’une partie compacte d’un espace vectoriel normé est une partie
fermée de cet espace.

3. Démontrer qu’une partie compacte d’un espace vectoriel normé est une partie
bornée de cet espace.
Indication : on pourra raisonner par l’absurde.

4. On se place sur E = R[X] muni de la norme ∥·∥1 définie pour tout

P = a0 + a1X + · · · + anX
n de E par ∥P∥1 =

n∑
i=0

|ai|.

(a) Justifier que S(0; 1) = {P ∈ R[X] | ∥P∥1 = 1} est une partie fermée et
bornée de E.

(b) Calculer ∥Xn −Xm∥1 pour m et n des entiers naturels distincts.
L’ensemble S(0; 1) est-il une partie compacte de E ? Justifier.

1124 Mines-Ponts

Soit (E, ∥·∥) un espace vectoriel normé. Montrer que l’application

f : x 7→ x

1 + ∥x∥

réalise une bijection continue de E dans la boule ouverte centrée en O et de rayon 1.

1125 Mines-Ponts MP 2021

Soit X une partie de GLn(C) non vide, compacte et stable par produit. Montrer que
X est un sous-groupe de GLn(C).
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1126 CCP PSI

Soit E l’espace vectoriel des suites bornées complexes.

1. Montrer que N1(u) =
+∞∑
n=0

|un|
2n

et N2(u) =
+∞∑
n=0

|un|
n! sont deux normes sur E.

2. Les normes N1 et N2 sont-elles équivalentes ?

1127 Centrale PSI

On note SLn(R) l’ensemble des matrices de Mn(R) dont le déterminant vaut 1. L’en-
semble SLn(R) est-il un espace vectoriel ? un groupe multiplicatif ? un fermé deMn(R) ?
un ouvert de Mn(R) ?

1128 X-ENS

On munit Rn de la norme euclidienne canonique et Mn(R) de la norme d’opérateur
associée. Montrer que l’enveloppe convexe de On(R) est la boule unité fermée de Mn(R).

1129 X-ENS

Soit (E, ∥·∥) un espace normé réel de dimension finie, K un compact non vide de E.
Montrer qu’il existe une boule fermée de rayon minimal contenant K. Cette boule est-
elle unique ?

1130 X

Décrire les composantes connexes par arcs de GLn(C) et de GLn(R).

1131 X

Décrire les composantes connexes par arcs de On(R) et de SOn(R).

1132 X

Montrer que SLn(C) est connexe par arcs.

1133 Mines-Télécom MP 2024

Soit E le plan euclidien.
1. L’ensemble A = {(x; y) ∈ R2 | y2 − x2 = 1} est-il un fermé de E ?
2. Donner la définition d’un partie connexe par arcs.
3. Montrer que le cercle de centre O et de rayon 1 est une partie connexe par arcs

de R2.
4. Soit f : E → R continue. Montrer que l’image par f d’une partie connexe par

arcs, fermée et bornée, est un segment.

1134 X

Soit K un voisinage compact de 0 dans Rn. On pose A = {u ∈ L(Rn) | u(K) ⊂ K}.
1. Montrer que A est compact.
2. Montrer que, pour u ∈ A, |det(u)| ⩽ 1.
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1135 X

Soit K un compact de Rn convexe non vide et u un endomorphisme de Rn tel que
u(K) ⊂ K. Montrer que u admet un point fixe dans K.

1136 Centrale-Supélec MP 2025

1. Montrer que les parties connexes par arcs de R sont les intervalles.

Soit Ω une partie de E = R. On note (C) la propriété suivante :
Pour toute fonction f : Ω → {0; 1} continue sur Ω, f est constante.

2. Montrer que si Ω est connexe par arcs, alors Ω vérifie (C).

Soit E = R2 et Ω =
{(
x; sin

(
1
x

))
| x ∈ R∗

+

}
∪ ({0} × [−1 ; 1]).

3. (a) Montrer que Ω vérifie (C).
(b) Montrer que Ω n’est pas connexe par arcs.

1137 Centrale

Soit E un espace vectoriel réel normé et f une forme linéaire de E. Montrer que :

f est continue ⇐⇒ Ker(f) est fermé.

1138 Mines-Télécom PSI 2025

Soit n ∈ N∗. Soit Un l’ensemble des polynômes de R[X] unitaires de degré n et scindés
sur R. On se propose de démontrer que Un est un fermé de Rn[X].

1. Soit P ∈ R[X], unitaire de degré n. Montrer que P est scindé sur R si et
seulement si

∀z ∈ C, |Im(z)|n ⩽ |P (z)|.

2. Conclure.

1139 Mines-Télécom MP 2024

Soit E un espace euclidien de dimension n. On identifiera Mn×1(R) et Rn. Soit M un
matrice symétrique de Mn(R). On note λ1 ⩽ · · · ⩽ λn ses valeurs propres comptées
avec leur multiplicité. On pose φA(X) = XTAX, pour X ∈ Mn×1(R).

1. Montrer que :

∀X ∈ Mn×1(R), λ1∥X∥2 ⩽ φA(X) ⩽ λn∥X∥2.

2. Trouver une condition nécessaire et suffisante pour que φ−1
A ({1}) soit un compact

non vide.

1140 Mines-Télécom MPI 2024

Soit E un espace vectoriel réel normé et A,B des sous-ensembles de E. On pose :

A+B = {a+ b | a ∈ A, b ∈ B}.

1. Montrer que si A et B son compacts, alors A+B est compact.
2. Montrer que si A est fermé et B compact, alors A+B est fermé.
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1141 ENS MPI 2025

Soit E un espace préhilbertien de dimension infinie. Soit K une partie de E, non vide,
bornée et dont la frontière est compacte. Montrer que K est d’intérieur vide.

1142 Mines-Ponts MP 2023

Montrer que l’ensemble des suites réelles convergentes est un fermé de ℓ∞.

1143 CCINP MP 2018

Soit E un espace vectoriel normé et A une partie non vide de E. On note Å l’intérieur
de A.

1. Montrer que Å est un ouvert.
2. On suppose que A est un sous-espace vectoriel de E. Montrer que, si Å ̸= ∅,

alors A = E.
3. On pose E = Mn(R) et A l’ensemble des matrices nilpotentes de E. On veut

montrer que Å = ∅.
(a) Montrer que si Å ̸= ∅, alors l’intérieur de Vect(A) est non vide.
(b) Aboutir à une contradiction.

1144 CCINP PC 2018

On étudie E =
{

(x; y) ∈ R2
∣∣∣∣
(

2 y
x 1

)
est diagonalisable dans R

}
.

1. Donner une condition nécessaire et suffisante pour que (x; y) ∈ E.
2. Montrer que E est un ouvert de R2.

1145 Mines-Télécom MP 2019

Soit E un espace vectoriel normé.
1. Donner la définition d’un ouvert de E.
2. Montrer que toute boule ouverte de E est un ouvert de E.
3. Montrer que tout ouvert est réunion de boules ouvertes.

1146 Mines-Ponts MP 2023

Soit p un entier naturel non nul et a, b des réels tels que a < b.
On note Zp =

{
f ∈ C([a ; b],R) | Card({x ∈ [a ; b]}) | f(x) = 0}) ⩾ p

}
.

Déterminer l’adhérence de Zp pour la norme infinie.

1147 Mines-Ponts MP 2021

1. Montrer que l’ensemble des matrices de Mn(C) de rang inférieur ou égal à r
(avec 0 ⩽ r ⩽ n) est un fermé.

2. Déterminer l’adhérence de l’ensemble des matrices de rang exactement r.

1148 X MP 2018

Soit E l’ensemble des polynômes à coefficients dans {−1; 0; 1}. Notons A l’ensemble
des racines des polynômes de E. Quelle est l’adhérence de A ?
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1149 Centrale-Supélec MP 2018

Soit (E; ∥·∥) un espace vectoriel normé.
Soit A un compact de E.

1. Montrer que A× A est un compact.
2. Soit f : A → A telle que :

∀x, y ∈ A, x ̸= y =⇒ ∥f(x) − f(y)∥ < ∥x− y∥.

Montrer que f admet un unique point fixe.
3. Soit f : A → A telle que :

∀x, y ∈ A, ∥f(x) − f(y)∥ ⩾ ∥x− y∥.

Montrer que f est bijective et préserve les distances. (Montrer que l’inégalité de
l’hypothèse est un fait une égalité.)

1150 ENS Ulm 2022

Montrer que l’application M 7→ Tr(exp(M)) est convexe sur Sn(R).

1151 Centrale 2023

Soit E un espace vectoriel normé. On dit qu’une partie A de E est connexe s’il n’existe
aucun couple de fermés disjoints non vides (F ;G) tel que A = F ∪G.

1. Montrer que l’on peut remplacer « fermés » par « ouverts » dans la définition
ci-dessus.

2. Montrer que A est connexe si, et seulement si, toute application continue de A
dans N est constante.

3. Montrer que si A est connexe par arcs, alors A est connexe.
4. Quelles sont les parties connexes de R ?
5. Soit u ∈ RN telle que (un+1 − un)n∈N converge vers 0. On note V (u) l’ensemble

des valeurs d’adhérence de u. Montrer que V (u) est un intervalle.
6. Soit u ∈ EN bornée telle que (un+1 − un)n∈N converge vers 0. Montrer que V (u)

est connexe.

1152 Centrale 2022

Soit B un compact convexe de Rn et u un endomorphisme de Rn. On suppose que
u(B) ⊂ B.

On pose u0 = Id, et un = 1
n

n−1∑
k=0

uk pour n ⩾ 1.

1. Quels sont les compacts convexes de R ?

2. On pose A =
+∞⋂
n=0

un(B). Montrer que x ∈ A si, et seulement si, u(x) = x et

x ∈ B.
3. Montrer que A ̸= ∅.
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1153 ENS 2022

Montrer que les morphismes continus de SLn(R) vers GLn(R) sont à valeurs dans
SLn(R).

1154 Mines 2024

On note I = [1 ; +∞[ et on considère les ensembles :
• E = {f ∈ C(I,R) | f a une limite en + ∞},
• F = {f ∈ RI | ∃n ∈ N, ∃P ∈ Rn[X], ∀t ∈ I, f(t) = P (t)t−n}.

1. Montrer que (E, ∥·∥∞) est un espace vectoriel normé, et que l’ensemble F est
un sous-espace vectoriel de E.

2. Montrer que F est dense dans E.

1155 ENS 2022

Soit A ⊂ Rd bornée et x ∈ conv(A).
Montrer que, pour tout n ⩾ 1, il existe x1, . . . , xn ∈ A tels que :∥∥∥∥∥x− 1

n

n∑
i=1

xi

∥∥∥∥∥ ⩽ diam(A)√
n

avec diam(A) = sup
x,y∈A

∥x− y∥.

1156 Mines-Télécom PSI 2023

1. Soit N la norme définie sur R2 par :

N(x; y) = max
(

|y|;
∣∣∣∣x+ y

2

∣∣∣∣ ; |x+ y|
)
.

Représenter la boule unité pour cette norme.
2. Soit E un espace vectoriel réel de dimension n. Soit {φ1; . . . ;φp} une famille de

formes linéaires sur E. À quelle condition l’application N : E → R+, qui à x
associe max

1⩽i⩽p
|φi(x)|, est-elle une norme ?

1157 Mines-Télécom MP 2018

Soit E = C([0 ; 1],R) muni de la norme de la convergence uniforme.
On pose A = {f ∈ E | f(0) = 0 et

∫ 1
0 f(t) dt ⩾ 1}. Montrer que A est un fermé de E.

1158 ENS MP 2018

Que dire d’un sous-groupe strict fermé de U ?

1159 TPE/EIVP MP 2018

Soit (E, ∥·∥) un espace vectoriel normé.
1. Soit F un sous-espace vectoriel de E. Montrer que F est un sous-espace vectoriel.
2. Soit F un hyperplan de E. Montrer que F est fermé ou dense dans E.
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1160 Centrale-Supélec MP 2021

Soit E l’espace vectoriel des suites réelles bornées. Montrer que les deux applications
suivantes sont des normes sur E :

• La norme infinie des suites ;

• N : u 7→
+∞∑
n=0

|un|
2n

.

1. Ces deux normes sont-elles équivalentes ?
2. Soit Z l’ensemble des suites nulles à partir d’un certain rang. Montrer que

l’intérieur de Z est vide, et déterminer son adhérence.

1161 Centrale-Supélec MP 2016

Soit I un segment de ]0 ; 1[ et E = C(I,R) muni de la norme infinie.
1. Énoncer le théorème d’approximation de Weierstrass.
2. On pose f(x) = 2x(1 −x). Étudier les convergences simple et uniforme sur I de

la suite de fonctions (fn)n⩾2 définie par :

fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n fois

.

3. Montrer que Z[X] est dense dans E.

1162 ENS MP 2019

Existe-t-il un espace vectoriel muni de deux normes et une suite dans cet espace tels
que cette suite converge pour les deux normes mais vers des limites différentes ?

1163 CCINP

Soit (E, ∥·∥) un espace vectoriel normé et K un compact de E.
Soit f : K → K telle que

∀(x; y) ∈ K2, x ̸= y =⇒ ∥f(x) − f(y)∥ < ∥x− y∥.

1. (a) Montrer que si f admet un point fixe, alors ce point est unique.
(b) En étudiant l’application g : x 7→ ∥f(x) − x∥ définie sur K, montrer que f

admet un unique point fixe.
2. On considère une suite (xn)n∈N définie par :x0 ∈ K

∀n ∈ N, xn+1 = f(xn)

Montrer, à partir de la suite définie par :

∀n ∈ N, vn = ∥xn − a∥,

où a est le point fixe de f , que (xn)n∈N converge vers une limite à déterminer.
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1164 X MP 2019

On note E l’ensemble des applications continues de [0 ; 1] dans R. On le munit de la
norme infinie sur [0 ; 1]. Pour tous m ∈ N∗ et ε > 0, on définit :

Ωm,ε = {f ∈ E | ∀x ∈ [0 ; 1], ∃y ∈ ]x− ε ; x+ ε[, |f(x) − f(y)| > m|x− y|}.

1. Montrer que, pour tous m ∈ N∗ et ε > 0, Ωm,ε est un ouvert dense.
2. On admet le théorème de Baire : une intersection dénombrable d’ouverts denses

est dense. Montrer que l’ensemble des applications continues de [0 ; 1] dans R
nulle part dérivables est dense dans E.

1165 X MP 2013

On note Cn l’ensemble des matrices de Mn(C) dont le polynôme caractéristique est
égal au polynôme minimal.

1. Démontrer que Cn est un ouvert dense de Mn(C).
2. L’application qui à une matrice associe son polynôme minimal est-elle continue ?
3. Montrer que GLn(C) est connexe par arcs.

1166 Mines-Ponts MP 2017

Soit n ∈ N. On considère les ensembles suivants :

Λn = {(x; y) ∈ R2 | x2 + y2 = n} et ∆n = {(x; y) ∈ Q2 | x2 + y2 = n}.

1. L’ensemble ∆1 est-il dense dans Λ1 ?
2. L’ensemble ∆2 est-il dense dans Λ2 ?
3. L’ensemble ∆3 est-il dense dans Λ3 ?
4. Donner une condition nécessaire et suffisante pour que ∆n soit dense dans Λn.

1167 Mines-Ponts MP 2018

Soit E un espace vectoriel réel de dimension infinie.
1. Soit C un convexe de E et D un ensemble tel que C ⊂ D ⊂ C. Montrer que D

est connexe par arcs.
2. SoitH un hyperplan de E. Montrer que E\H est connexe par arcs si et seulement

si H n’est pas fermé.

1168 Centrale-Supélec MP 2017

On note An l’ensemble des matrices M de Mn(R), dont le polynôme caractéristique
est scindé à racines simples. On note Bn l’ensemble des matrices M de Mn(R), dont le

polynôme caractéristique est
n∏

i=1
(X −mii).

1. Rappeler la définition d’un fermé.
2. Montrer que Bn est un fermé. Montrer que An est un ouvert.
3. Quelle est la dimension maximale d’un espace vectoriel inclus dans Bn ?
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1169 Mines-Ponts MP 2022

Soit E un espace vectoriel réel ou complexe, A une partie de E et f une fonction
continue de [0 ; 1] dans E telle que f(0) ∈ A et f(1) ∈ E \ A. Montrer qu’il existe un
élément de f([0 ; 1]) qui appartient à la frontière de A.

1170 X MP 2024

Soit f : [0 ; 1] → R et Gf son graphe. Les deux affirmations suivantes sont-elles vraies
ou fausses ?

1. La fonction f est continue si et seulement Gf est fermé.
2. La fonction f est continue si et seulement Gf est compact.

1171 Mines-Ponts MP 2018

Soit E un espace vectoriel normé et K un compact non vide de E. Montrer qu’il existe
un segment de longueur maximale dans K.
On rappelle que [a ; b] = {ta+ (1 − t)b | 0 ⩽ t ⩽ 1}.

1172 X MP 2019

1. Montrer que l’ensemble A défini par

A = {P ∈ Rn[X] | P simplement scindé et deg(P ) = n}

est ouvert dans Rn[X].
2. Quelle est l’adhérence de A ?

1173 Mines-Ponts

Soit E = C([0 ; 1],R) et (f ; g) ∈ E2. On pose Ng(f) = ∥gf∥∞.
1. Donner une condition nécessaire et suffisante sur g pour que Ng soit une norme.
2. Donner une condition nécessaire et suffisante sur g pour que Ng soit équivalente

à la norme infinie.

1174 ENS

Soit P ∈ C[X] non constant. Montrer que l’image par P d’une partie fermée (resp.
ouverte) de C est fermée (resp. ouverte).

1175 ENSEA/ENSIIE 2012

Un espace vectoriel réel normé E est dit uniformément convexe si et seulement si :

∀ε > 0, ∃δ > 0, ∀(x; y) ∈ E2,

∥x∥ ⩽ 1, ∥y∥ ⩽ 1 et ∥x− y∥ ⩾ ε =⇒
∥∥∥∥x+ y

2

∥∥∥∥ ⩽ 1 − δ.

Étudier si R2, pour les trois normes usuelles ∥·∥1, ∥·∥2 et ∥·∥∞, est uniformément
convexe.
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1176 Mines-Ponts

Soit E = C1([0 ; 1],R). Pour tout f ∈ E, on pose :

N(f) =
√
f 2(0) +

∫ 1

0
(f ′(t))2 dt.

1. Montrer que N est une norme sur E.
2. Montrer que, pour tout f ∈ E, ∥f∥∞ ⩽

√
2N(f).

3. Les normes N et ∥·∥∞ sont-elles équivalentes ?

1177 Mines-Ponts

Soit E un espace vectoriel réel de dimension finie n ⩾ 2. Soit :

P = {u ∈ L(E) | u2 = IdE}.

1. L’ensemble P est-il fermé ? compact ?
Soit E un espace topologique, A une partie non vide de E et a ∈ A. On dit que
le point a ∈ A est isolé dans A s’il existe un voisinage V de a dans E tel que
V ∩ A = {a}.

2. Caractériser T = {Tr(u) | u ∈ P}. En déduire que IdE est un point isolé de P .
3. Déterminer tous les points isolés de P .

1178 Centrale-Supélec MP 2023

Soit (E,N) et (E ′, N ′) des espaces vectoriels réels normés de dimension finie. Soit
d ∈ N. On note ∥·∥ l’application de Rd[X] définie par :∥∥∥∥∥

d∑
k=0

akX
k

∥∥∥∥∥ = max
k∈[[0;d]]

|ak|.

1. Montrer que ∥·∥ est une norme sur Rd[X].
2. (a) Soit (yn)n∈N ∈ (E ′)N telle que lim

n→+∞
yn = ℓ.

Montrer que Y = {ℓ} ∪ {yn | n ∈ N} est un compact de E ′.
(b) Soit f : E → E ′ continue telle que pour tout compact K de E ′, f−1(K) soit

un compact de E. Montrer alors que pour tout fermé F de E, f(F ) est un
fermé de E ′.

3. Soit P ∈ Rd[X] unitaire, x une racine réelle de P telle que |x| > 1. Montrer que
|x| ⩽ ∥P∥ + 1.
En déduire que l’ensemble des polynômes unitaires et scindés de Rd[X] est un
fermé de Rd[X].

1179 Mines-Ponts MP 2013

1. Montrer que GLn(C) est dense dans Mn(C).
2. En déduire qu’il existe une base de Mn(C) constituée de matrices inversibles.
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1180 Mines-Ponts MP 2017

Soit (E,N) un espace vectoriel normé de dimension finie n. Pour u ∈ L(E), on pose :

∥u∥ = sup{N(u(x)) | x ∈ E, N(x) ⩽ 1}.

1. Montrer que ∥·∥ est bien définie et que :

∀y ∈ E, N(u(y)) ⩽ ∥u∥N(y).

2. Montrer que l’on a ainsi bien défini une norme sur L(E).
3. Soit (uk)k∈N une suite dans L(E). Montrer que (uk)k∈N converge pour la norme

∥·∥ si et seulement si (uk)k∈N converge simplement pour N .

1181 Mines-Télécom MP 2018

1. Dans un espace vectoriel normé, donner la définition d’un point adhérent à une
partie, et une caractérisation de l’adhérence d’une partie.

2. Soit M ∈ Mn(R). Montrer que M est adhérent à GLn(R). L’ensemble GLn(R)
est-il un fermé de Mn(R) ?

1182 Mines-Ponts MP 2017

Soit E l’espace vectoriel des fonctions de classe C1 de [0 ; 1] dans R et ϕ une forme
linéaire positive non nulle. Soit

pϕ : f 7−→ |ϕ(f)| +
∫ 1

0
|f ′(x)| dx.

Par exemple, pour ϕ : f 7→ f(0), on note p0 la fonction associée.
1. Montrer que pour tout f :

|ϕ(f)| ⩽ ϕ(1)∥f∥∞.

En déduire que pϕ est une norme.
2. Montrer que p0 et pϕ sont équivalentes.

1183 Mines-Ponts MP 2024

Soit E un espace euclidien, A un compact et u un endomorphisme orthogonal tel que
u(A) ⊂ A.

1. Montrer que u(A) = A.
2. On note :

r = inf{s ∈ R+ | ∃x ∈ E, A ⊂ B(x, s)}.
Montrer qu’il existe une unique boule fermée de rayon r contenant A.

3. Montrer que u admet un point fixe.
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1184 X MP 2025

Soit E un espace vectoriel réel de dimension finie.
1. Montrer que tout convexe fermé non borné contient une demi-droite.
2. Montrer que le résultat est encore vrai sans l’hypothèse « fermé ».

1185 Mines-Télécom MP 2024

On appelle matrice stochastique de Mn(R) toute matrice carrée d’ordre n dont les
coefficients sont des réels positifs et la somme de chaque coefficient de la même ligne
vaut 1. On note S l’ensemble des matrices stochastiques de Mn(R).

1. Montrer que S est stable par produit matriciel.
2. Étudier la topologie de S (ouvert, fermé, compact, connexité par arcs).

1186 Mines-Ponts PSI 2023

Soit E = C([0 ; 1],R). Si f ∈ E, on note :

φ(f) : x 7−→
∫ x

0
tf(t) dt.

1. Montrer que φ est un endomorphisme de E.
2. Trouver le plus petit k > 0 tel que :

∀f ∈ E, ∥φ(f)∥∞ ⩽ k∥f∥∞.

3. Trouver le plus petit k > 0 tel que :

∀f ∈ E, ∥φ(f)∥∞ ⩽ k∥f∥1.

1187 Centrale-Supélec MP 2024

Soit n ∈ N∗.
1. (a) Rappeler la définition de ||| · ||| sur Mn(C).

(b) On note ρ(A) = max
λ∈Sp(A)

|λ|.

L’application A 7→ ρ(A) est-elle une norme ?
2. Montrer que :

∀A ∈ Mn(C), ∀k ∈ N∗, ρ(A) ⩽ |||Ak|||
1
k .

3. Soit N une norme quelconque sur Mn(C). Montrer que :

ρ(A) = lim
k→+∞

|N(Ak)|
1
k .

1188 Mines-Ponts MP 2023

Soit S un segment non trivial de R, f une fonction de classe C2 de S dans R.
Montrer que f est convexe si, et seulement si, il existe une suite de polynômes convexes
convergeant uniformément vers f .
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1189 X MP 2021

Soit K une partie d’un espace vectoriel normé E. On dit que K est précompacte lorsque,
pour tout δ > 0, il existe une liste finie (x1; . . . ;xn) d’éléments de E telle que

K ⊂
n⋃

k=1
B(xk, δ),

et on note alors n(K, δ) le plus petit de ces entiers n.
1. Montrer que si K est compact alors il est précompact.
2. On suppose E de dimension finie d. Soit K un compact d’intérieur non vide.

Déterminer un équivalent de ln(n(K, δ)) lorsque δ tend vers 0+.
On pourra commencer par le cas où E = Rd muni de la norme infinie.

3. On considère ici l’espace vectoriel E = C([0 ; 1],R) muni de la norme infinie.
On note K l’ensemble des fonctions 1-lipschitziennes de [0 ; 1] dans R qui s’an-
nulent en 0. Montrer que K est précompact, puis déterminer un équivalent de
ln(ln(n(K, δ))) quand δ tend vers 0+.

1190 ENS MP 2025

On note E l’ensemble des fonctions de R dans R lipschitziennes et 1-périodiques. Pour
tout a ∈ ]0 ; 1], on note :

∥f∥a = sup
x∈R

|f(x)| + sup
(x;y)∈R2

x̸=y

|f(x) − f(y)|
|x− y|a

.

1. Montrer que ∥·∥a est une norme sur E pour tout a ∈ ]0 ; 1].
2. Montrer que l’ensemble des fonctions de R dans R de classe C1 et 1-périodiques

est un fermé de E pour la norme ∥·∥1.

1191 Mines-Ponts PC 2022

1. Donner la norme euclidienne habituelle sur Rn. Existe-t-il d’autres normes eu-
clidiennes sur Rn ?
Dans la suite, la norme euclidienne habituelle sur Rn est notée ∥·∥. La sphère
unité correspondante est notée S.

2. Soit f ∈ L(Rn). Montrer que la fonction x 7→ ∥f(x)∥ admet un maximum sur
S. Ce maximum est noté |||f |||.

3. Pour tout couple (f ; g) d’éléments de L(Rn), prouver l’inégalité :

|||f ◦ g||| ⩽ |||f ||| · |||g|||.

4. Soit f ∈ L(Rn) tel que |||f ||| < 1. Montrer que la série
∑
k⩾0

fk est convergente et

que sa somme est un automorphisme de Rn.
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1192 Mines-Télécom MP 2022

On pose pour tout l’exercice E = C([a ; b],R).
1. Donner les normes ∥·∥1 et ∥·∥∞ sur E.
2. Justifier, oralement, en ne donnant que les arguments importants, que ∥·∥1 est

une norme.
3. Montrer que si (fn)n∈N ∈ EN converge au sens de ∥·∥∞, alors elle converge au

sens de ∥·∥1.
4. Les normes ∥·∥1 et ∥·∥∞ sont-elles équivalentes ?

1193 CCINP MP 2022

1. Soit (E, ∥·∥) un espace vectoriel normé, et K un compact de E.
Montrer que K est fermé et borné.
On s’intéresse à l’espace vectoriel E = C([0 ; 2π],C) muni de la norme ∥·∥2
définie par :

∥f∥2 =
√∫ 2π

0
|f(x)|2 dx.

2. On admet dans un premier temps que ∥·∥2 est une norme sur E.
Pour tout n ∈ N, on pose fn : x 7→ einx.
(a) Montrer que pour tous entiers n et p distincts, ∥fn − fp∥2 = 2

√
π.

(b) En déduire que la boule fermée B(0, 1) n’est pas compacte.
3. (a) Démontrer pour tous complexes u et v l’inégalité :

|uv| ⩽ |u|2

2 + |v|2

2 .

En déduire que pour toutes fonctions f et g de E, et pour tout λ ∈ R∗
+ :

∫ 2π

0
|f(x)g(x)| dx ⩽

λ2

2

∫ 2π

0
|f(x)|2 dx+ 1

2λ2

∫ 2π

0
|g(x)|2 dx.

(b) Soit (f ; g) ∈ E2. En déterminant le minimum de la fonction :

h : λ 7−→ λ2

2

∫ 2π

0
|f(x)|2 dx+ 1

2λ2

∫ 2π

0
|g(x)|2 dx,

démontrer que
∫ 2π

0
|f(x)g(x)| dx ⩽ ∥f∥2∥g∥2.

(c) En déduire que ∥·∥2 vérifie l’inégalité triangulaire, puis que c’est une norme.

1194 TPE/EIVP MP 2016

Soit E un espace vectoriel réel. On considère une application N de E dans R telle que :
• ∀x ∈ E \ {0}, N(x) > 0
• N(0) = 0
• ∀(x; y) ∈ E2, ∀λ ∈ R, N(λx+ y) ⩽ |λ|N(x) +N(y)

Montrer que N est une norme sur E.

251



1195 Mines-Ponts MP 2025

Soit (a; b) ∈ R2 tel que a < b, n ∈ N∗, (xi)1⩽i⩽n ∈ [a ; b][[1;n]] et (yi)1⩽i⩽n ∈ [a ; b][[1;n]].
On note E l’ensemble C([a ; b],R) muni de la norme de la convergence uniforme, et P
l’ensemble des applications polynomiales de [a ; b] dans R.
Montrer que l’adhérence de l’ensemble

{p ∈ P | ∀i ∈ [[1 ;n]], p(xi) = yi}

est
{f ∈ E | ∀i ∈ [[1 ;n]], f(xi) = yi}.

1196 Centrale-Supélec MP 2018

Soit (E, ∥·∥) un espace vectoriel normé de dimension finie.
Soit K un compact de E.
Soit f : K → K une fonction continue telle que :

∀(x; y) ∈ K2, x ̸= y =⇒ ∥f(x) − f(y)∥ < ∥x− y∥.

Le but de cet exercice est de montrer que la fonction f admet un point fixe.
1. Montrer que l’hypothèse K compact est nécessaire, en considérant la fonction :

f : [1 ; +∞[ −→ [1 ; +∞[

x 7−→ x+
1
x

2. Montrer que, si f admet un point fixe, alors celui-ci est unique.
3. Montrer que f admet un point fixe.
4. On considère x0 ∈ K et la suite (un)n∈N definie par :u0 = x0

∀n ∈ N, un+1 = f(un)

Pour tout N ∈ N, on pose :

UN = {un | n ⩾ N} et A =
⋂

N∈N
UN .

(a) Montrer que f(A) = A.
(b) Montrer que A est l’ensemble des points fixes de f . Conclure.

1197 TPE/EIVP MP 2012

1. Soit NA : R[X] → R+ telle que P 7→ sup
x∈A

|P (x)|.

À quelle condition sur A, l’application NA est-elle une norme ?
2. Soit A et B deux parties de R telles que NA et NB soient des normes.

Comparer NA et NB.
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1198 ENS MP 2023

Montrer que l’intervalle ]0 ; 1[ n’est pas réunion disjointe de fermés d’intérieur non vide.

1199 X MP 2017

Soit ω = (ω1; . . . ;ωn) dans Rn et Gω le groupe défini par Gω = ωR+2πZn. On suppose
que les ωi sont liés dans Q. Montrer que Gω n’est pas dense dans Rn.
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7 Arithmétique et algèbre

1200 X-ENS

Soit P,Q,R ∈ C[X] et n ⩾ 3 un entier. On suppose P n +Qn = Rn.
Montrer que P,Q,R sont égaux, à une constante multiplicative près.

1201 Mines MP 2019

Pour tout (x; y) ∈ Z2, on pose x ⋆ y = x+ (−1)xy. Montrer que (Z, ⋆) est un groupe.

1202 X-ENS

Déterminer tous les morphismes de groupes de (R,+) dans GLn(C) qui sont continus.

1203 X-ENS

Soit n ∈ N∗. Une permutation σ ∈ Sn est un dérangement si et seulement si σ n’a pas
de point fixe. Y-a-t-il plus de dérangements pairs ou impairs ?

1204 ENS MP

Trouver tous les groupes finis tels que l’identité soit le seul automorphisme.

1205 Mines-Ponts MP 2021

Montrer que 2021 a un multiple dont tous les chiffres en base 10 sont égaux à 1.

1206 CCP MP

Soit I un idéal d’un anneau commutatif A.
On note

√
I = {x ∈ A | ∃n ∈ N∗, xn ∈ I} le radical de I.

1. Montrer que
√

0 = {x ∈ A | ∃n ∈ N∗, xn = 0} est un idéal de A.
2. Montrer que

√
I est un idéal et qu’il contient I.

3. Soit I et J deux idéaux de A. Montrer que
(a) I ⊂ J =⇒

√
I ⊂

√
J

(b)
√
I ∩ J =

√
I ∩

√
J

4. Montrer que
√√

I = I.

1207 X PC 2020

Trouver les polynômes P appartenant Z[X] tels que, pour tout n ∈ Z, P (n) est premier.

1208 Mines-Ponts

Soit n ⩾ 2 un entier.
1. Déterminer un groupe multiplicatif de Mn(C) qui n’est pas un sous-groupe de
GLn(C).

2. Soit G un groupe multiplicatif de Mn(C) qui n’est pas un sous-groupe de
GLn(C). Montrer que tous les éléments de G ont le même rang.
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1209 Mines-Ponts

On pose Z[i] = {a+ bi | (a; b) ∈ Z2}.
Montrer que Z[i] est un anneau. Quels sont les éléments inversibles ?

1210 Mines-Ponts

Déterminer tous les morphismes de groupes de (Q,+) dans (Z,+).

1211 Mines

Soit G un sous-groupe fini de GLn(C) tel que G ∩ SLn(C) = {In}.
Montrer que G est cyclique.

1212 Mines-Ponts MP 2021

Quel est le chiffre des unités de 202220222022 ?

1213 X

Soit n ⩾ 2 un nombre naturel. Montrer que les deux affirmations suivantes sont équi-
valentes :

i) n est premier ;
ii) (n− 1)! ≡ −1 mod n.

1214 X-ENS

Soit n ∈ N∗. Montrer qu’il existe Nn ∈ N tel que tout sous-groupe fini de GLn(Z) est
de cardinal inférieur ou égal à Nn.

1215 X-ENS

Soit V un espace vectoriel réel ou complexe de dimension finie et G un sous-groupe fini
de GL(V ). On note V G = {x ∈ V | ∀g ∈ G, g(x) = x}. Montrer que

1
Card(G)

∑
g∈G

Tr(g) = dim(V G). (formule de Burnside)

1216 ENS Ulm

Soit x ∈ R∗
+. On appelle spectre de x, noté spec(x), la suite réelle (un(x))n∈N∗ dont le

terme général est défini par un = ⌊nx⌋ (partie entière de nx). Si x ∈ R+ \ Q, on dit
que la suite (un(x))n∈N∗ est une suite de Beatty.
Démontrer le théorème de Beatty :
Soit a et b deux nombres réels supérieurs à 1. Les deux affirmations suivantes sont
équivalentes :

i) Les ensembles A = {un(a) | n ∈ N∗} et B = {un(b) | n ∈ N∗} forment une
partition de N∗.

ii) 1
a

+ 1
b

= 1 et a, b sont irrationnels.
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1217 X-ENS

Un nombre complexe z ∈ C est transcendant si et seulement s’il n’est racine d’aucun
polynôme non nul de Q[X].

1. Soit α ∈ R annulé par un polynôme irréductible P ∈ Z[X] de degré d ⩾ 1.
Soit (pn)n⩾0 ∈ ZN et (qn)n⩾0 ∈ (N∗)N telles que lim

n→+∞

pn

qn

= α,

avec pn

qn

̸= α.

Montrer le critère de Liouville :

1
qd

n

= O

(∣∣∣∣∣α− pn

qn

∣∣∣∣∣
)
.

2. Montrer que le nombre
∑
n⩾1

1
10n! est transcendant.

1218 Mines-Ponts MP

Soit (G, ·) un groupe abélien d’élément neutre e. On suppose qu’il existe n ∈ N∗ tel
que, pour tout x ∈ G, xn = e.

1. On suppose n = ab avec a ∧ b = 1.
On pose Ga = {xa | x ∈ G} et Gb = {xb | x ∈ G}.
Montrer que Ga est un sous-groupe de G.
Montrer que pour tout x ∈ G, il existe un unique couple (u; v) ∈ Ga × Gb tel
que x = uv.

2. On suppose n impair.
(a) Montrer que l’application Φ2 : x 7→ x2 est un automorphisme de G et préciser

sa réciproque.
(b) Soit k ∈ N∗ tel que k ∧ n = 1.

Montrer que l’application Φk : x 7→ xk est un automorphisme de G et préciser
sa réciproque.

1219 ENS

Soit n ∈ N∗ et G un sous-groupe fini de GLn(C). On suppose que
∑

M∈G

Tr(M) = 0.

Montrer que
∑

M∈G

M = 0.

1220 Mines-Ponts MP 2023

1. Soit a et n deux nombres naturels avec a ⩾ 2 et n ⩾ 2. On suppose que an − 1
est premier. Montrer que a = 2 et que n est premier.

2. Soit p un nombre premier impair et d un diviseur de 2p − 1.
Montrer que d ≡ 1 mod 2p.
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1221 X-ENS

Soit f un morphisme de (ZN,+) vers (Z,+) tel que, pour tout k ∈ N, f(ek) = 0, où ek

est la suite définie par ek(n) = δk,n. Montrer que f = 0.

1222 Mines-Ponts MP 2022

Soit n ⩾ 2 un entier. On veut montrer que n ne divise pas 2n − 1. Par l’absurde, on
suppose que n divise 2n − 1. Soit p un diviseur premier de n.

1. Montrer que 2 est inversible modulo p. On note k l’ordre de 2 modulo p.
Montrer que k | n et que k | p− 1.

2. Conclure.

1223 X-ENS

Pour tout n ∈ N, soit dn le nombre de couples (a; b) ∈ [[1 ;n]]2 tels que a et b soient
premiers entre eux. Soit µ : N∗ → C la fonction de Mœbius définie par :

µ(n) =


1 si n = 1

(−1)r si n = p1 · · · pr (p1, . . . , pr premiers distincts)
0 si n est divisible par un carré parfait différent de 1

1. Montrer que dn =
n∑

d=1
µ(d)

⌊
n

d

⌋2
.

2. En déduire que lim
n→+∞

dn

n2 = 6
π2 .

1224 X-ENS

Soit n ⩾ 2 un entier et K un corps, |K| ⩾ 3. Démontrer que D(GLn(K)) = SLn(K),
où D(GLn(K)) = ⟨ABA−1B−1 | A,B ∈ GLn(K)⟩. (L’ensemble D(GLn(K)) est appelé
le groupe dérivé de GLn(K).)

1225 Mines-Ponts

1. Le polynôme X4 + 4 est-il irréductible sur Q ?
2. En déduire les entiers n tels que n4 + 4 est premier.

1226 ENS Ulm

Pour toute permutation σ de Sn, on note ε(σ) la signature de σ et inv(σ) le nombre
d’invariants de σ. Calculer : ∑

σ∈Sn

ε(σ)
inv(σ) + 1 .

1227 X-ENS

Trouver tous les morphismes de (Q,+) dans (Q∗, ·).

1228 X-ENS

Soit p ⩾ 3 premier et φ : GLn(Z) → GLn(Z/pZ) la réduction canonique. Soit G un
sous-groupe fini de GLn(Z). Montrer que φ|G est injective.
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1229 X-ENS

Soit G un groupe fini. On suppose que pour tous x, y appartenant à G \ {e}, il existe
τ ∈ Aut(G) tel que τ(x) = y. Le groupe G est-il abélien ?

1230 X PC 2019

Soit m,n des entiers positifs. Déterminer un polynôme unitaire de degré maximal
divisant Xm − 1 et Xn − 1.

1231 X MP 2021

Pour n ∈ N∗, on note Cn = {(x; y) ∈ (Q∗)2 | x2 + y2 = n}.
1. Montrer que C1 est non vide.
2. Montrer que C7 est vide.
3. Soit n ∈ N∗. On suppose Cn non vide. Montrer que Cn est infini.

1232 X MP 2021

Résoudre l’équation
1
a

+
1
b

=
n

a+ b
d’inconnue (a; b;n) ∈ N∗3.

1233 CCP MP

On note p un entier naturel supérieur ou égal à 2. On considère dans Z la relation
d’équivalence R définie par :

xRy déf.⇐⇒ ∃k ∈ Z tel que x− y = kp.

On note Z/pZ l’ensemble des classes d’équivalence pour cette relation R.
1. Quelle est la classe d’équivalence de 0 ? Quelle est celle de p ?
2. Donner soigneusement la définition de l’addition usuelle et de la multiplication

usuelle dans Z/pZ. On justifiera que ces définitions sont cohérentes.
3. On admet que, muni de ces opérations, Z/pZ est un anneau.

Démontrer que Z/pZ est un corps si et seulement si p est premier.

1234 CCP MP 2025

1. Soit (a; b; p) ∈ Z3. Prouver que : si p ∧ a = 1 et p ∧ b = 1, alors p ∧ ab = 1.
2. Soit p un nombre premier.

(a) Prouver que pour tout k ∈ [[1 ; p− 1]], p divise
(
p

k

)
k!.

En déduire que p divise
(
p

k

)
.

(b) Prouver que :
∀n ∈ N, np ≡ n mod p.

Indication : procéder par récurrence.
(c) En déduire, pour tout entier naturel n, que :

p ne divise pas n =⇒ np−1 ≡ 1 mod p.
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1235 CCP MP

1. Énoncer le théorème de Bézout dans Z.
2. Soit a et b deux entiers naturels premiers entre eux. Soit c ∈ N. Prouver que :

a | c et b | c ⇐⇒ ab | c.

3. On considère le système (S) :x ≡ 6 mod 17
x ≡ 4 mod 15

dans lequel l’inconnue x appartient à Z.
(a) Déterminer une solution particulière x0 de (S) dans Z.
(b) Déduire des questions précédentes la résolution dans Z du système (S).

1236 X MP 2021

Pour σ ∈ Sn, on pose A(σ) = σ(1)σ(2) + σ(2)σ(3) + · · · + σ(n− 1)σ(n).
Déterminer le maximum de A.

1237 X ESPCI

Soit q ⩾ 2 un entier fixé.
1. Soit d et n deux naturels non nuls. Montrer que, si d divise n, alors qd − 1 divise
qn − 1.

2. La réciproque est-elle vraie ?

1238 X

Soit p premier et Cp = {z ∈ C | ∃n ∈ N, zpn = 1}.
Montrer que Cp est un sous-groupe de (C∗, ·) et en déterminer les sous-groupes.

1239 Centrale PC

Pour tout n ∈ N, on note
(

X
n

)
ou Hn le polynôme X(X−1)···(X−n+1)

n! .
On pose ∆ : P ∈ R[X] 7→ P (X + 1) − P (X) ∈ R[X].

1. On dit qu’un polynôme P stabilise Z si, pour tout k ∈ Z, P (k) ∈ Z. Montrer
que, pour tout n ∈ N, Hn stabilise Z.

2. Déterminer Ker(∆) et calculer ∆(Hn) pour tout n ∈ N.
3. Soit P ∈ Rn[X] stabilisant Z. Montrer qu’il existe (c0; . . . ; cn) ∈ Zn+1 tel que
P = c0H0 + · · · + cnHn.

1240 ENS MP MPI

Soit G un groupe fini. Si X et Y sont des parties non vides de G, alors on pose
X−1 = {x−1 | x ∈ X} et XY = {xy | (x; y) ∈ X × Y }. Dans la suite, X désigne une
partie non vide de G.

1. On suppose que |XX| < 2|X|. Montrer que XX−1 = X−1X.
2. On suppose que |XX−1| < 3

2 |X|. Montrer que X−1X est un sous-groupe de G.
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1241 X ESPCI

On veut montrer que, pour tout n ∈ N∗, il existe m ∈ N∗ et (ε1; . . . ; εm) ∈ {−1; 1}m

tel que n =
m∑

k=1
εkk

2.

1. Prouver la propriété pour tout n ∈ {1; 2; 3}.
2. Développer les polynômes (X+3)2 −(X+1)2 et (X+4)2 −(X+2)2 et conclure.

1242 ENS MP MPI

Soit n ∈ N∗ et une transposition (a b) telle que 1 ⩽ a < b ⩽ n.
1. Soit n ∈ N∗. Montrer que la transposition (1 2) et le cycle c = (1 2 · · ·n) en-

gendrent le groupe symétrique Sn.
2. Montrer que la transposition τ = (1 3) et le cycle c = (1 2 3 4) n’engendrent pas

le groupe symétrique S4. (On pourra s’intéresser à la parité de τ(i) − i et de
c(i) − i pour tout i ∈ [[1 ; 4]].)

3. Montrer que la transposition (a b) et le cycle c = (1 2 · · ·n) engendrent Sn si, et
seulement si, b− a et n sont premiers entre eux.

1243 Mines-Ponts MP MPI

Déterminer tous les couples (m;n) ∈ N2 tels que 3m = 8 + n2.

1244 X-ENS

Calculer le nombre d’involutions du groupe Sn.

1245 X MP 2019

Quels sont les idéaux maximaux de l’anneau C([0 ; 1]) des fonctions réelles définies et
continues sur [0 ; 1] qui sont strictement inclus dans C([0 ; 1]) ?

1246 X MP 2019

1. Pour n un nombre premier, montrer que :

n | 1n−1 + 2n−1 + · · · + (n− 1)n−1 + 1.

2. Trouver tous les nombres entiers n ⩾ 1 tels que :

n | 1n + 2n + · · · + (n− 1)n.

1247 Mines-Télécom MP 2022

1. Le groupe (Z/10Z)∗ est-il cyclique ?
2. Le groupe (Z/12Z)∗ est-il cyclique ?
3. Soit des entiers p ⩾ 2 et q ⩾ 2 premiers entre eux. Montrer que :

Z/pqZ ∼= Z/pZ × Z/qZ.
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1248 Mines-Télécom MP 2022

Soit f : R → R un morphisme de corps.
1. Déterminer f sur Z puis sur Q.
2. Montrer que f(R+) ⊂ R+.
3. Étudier la monotonie de f .
4. Déterminer entièrement f .

1249 Mines-Télécom MP 2018

Résoudre dans Z/11Z le système suivant :x+ y = 4
xy = 10

1250 Mines-Télécom MP 2016

Soit E l’ensemble des matrices réelles de la forme
(
a b

−b a

)
.

1. Montrer que E est un sous-espace vectoriel de M2(R) et donner sa dimension.
2. Montrer que E est un sous-anneau de M2(R). Est-ce un corps ?

1251 Mines-Télécom MP 2022

Pour un anneau A, on dit qu’un idéal I de A est premier si et seulement si :

∀(x; y) ∈ A2, xy ∈ I =⇒ x ∈ I ou y ∈ I.

Soit A un anneau commutatif dont tous les idéaux sont premiers. Montrer que A est
un anneau intègre, puis que A est un corps.

1252 CCINP MP

Soit (A,+, ·) un anneau commutatif.
1. (a) Rappeler la définition d’un anneau.

(b) Rappeler la définition d’un idéal.
2. Soit I un idéal de A. Montrer que si 1A ∈ I, alors I = A.
3. Soit x ∈ A. On pose Ix = {a · x | a ∈ A}. Montrer que Ix est un idéal de A.
4. On suppose que A n’est pas l’anneau nul. Démontrer :

A est un corps ⇐⇒ Les seuls idéaux de A sont {0A} et A.

1253 Mines-Ponts MP 2021

Soit G un groupe fini. On suppose que tous les éléments de G sont d’ordre au plus 2.
Que peut-on dire du cardinal de G ?

1254 Mines-Ponts MP 2024

Montrer que tout sous-groupe d’un groupe cyclique est cyclique.
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1255 Mines-Télécom MP 2024

Soit l’anneau A = (RR,+, ·), et, pour tout x ∈ R, Ix = {f ∈ A | f(x) = 0}.
1. Montrer que Ix est un idéal.
2. Montrer que si x1 ̸= x2, alors A = Ix1 + Ix2 .

1256 Mines-Ponts MP 2018

Déterminer le plus petit entier n pour lequel il existe un groupe G de cardinal n non
abélien.

1257 Mines-Télécom MPI 2024

Résoudre l’équation x2 + x+ 1 = 0 dans Z/7Z et Z/6Z.

1258 Mines-Ponts MP 2019

Soit a ∈ [[1 ; p− 1]] avec p premier.
1. Montrer qu’il existe un unique b ∈ [[1 ; p− 1]] tel que ab ≡ 1 mod p.
2. Quels sont les a tels que a = b ?

1259 Centrale-Supélec 2017

Soit p un nombre premier. On note :
• Fp = Z/pZ,
• F∗

p le groupe des inversibles de Z/pZ,

• F∗2
p =

{
x2 | x /∈ pZ

}
.

1. Montrer que si x = y, alors e
2πxi

p = e
2πyi

p .

On notera τ(a) =
∑

k∈Fp

ak2.

2. Montrer que si a ∈ F∗2
p , alors τ(a) = τ(1).

3. Montrer que si b ∈ F∗
p \ F∗2

p , alors τ(b) + τ(1) = 0.

1260 TPE/EIVP MP 2017

Résoudre dans Z/143Z l’équation x2 − 3x+ 2 = 0.

1261 Centrale-Supélec MP 2019

On dit qu’un anneau A est régulier si, pour tout x appartenant à A, il existe un u
appartenant à A tel que xux = x.

1. (a) L’anneau (Z,+, ·) est-il régulier ?
(b) Un corps est-il un anneau régulier ?
(c) Soit E un espace vectoriel de dimension finie. Montrer que (L(E),+, ◦) est

un anneau régulier.
2. Soit A la matrice de Mn(R) ayant ses coefficients ai,i+1 égaux à 1, les autres

coefficients étant nuls. Exhiber U tel que AUA = A.
3. Donner une condition nécessaire et suffisante pour que (Z/nZ,+, ·) soit un an-

neau régulier.
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1262 Centrale-Supélec MP 2022

Soit A un anneau commutatif. On dit qu’un idéal I de A est de type fini s’il est engendré
par un nombre fini d’éléments, c’est-à-dire :

∃λ1, . . . , λp ∈ I, ∀x ∈ I, ∃a1, . . . , ap ∈ A, x =
p∑

i=1
λiai.

On écrit aussi I = VectA({λ1; . . . ;λp}). On dit qu’un anneau est noethérien si tous ses
idéaux sont de type fini.

1. Montrer que (Z,+, ·) et (K[X],+, ·) sont noethériens.
2. Montrer que l’anneau (A,+, ·) est noethérien si et seulement si toute suite

d’idéaux croissante pour l’inclusion est stationnaire à partir d’un certain rang.

1263 Mines-Ponts MPI 2025

Soit p un nombre premier et q = (p2 − p)(p2 − 1).
1. Calculer le cardinal de GL2(Z/pZ).
2. Montrer que pour tout A ∈ M2(Z/pZ), Aq+2 = A2.

1264 Mines-Ponts MP 2023

Soit G un groupe abélien d’ordre pq, où p et q sont deux premiers distincts.
1. Montrer que G est cyclique.
2. Montrer l’importance de la commutativité.

1265 Mines-Ponts MP

Soit K un corps (commutatif) fini de cardinal q.
On considère le groupe quotient GLn(K)/SLn(K).

1. Montrer que GLn(K)/SLn(K) est isomorphe à K∗.
On pourra utiliser l’application déterminant.

2. Déterminer le cardinal de GLn(K)/SLn(K).
3. Déterminer les cardinaux de GLn(K) et de SLn(K).
4. Soit L un autre corps (commutatif) tel que SLn(K) et SLn(L) soient isomorphes.

Que peut-on dire de K et L ?

1266 Mines-Télécom MP 2018

Montrer qu’il existe un nombre infini de nombres premiers congrus à −1 modulo 4.

1267 Mines-Ponts MP

Soit G un groupe cyclique de cardinal n, d’élément neutre e.
1. Montrer que pour tout a ∈ G, an = e.
2. Soit H un sous-groupe de G.

(a) Montrer que H est cyclique.
(b) Montrer que le cardinal de H divise le cardinal de G.

3. Montrer que n =
∑
d|n
φ(d), où φ désigne la fonction indicatrice d’Euler.
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1268 TPE/EIVP MP 2017

1. Soit p un nombre premier. Résoudre l’équation x2 = 1 dans Z/pZ, puis montrer
que (p− 1)! ≡ −1 mod p.

2. Soit n ∈ N∗. Déterminer le reste de la division euclidienne de (n− 1)! par n.

1269 Mines-Ponts MP 2017

Soit E un K-espace vectoriel de dimension finie supérieure ou égale à 1, f un endomor-
phisme de E et P son polynôme minimal. Donner une condition nécessaire et suffisante
sur P pour que K[f ] soit un corps.

1270 Mines-Télécom MP 2021

1. Résoudre l’équation x2 = x dans Z/pZ, p premier.
2. Résoudre l’équation x2 = x dans Z/34Z.

1271 Centrale-Supélec MP 2019

On note Fp = Z/pZ avec p premier et impair, et C = {x2 | x ∈ F ∗
p }.

1. (a) Que dire de la structure algébrique de Fp et de C ?
(b) Expliciter C pour p = 11.

2. Soit P un polynôme de degré strictement inférieur à d et à coefficients entiers,
avec d ∈ N∗. Soit a1, . . . , ad ∈ Z tels que

∀i ∈ [[1 ; d]], p | P (ai) avec les ai distincts modulo p.

Montrer que, pour tout n ∈ N, p | P (n).
3. Montrer que C =

{
x ∈ Fp | x p−1

2 = 1
}
.

1272 CCINP PC 2014

Soit a ∈ R et f une fonction de R dans R.
1. Montrer que l’ensemble aZ = {an | n ∈ Z} est un sous-groupe de R.
2. Montrer que l’ensemble des périodes de f est un sous-groupe de R.

1273 ENS MP 2019

Soit G un groupe. Est-il vrai que :

G est fini ⇐⇒ L’ensemble des sous-groupes de G est fini ?

1274 X MP 2019

1. Montrer que Z[i
√

3] ⊂ Z[j], où j = e 2iπ
3 .

2. Montrer que Z[j] est un sous-anneau de C.
3. Montrer que Z[i

√
3] n’est pas factoriel.

4. Montrer que Z[j] est euclidien.
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1275 Centrale-Supélec MP 2025

Soit un entier n ⩾ 2 et K un sous-corps de C.
1. (a) Énoncer le théorème de la division euclidienne dans K[X].

(b) Soit P ∈ K[X] et a ∈ K. Donner le reste de la division euclidienne de P par
(x− a)2.

(c) En déduire une caractérisation des racines de P .
2. Posons Tn = Xn −X+(−1)n. Quel est le nombre de racines de Tn dans Q,R,C ?

1276 ENS 2023

Montrer que SLn(Z) est un groupe, engendré par S =
(

0 −1
1 0

)
et T =

(
1 1
0 1

)
.

1277 Mines 2023

On note K = Q +
√

2Q +
√

2Q +
√

3Q +
√

6Q.
Montrer que K est un Q-espace vectoriel dont {1;

√
2;

√
3;

√
6} est une base, puis que

K est un sous-corps de R.

1278 Centrale 2022

Soit (A,+, ·) un anneau.
1. (a) Montrer que l’unique morphisme d’anneaux Z → A est donné par :

f : Z −→ A
k 7−→ k · 1A

(b) Montrer qu’il existe un unique κA ∈ N tel que Ker(fA) = κAZ. (Le nombre
κA est appelé la caractéristique de l’anneau A.)

2. (a) Montrer que si A est un corps, alors κA = 0 ou κA est un nombre premier.
(b) Montrer que si A est un corps fini, alors κA ̸= 0.

3. (a) On suppose que A est un corps fini de cardinal pn avec n ⩾ 1 et p premier.
Montrer que l’application F : x 7→ xp est un automorphisme de corps de A.

(b) Déterminer l’ordre de F dans le groupe des automorphismes de A.

1279 Centrale 2024

1. (a) Énoncer le théorème de Gauss dans Z, ainsi que le petit théorème de Fermat.
(b) Rappeler la définition d’un idéal d’un anneau commutatif. Montrer que pour

tout a ∈ Z, l’ensemble aZ[X] est un idéal de Z[X].
(c) Soit R un anneau commutatif et p ∈ Z. Montrer que pR = {pr | r ∈ R} est

un idéal de R, puis montrer que pour tous x, y ∈ R, (x+y)p −(xp +yp) ∈ pR.
2. Soit p un nombre premier.

(a) Soit n ∈ N∗, R un anneau commutatif et I un idéal de R. On se donne
A,B ∈ Mn(R) et on suppose que tous les coefficients de B appartiennent à
I. Montrer que det(A+B) − det(A) ∈ I.

(b) Soit P ∈ Z[X]. Montrer que P (Xp) − (P (X))p ∈ pZ[X].
(c) Soit M ∈ Mn(Z). Montrer que Tr(Mp) = Tr(M) mod p.
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1280 Mines 2023

Soit A ∈ Mn(Z). Pour x = (x1; . . . ;xn) ∈ Zn, on note T (x) = pgcd(x1, . . . , xn).
Montrer l’équivalence entre les assertions suivantes :

i) det(A) ∈ {−1; 1}
ii) ∀x ∈ Zn, T (Ax) = T (x)

1281 Mines 2024

Soit G et G′ deux groupes, et f : G → G′ un morphisme de groupes. Montrer que f
est surjectif si, et seulement si, l’image par f de toute partie génératrice de G est G′.

1282 X 2022

On pose G = SO3(R) et on considère un sous-groupe H de G tel que :

∀g ∈ G, ∀h ∈ H, ghg−1 ∈ H.

Montrer que H = {I3} ou H = G.

1283 ENS 2022

On considère le groupe :

G =
{(

α −β
β α

) ∣∣∣ (α; β) ∈ C2 et |α|2 + |β|2 = 1
}
.

Si B est un sous-groupe de G, on définit C(B) = {g−1Bg | g ∈ G}. Montrer qu’il existe
un unique sous-groupe non trivial H de G tel que C(H) = H.

1284 ENS 2023

On munit R2 de sa structure euclidienne canonique. On considère deux vecteurs v1, v2
non colinéaires de R2, on pose L = v1Z + v2Z, et on note vol(L) = |det(v1; v2)|.

1. Soit B une boule d’aire strictement supérieure à vol(L). Montrer qu’il existe
x, y ∈ B tels que x− y ∈ L.

2. Montrer que :

∀ε > 0, ∃I ∈ L, ∥I∥2 ⩽ 2(1 + ε)
√

vol(L)
π

.

3. Soit p un nombre premier tel que p ≡ 1 mod 4. Montrer que −1 est un carré
modulo p.

4. Montrer que p est somme de deux carrés.

1285 Mines-Ponts MP 2024

1. Soit (G, ⋆) un groupe et (H, ⋆) un sous-groupe de G. Déterminer le plus petit
sous-groupe de G contenant le complémentaire de H.

2. On suppose G fini. Soit S un sous-ensemble de G. Montrer que (S, ⋆) est un
sous-groupe de G si et seulement si S est stable pour la loi ⋆.

266



1286 CCINP MP 2022

On considère un groupe (G, ·) cyclique d’ordre n, engendré par a. On fixe r ∈ N∗ et on
pose f : x ∈ G 7→ xr. Soit encore d = pgcd(r, n).

1. Montrer que f est un morphisme de groupes.
2. Déterminer le noyau de f .
3. Montrer que l’image de f est le sous-groupe de G engendré par ad.
4. Soit g ∈ G. Déterminer le nombre de solutions de l’équation y = xr.

1287 Mines-Ponts MP 2022

Soit G un sous-groupe de GLn(K) tel que, pour tout M ∈ G, M2 = In.
1. Montrer que G est abélien.
2. Montrer que |G| ⩽ 2n.
3. Soit (n; p) ∈ N∗ × N∗. Montrer que les deux groupes GLn(K) et GLp(K) sont

isomorphes si et seulement si n = p.

1288 ENS MP 2022

Soit p = an . . . a0
10 un nombre premier (écriture en base 10).

On pose P = anX
n + · · · + a0. Montrer que P est irréductible dans Z[X].

1289 Mines-Ponts MP 2021

Soit A et B dans Mn(R) avec :

A =



0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 . . . ...
... . . . . . . 0
0 · · · · · · 0 1

 et B =



0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0

 .

1. Déterminer le sous-groupe engendré par A et B.
2. Que dire des éléments qui commutent avec A et B ?

1290 Mines-Ponts MP 2021

Une application p d’un ensemble E dans E est dite idempotente si p ◦ p = p.
1. (a) Montrer que si p est injective et idempotente, alors p = IdE.

(b) Montrer que si p est surjective et idempotente, alors p = IdE.
(c) Construire une application idempotente p différente de l’identité pour l’en-

semble E = {a; b}.
2. Montrer que p est idempotente si et seulement si, pour tout x ∈ P (E), p(x) = x.
3. Donner les trois applications idempotentes pour E = {a; b}, et les dix pour
E = {a; b; c}.
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1291 Centrale-Supélec MP 2021

Soit A une R-algèbre commutative intègre de dimension finie n ⩾ 2.
1. Soit a ∈ A \ {0}. Montrer que f : x 7→ ax est un automorphisme. En déduire

que a est inversible.
2. Soit a ∈ A \ R. Montrer que {1; a} est libre et que {1; a; a2} est liée.
3. Montrer l’existence de i ∈ A tel que i2 = −1, puis que A est isomorphe à C.

1292 X ESPCI 2016

Soit n = 10101010 · · · 101 tel qu’il y ait 2016 fois le chiffre 0.
Montrer que n n’est pas un nombre premier.

1293 Mines-Télécom MP 2019 MP

1. Soit n ∈ N∗ tel que n ∧ 10 = 1. Montrer que n4 ≡ 1 mod 10.
2. On suppose a ∧ 10 = 1 et k ∈ N. Montrer que a4·10k ≡ 1 mod 10k+1.

1294 Centrale-Supélec MP 2019

Soit G un sous-groupe de (C∗, ·) et (g1; g2) ∈ G×G. On suppose que pour tout g ∈ G,
il existe un voisinage V de g tel que G∩V = {g}. Soit G1 le sous-groupe engendré par
g1 et G2 les sous-groupe engendré par g1 et g2.

1. Décrire les éléments de G1.
2. Décrire les éléments de G2.
3. Soit K une partie compacte de C∗. Montrer que G ∩K est fini.
4. Montrer que U ∩G est monogène.

1295 Mines-Ponts MP 2015

Pour n entier naturel non nul, on note S(n) la somme de ses diviseurs positifs.
Montrer que S(n) ⩽ n+ n ln(n).

1296 CCINP MP 2016

Soit (A,+, ·) un anneau d’élément unité 1.
1. Soit (a; b) ∈ A2. Supposons que 1−ab soit inversible dans A. Montrer que 1−ba

est inversible dans A et préciser son inverse.
2. Soit a un élément de a tel qu’il existe un entier naturel non nul n tel que an = 0.

(a) Montrer que 1 − a est inversible et préciser son inverse.
(b) En déduire que b = 1 + 2a+ · · · +nan−1 est inversible dans A et préciser son

inverse.
3. Soit (a; b) ∈ A2 tel que ab est nilpotent. Montrer que ba est nilpotent.
4. On suppose A commutatif. On note Nil(A) l’ensemble des éléments nilpotents

de A. Montrer que Nil(A) est un idéal de A.
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1297 ENS MP 2013

Soit (A,×) un magma associatif. Démontrer la proposition suivante généralement ad-
mise : pour tout n ∈ N∗, tout n-uplet (a1; . . . ; an) d’éléments de A et tout paren-
thésage « admissible » de la multiplication a1 × · · · × an (par exemple, pour n = 4,
(a1 × a2) × (a3 × a4), a1 × (a2 × (a3 × a4)), (a1 × (a2 × a3)) × a4 sont des parenthésages
admissibles), le résultat de la multiplication est le même.

1298 Mines-Ponts MP 2016

1. Soit n ⩾ 1 entier. Montrer que si 2n + 1 est premier, alors il existe p ∈ N tel que
n = 2p.

2. Pour tout p ∈ N, on pose fp = 22p + 1. Montrer que :

∀p, q ∈ N, p ̸= q =⇒ fp ∧ fq = 1.

3. En déduire qu’il existe une infinité de nombres premiers.

1299 Mines-Ponts

Soit (E,+, ·) un anneau non commutatif. On munit E d’une loi de composition interne
[·, ·] (crochets de Lie) définie par :

∀(a; b) ∈ E2, [a, b] = ab− ba.

1. Montrer l’identité de Jacobi :

∀(a; b; c) ∈ E3,
[
a, [b, c]

]
+
[
b, [c, a]

]
+
[
c, [a, b]

]
= 0.

2. On note, pour a ∈ E fixé, l’application φa, qui va de E dans lui-même, définie
par φa(x) = [a, x]. Montrer que :
(a) Pour tout (x; y) ∈ E2, φa(x+ y) = φa(x) + φa(y).
(b) Pour tout (x; y) ∈ E2, φa(xy) = φa(x)y + xφa(y).
(c) Pour tout (x; y) ∈ E2, pour tout n ∈ N :

φn
a(xy) =

n∑
k=0

(
n

k

)
φk

a(x)φn−k
a (y).

(d) Pour tout (x; y) ∈ E2, pour tout n ∈ N∗ :

φa(xn) =
n−1∑
k=0

xkφa(x)xn−1−k.

(e) Montrer que si a est nilpotent, c’est-à-dire s’il existe p ∈ N tel que ap = 0E,
alors φa est également nilpotent, c’est-à-dire qu’il existe q ∈ N tel que φq

a est
l’application nulle de E dans E.
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1300 ENS MP 2019

Soit G un groupe fini de cardinal n. On dit que G vérifie la propriété P si pour tout
entier d divisant n, il existe au plus un sous-groupe de G de cardinal d.

1. On suppose G cyclique. Montrer que G vérifie la propriété P .
2. Réciproquement, si G vérifie la propriété P , montrer que G est cyclique.
3. Soit K un corps fini. On note K∗ l’ensemble des éléments non nuls de K et on

rappelle que (K∗, ·) est un groupe. Montrer que K∗ est cyclique.
4. On suppose que |K| = p2, où p est un premier supérieur ou égal à 3. Montrer

que X4 + 1 admet une racine dans K.

1301 X MP 2024

Soit G un sous-groupe du groupe des bijections du plan complexe. On suppose que :
• G est cyclique d’ordre 2n avec n ⩾ 2,
• G contient la conjugaison z 7→ z,
• ∀m ∈ Z, ∀g ∈ G, ∀z ∈ C, g(mz) = mg(z).

1. Montrer que pour tout z ∈ C \ R, il existe g ∈ G tel que
g(z)
z

/∈ {−1; 1}.

2. Déterminer les sous-groupes de G d’ordre 2n−1.
3. On regarde C comme R-espace vectoriel. Est-il possible que G ne soit composé

que d’applications linéaires ?

1302 CCINP MP 2025

1. Calculer d = pgcd(473, 220).
2. Existe-t-il un couple (u; v) ∈ Z2 tel que 473u+ 220v = d ? Si oui, en déterminer

un.
3. Les équations suivantes ont-elles des solutions (u; v) ∈ Z2 ? Si oui, les déterminer.

(a) (Ea) : 473u+ 220v = 1
(b) (Eb) : 473u+ 220v = 11
(c) (Ec) : 473u+ 220v = 22

1303 ENS MP 2018

Donner, à isomorphisme près, les sous-groupes finis de O2(R).

1304 Mines-Télécom MPI 2024

Soit (G, ⋆) un groupe. On note Aut(G) l’ensemble des automorphismes de G. Soit a ∈ G
et

ϕa : G −→ G
x 7−→ a ⋆ x ⋆ a−1

1. On considère :
ϕ : G −→ Aut(G)

a 7−→ ϕa

Montrer que ϕ est un morphisme de groupes.
2. Montrer que {ϕa | a ∈ R} est un sous-groupe de Aut(G).
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1305 CCINP PC 2022

Soit
f : N2 −→ N∗

(n;m) 7−→ 2n(2m+ 1)
1. Trouver un antécédent de 56 par f .
2. L’application f est-elle injective ?
3. L’application f est-elle surjective ?
4. L’ensemble N2 est-il dénombrable ?

1306 ENS MPI 2022

On munit Rn d’une structure d’espace euclidien.
Soit e = (e1; . . . ; en) une base de Rn.
On dit qu’un sous-groupe L de (Rn,+) est un réseau si :

• Vect(L) = Rn ;
• ∀x ∈ Rn, ∀R > 0 , B(x,R) ∩ L est fini.
1. Déterminer L pour n = 1.
2. On note L(e) = {a1e1 + · · · + anen | (a1; . . . ; an) ∈ Zn}.

Montrer que L(e) est un réseau.
3. Donner une condition nécessaire et suffisante pour que L(e) = L(e′).

1307 X-ENS

Soit p un nombre premier, G un sous-groupe de GLn(Z) et φ le morphisme de réduction
modulo p :

φ : G −→ GLn(Fp)
M 7−→ M mod p

Quand l’application φ est-elle injective ?

1308 ENS Ulm MP 2023

Soit p premier. Montrer que n divise le cardinal de GLn−1(Z/pZ).

1309 ENS MP 2017

Soit G un sous-groupe fini de GLn(Z). Montrer que G s’injecte dans GLn(Z/pZ) pour
p ⩾ 3 premier.

1310 CCINP MP 2019

Soit f : R → R un morphisme de corps.
1. Soit x ∈ R+. Montrer que f(x) = (f(

√
x))2. En déduire que f est croissante.

2. Soit (n; x) ∈ N × R. Montrer que f(nx) = nf(x).
3. Soit x ∈ Q. Montrer que f(x) = x.
4. Montrer que f = IdR.
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1311 Mines-Télécom MP 2019

Soit E l’ensemble des matrices

M(a; b) =
(
a b

−b a

)
avec a, b ∈ R.

1. Montrer que E est un sous-espace vectoriel de M2(R).
2. Montrer que E est un anneau.
3. Soit la fonction φ telle que φ(a+bi) = M(a; b). Montrer que φ est un morphisme

de R-espaces vectoriels de C dans E.
4. L’application φ est-elle un morphisme d’anneaux ?

1312 Centrale-Supélec MP 2019

Soit (G, ·) un groupe abélien fini d’élément neutre e.
Le groupe des automorphismes de G est supposé d’ordre 3.

1. Montrer que
ϕ : G −→ G

x 7−→ x−1

est un automorphisme, puis que pour tout x ∈ G, x2 = e.
2. Montrer qu’il existe un sous-groupe V de G d’ordre 4. Déterminer les automor-

phismes de V .
3. Montrer qu’il existe r ∈ N tel que G soit isomorphe à V × (Z/2Z)r, en conclure

une absurdité.

1313 Mines-Ponts MP 2018

Soit φ(n) le cardinal des éléments inversibles de Z/nZ pour tout n ∈ N∗.
1. Déterminer φ(p) pour p premier, puis φ(pα) pour α ∈ N∗.
2. Redémontrer le théorème chinois.
3. En déduire que si m,n ∈ N∗ sont tels que m∧ n = 1, alors φ(mn) = φ(m)φ(n).
4. En déduire une expression générale de φ(n).

1314 Mines-Ponts MP 2018

Soit A un anneau commutatif et I un idéal de A.
1. On définit l’ensemble quotient A/I avec la relation d’équivalence suivante :

∀(a; b) ∈ A2, a ∼ b ⇐⇒ a− b ∈ I.

Montrer que A/I est un anneau pour certaines lois que l’on précisera.
2. En déduire que si a est un entier et p un nombre premier tel que p ne divise pas
a, alors ap−1 ≡ 1 mod p.
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1315 Mines-Ponts MP 2015

Soit E = R × R euclidien muni de son produit scalaire canonique. On définit un arc Γ
sur E par x(t) = cos3(t) et y(t) = sin3(t).

1. Trouver toutes les isométries de E qui conservent Γ.
2. Soit G = {f ∈ O(E) | f(Γ) = Γ}. Montrer que G est un groupe pour la loi ◦.

Puis trouver les sous-groupes de G.

1316 TPE/EIVP MP 2015

On considère un groupe fini (G, ·) d’élément neutre e tel que, pour tout x ∈ G, x2 = e.
1. Montrer que G est commutatif.
2. On considère un sous-groupe H de G, différent de G, et x un élément de G qui

n’est pas dans H. On note K le sous-groupe engendré par H et x. Montrer que
Card(K) = 2Card(H). En déduire que le cardinal de G est une puissance de 2.

1317 ENS MP 2024

Montrer qu’un sous-groupe discret de Rn admet une Z-base.

1318 X MP 2017

Soit a ∈ R \ (π
2 + nZ). On pose :

Tn =
(

1 d− 1
4 tan(a)

−d 1
4 tan(a) 1

)
.

1. Trouver le lien entre Ta+b et Ta · Tb.
2. Soit d ∈ N, d ⩾ 2, sans valuation paire dans sa décomposition en facteurs

premiers. On note :
Ad = {a+ b

√
d | (a; b) ∈ Q2}.

Montrer que Ad est un corps.
3. On note :

σ : Ad −→ Ad

a+ b
√
d 7−→ a− b

√
d

Montrer que σ est un automorphisme de corps.
4. Soit p, q ∈ Z∗ vérifiant p ∧ q = 1 et q ⩾ 3 impair.

Montrer que tan
(
π
p

q

)
ne peut s’écrire sous la forme x = r · d 1

4 avec d entier

vérifiant les conditions de la question 2 et r ∈ Q.

1319 ENS Ulm

Soit A un anneau tel que tout a ∈ A est soit nilpotent, soit idempotent.
1. Montrer que a2 = a pour tout a ∈ A et que A est commutatif.
2. Si A est fini, montrer qu’il existe n ∈ N tel que A ∼= Fn

2 en tant qu’anneau.
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1320 X

1. Soit a et r premiers entre eux.
Montrer qu’il existe k ∈ N∗ tel que ak ≡ 1 mod r.

2. Soit a et r deux entiers relatifs avec a > r ⩾ 2. Montrer que la progression
arithmétique de premier terme a et de raison r contient une infinité de termes
ayant tous les mêmes diviseurs premiers.

1321 Mines-ponts MP 2017

Soit a un nombre impair positif et n un entier supérieur à 3.
1. Montrer que a2n−2 ≡ 1 mod 2n.
2. En déduire les entiers n pour lesquels le groupe des inversibles de l’anneau Z/2nZ

est cyclique.

1322 X-ENS

Soit G un groupe fini et f un morphisme de G dans G. Montrer que :

Ker(f) = Ker(f 2) ⇐⇒ Im(f) = Im(f 2).

1323 X MP 2017

Soit A une algèbre et V un espace vectoriel. Si τ ∈ L(A, V ), on dit que τ est une trace
si :

∀(A;B) ∈ A2, τ(AB) = τ(BA).
On note T (A, V ) l’ensemble des traces de A sur V .
On note [A,B] = AB −BA et [A,A] = Vect({[A,B] | (A;B) ∈ A2}).

1. On dit que A est équivalent à B si A − B ∈ [A,A]. Montrer que cette relation
est effectivement une relation d’équivalence.

2. On note L[A] l’ensemble des classes d’équivalence et on considère l’application
T de A dans L[A] qui à un élément associe sa classe d’équivalence. Montrer que
L[A] est un espace vectoriel et que T est sa trace.

3. Soit τ ∈ T (A, V ). Montrer qu’il existe un unique τ ∈ L(L[A], V ) tel que :

∀A ∈ A, τ(A) = τ(T (A)).

4. Montrer que T (A, V ) ∼= L(L([A], V ).

1324 X 2022

Soit (A,+, ·) un anneau commutatif. On dit que a ∈ A est un diviseur de zéro lorsqu’il
existe b ∈ A \ {0} tel que ab = 0.

1. Montrer que si A est fini et sans diviseur de zéro, alors A est un corps.
2. Soit f ∈ A[X] \ {0}. Montrer que si f est un diviseur de zéro, alors il existe
a ∈ A \ {0} tel que af = 0.
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1325 Centrale-Supélec MP

1. Rappeler la définition de φ la fonction indicatrice d’Euler et calculer φ(1176).
2. Soit p1, . . . , pr des nombres premiers distincts. Soit q ∈ N∗ un multiple de
p1p2 · · · pr. Calculer le cardinal de l’ensemble

E(q; p1; . . . ; pr) = {k ∈ N | 1 ⩽ k ⩽ q et k ∧ p1p2 · · · pr = 1}.

3. En déduire une propriété connue de la fonction indicatrice d’Euler.

1326 ENS MP 2018

Soit f un morphisme de groupe de U muni du produit usuel, dans lui-même.
1. Supposons f injectif. Montrer que f est l’identité ou l’application z 7→ z−1.
2. Dans le cas général, montrer que f est de la forme z 7→ zn, où n est fixé dans Z.

1327 ENS MP 2024

On note S2(Z) l’ensemble des matrices de taille 2 × 2 à coefficients entiers et de déter-
minant 1. On définit :

S =
(

0 −1
1 0

)
et T =

(
1 1
0 1

)
.

1. Montrer que S2(Z) est un groupe.
2. Montrer que S et T engendrent S2(Z).

3. On admet que A =
(

17 29
7 12

)
est dans S2(Z). Déterminer sa décomposition avec

les matrices S et T .

1328 Centrale-Supélec MP 2022

1. Soit M ∈ Mn(Z). Montrer que M ∈ GLn(Z) si et seulement si |det(M)| = 1.

2. Soit M ∈ Mn(C) telle que Md = In. On pose A =
M − In

3 .

Étudier la convergence de la suite (Ak)k∈N.
3. Montrer qu’il existe une constante Kn qui majore le cardinal de tous les sous-

groupes de GLn(Z).

1329 Mines-Ponts MP 2015

Soit p un premier impair.
1. Montrer que le nombre de carrés dans Z/pZ est p+1

2 .
2. Montrer que −1 est un carré dans Z/pZ si et seulement si p ≡ 1 mod 4.
3. Montrer que tout élément de Z/pZ est somme de deux carrés.

1330 ENS MP 2015

Déterminer les entiers n vérifiant n2 | 2n + 1.
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1331 Centrale-Supélec MP 2022

Soit n ∈ N∗. On note ω = ei 2π
n .

Pour P ∈ Cn−1[X], on pose F(P ) =
n−1∑
k=0

P (ωk)Xk et F̂(P ) =
n−1∑
k=0

P (ω−k)Xk.

1. Montrer que F et F̂ sont des endomorphismes de Cn−1[X].
2. Calculer F ◦F̂ . Montrer que F induit un automorphisme sur Cn−1[X]. Exprimer

sa réciproque.
3. Soit P ∈ Z[X]. On suppose que :

(a) ∀z ∈ Un, |P (z)| ⩽ 1 ;
(b) P admet une racine dans Un.
Montrer que Xn − 1 divise P .

On admet que si A,P ∈ Z[X], A ̸= 0 et A de coefficient dominant 1 ou −1, le
reste R dans la division euclidienne de P par A est aussi dans Z[X].

1332 TPE/EIVP MP 2013

Montrer que :

∀(a; b) ∈ Z2, ∀n ∈ N, a ≡ b mod n =⇒ an ≡ bn mod n2.

1333 Mines-Ponts MP 2019

On considère comme loi la multiplication matricielle. Décrire G, inclus dans Mn(R),
tel que G soit un groupe.

1334 ENS MP 2015

1. Soit G un groupe fini. Soit f un automorphisme involutif dont le seul point fixe
est e. Montrer que G est abélien.

2. Soit G un groupe abélien fini. Tous les automorphismes involutifs ont-ils seule-
ment e comme point fixe ?

3. Soit G un groupe fini et a ∈ G. On suppose que a est d’ordre 2, et tel que pour
tout x ̸= e et x ̸= a, ax ̸= xa. Que peut-on dire ?

1335 Mines-Ponts MP 2018

Soit a1, . . . , ar ∈ N∗, deux à deux premiers entre eux.

1. On pose, pour 1 ⩽ k ⩽ r, ck =
r∏

i=1
i̸=k

ai.

Montrer que les ck sont premiers entre eux dans leur ensemble.
2. Soit b ∈ Z.

Montrer qu’il existe un unique (y;x1; . . . ;xr) ∈ Zr+1, avec 0 ⩽ xk < ak pour
tout k, tel que :

b

a1 · · · ar

= y +
r∑

k=1

xk

ak

.
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1336 X MP 2018

Pour k ∈ N, on note d(k) le nombre de diviseurs positifs de k. Montrer que :
n∑

k=1
d(k) = n ln(n) + n(2γ − 1) +O(

√
n),

où γ est la constante d’Euler.

1337 ENS Lyon MP 2022

Soit p un nombre premier. On note pour tout q ∈ Q, |q|p = p−vp(q).
1. Montrer que pour tous x, y ∈ Q :|xy|p = |x|p|y|p

|x+ y|p ⩽ max(|x|p; |y|p)

Que peut-on dire si |x|p ̸= |y|p ?
On note Qp le complété de Q pour la distance associée à |·|p.

2. Montrer que Qp est un corps.
3. Montrer que pour toute suite de Cauchy (un)n∈N de Qp, la suite (|un|p)n∈N est

stationnaire.
4. Soit (un)n∈N dans Qp. Montrer l’équivalence suivante :∑

n⩾0
un converge ⇐⇒ lim

n→+∞
un = 0.

5. Montrer que Qp et R ne sont pas isomorphes en tant que corps.

1338 X MP 2021

Soit p un nombre premier et α ∈ N∗. Dénombrer les carrés de l’anneau Z/pαZ.

1339 X MP 2021

À quelle condition une permutation de {1; . . . ;n} est-elle un carré ?

1340 X MP 2021

Soit G un groupe d’ordre 8 non cyclique.
1. Montrer que G admet un élément d’ordre 2 et que tous les éléments sont d’ordre

1, 2 ou 4.
2. On suppose que tous les éléments sont d’ordre au plus 2. Que dire de G ?

On suppose désormais qu’il existe un élément a d’ordre 4. On note H le sous-
groupe engendré par a.

3. Montrer que xHx−1 = H pour tout x ∈ G.
4. Soit b ∈ G \H. Montrer que bab−1 vaut a ou a3.
5. En déduire qu’il existe, à isomorphisme près, au plus cinq groupes d’ordre 8.
6. Exhiber cinq groupes d’ordre 8 deux à deux non isomorphes.
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1341 ENS MP 2022

On note A = C[X, Y ]. Pour tout v ⊂ C2, on pose :

I(v) = {P ∈ A | ∀(x; y) ∈ v, P (x; y) = 0}.

1. Soit v ⊂ C2. Montrer que I(v) est un idéal de A.
2. On pose P (X;Y ) = Y −X2, et on note :

v(P ) = {(x; y) ∈ C2 | P (x; y) = 0}.

Montrer que A/I(v(p)) est isomorphe à C[X].

1342 Mines-Ponts MP 2013

Soit a ∈ R. On suppose qu’il existe P ∈ Q[X] irréductible de degré supérieur ou égal
à 2 tel que P (a) = 0.

1. (a) Montrer que {Q(a) | Q ∈ Q[X]} est un sous-espace vectoriel de dimension
finie.

(b) Que peut-on dire de sa dimension ?
2. Montrer que c’est un sous-corps de R.

1343 ENS Ulm MP 2019

Soit n ⩾ 1 un entier naturel et Sn le groupe des permutations de {1; . . . ;n}. On définit :

g(n) = max
σ∈Sn

(
min

(
{k ⩾ 1 | σk = Id}

))
.

Déterminer les entiers naturels n tels que g(n) est impair.

1344 X MP 2023

Pour σ ∈ Sn, on note z(σ) l’ensemble des éléments de Sn commutant avec σ.
1. Montrer que z(σ) est un groupe, puis que pour tout automorphisme ϕ de Sn,
z(ϕ(σ)) = ϕ(z(σ)).

2. Déterminer le cardinal de ce groupe pour une transposition et pour une compo-
sition de transpositions à supports disjoints.

3. Montrer que si n ̸= 6, alors pour toute transposition σ et pour tout automor-
phisme ϕ de Sn, ϕ(σ) est une transposition.

1345 ENS MP 2018

On considère un anneau commutatif A. On suppose que A possède n diviseurs de zéro,
avec n > 1.

1. Montrer que A a au plus (n+ 1)2 éléments.
2. Trouver une infinité d’anneaux du même type que A, et qui ont exactement

(n+ 1)2 éléments.

1346 ENS MP 2018

Classifier les sous-groupes de U.
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1347 ENS MP 2017

Soit n un entier naturel non nul. Exprimer la permutation qui à k associe n+ 1 − k à
l’aide de transpositions de la forme (i i+ 1).

1348 X MP 2018

Soit d ∈ Z et (∗) l’équation x2 − dy2 = 1 dont on cherche les solutions dans Z2.
1. (a) On suppose d ⩽ 0. Résoudre (∗).

(b) On suppose
√
d ∈ N. Résoudre (∗).

On suppose dans la suite d > 0 et
√
d ̸∈ N.

2. (a) Soit (x0; y0) une solution de (∗) telle que y0 ̸= 0. On pose z = x0 + y0
√
d.

i. Montrer que |z| ̸= 1.
ii. Montrer que l’on peut construire une suite (xn; yn) de couples d’entiers

telle que pour tout entier naturel n on ait zn+1 = xn + yn

√
d.

(b) En déduire que l’équation (∗) admet une infinité de solutions.
3. On admet le résultat suivant :

Pour tout α réel irrationnel, il existe une infinité de rationnels r = p
q

avec p et
q premiers entre eux, tels que 0 < |α− r| < 1

q2 .
Montrer qu’il existe une solution (x0; y0) de l’équation (∗) telle que y0 ̸= 0.

1349 Mines-Ponts MP 2017

Soit A,B ∈ M2(Z) telles que pour tout entier k avec 0 ⩽ k ⩽ 4, la matrice A+kB soit
inversible à coefficients dans Z. Montrer qu’il en est de même pour la matrice A+ 5B.

1350 ENS MP 2013

Soit K = Z/pZ, avec p ⩾ 3 premier, et v un entier avec 0 < v < p− 1.
1. Montrer qu’il existe y ∈ K tel que yv ̸= 1.
2. Calculer, pour u ∈ N,

∑
x∈K

xu.

1351 Mines-Ponts MP 2025

Soit P,Q ∈ Q[X], scindés dans C[X], que l’on pourra écrire :

P = a
r∏

k=1
(X − αk) et Q = b

s∏
k=1

(X − βk),

où les αk sont deux à deux distincts et les βk sont deux à deux distincts.
On pose x = α1 et y = β1, et pour tout t ∈ Q, zt = x+ ty et Rt = P (zz − tX).

1. Justifier qu’il existe t0 ∈ Q tel que Rt0(y) = 0 et pour tout j ⩾ 2, Rt0(βj) ̸= 0.
On pose Q[zt0 ] = VectQ({zm

t0 | m ∈ N}) ⊂ C. On admet que Q[zt0 ] est un sous-
espace vectoriel de dimension finie.

2. Montrer que Q[zt0 ] est un corps.
3. Montrer que x et y appartiennent à Q[zt0 ].
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1352 ENS MP 2015

Soit q ∈ N∗ et H un sous-groupe propre de (Z/qZ)∗. Montrer qu’il existe une infinité
de nombres premiers qui ne sont congrus à aucun élément de H modulo q.

1353 X MP 2020

On considère un corps quelconque K et J =
(

0 −1
1 0

)
∈ M2(K).

1. Soit A l’ensemble des combinaisons linéaires dans K des matrices I2 et J . Que
dire de la structure algébrique de A ?

2. Soit B l’ensemble des matrices de M2(K) qui commutent avec tout élément de
A. Que dire de B ?
Dorénavant, on cherche à résoudre l’équationXn = J dansM2(K) en distinguant
selon si K = R ou C.

3. On suppose que K = R.
(a) Déterminer un isomorphisme d’anneaux entre A et un autre ensemble clas-

sique. En déduire la résolution de l’équation Xn = J et son nombre de
solutions.

(b) En fait, quelle est la structure algébrique de A ici ?
4. On suppose que K = C.

(a) L’ensemble A garde-t-il la même structure algébrique ?
(b) En s’inspirant de la méthode de 3(a), résoudre de nouveau l’équation Xn = J

et dénombrer l’ensemble des solutions.
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8 Algèbre linéaire

1354 X-ENS

Soit n ∈ N, a1, . . . , an, b1, . . . , bn des nombres complexes tels que ai + bj ̸= 0 pour tous
1 ⩽ i, j ⩽ n. Calculer :

det
( 1

ai + bj

)
1⩽i,j⩽n

 .
1355 Mines-Ponts

Soit n ∈ N∗ et f : Mn(R) → Mn(R) définie par f(M) = M +MT .
1. Montrer que f est un endomorphisme.
2. L’application f est-elle diagonalisable ?
3. Déterminer les sous-espaces propres de f .

1356 X PC 2012

Soit A et B deux matrices de Mn(C). Montrer que les deux affirmations suivantes sont
équivalentes :

i) Les matrices A et B ont une valeur propre commune.
ii) Il existe M ∈ Mn(C) non nulle telle que AM = MB.

1357 X

Calculer :
det

((
pgcd(i, j)

)
1⩽i,j⩽n

)
.

1358 Mines-Ponts MP 2018

Soit n ⩾ 2 un entier.
Résoudre dans Mn(R) l’équation A = com(A), où com(A) est la matrice des cofacteurs
de A.

1359 Mines-Ponts MP

Soit A,B deux matrices de Mn(R) telles que AB − BA = A. Montrer que la matrice
A est nilpotente.

1360 ENS 2024

Soit A ∈ GLn(R) telle que pour tout k ∈ N∗, il existe M ∈ Mn(Z) telle que Mk = A.
Que dire de la matrice A ?

1361 Mines-Ponts PC 2023

Soit n ∈ N∗ et X,Y deux vecteurs de Mn×1(R). On pose M = XY T .
Étudier la diagonalisabilité de M .
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1362 X-ENS

Quelle est la dimension maximale d’un sous-espace vectoriel de Mn(R) formé unique-
ment de matrices diagonalisables ?

1363 Mines-Ponts MP 2015

Soit A et B dans Mn(Z) telles que det(A) et det(B) sont premiers entre eux. Montrer
qu’il existe deux matrices U et V dans Mn(Z) telles que AU +BV = In.

1364 X

Soit A ∈ Mn(R). Résoudre l’équation X +XT = Tr(X)A, d’inconnue X.

1365 Mines-Ponts PC 2024

Soit n un entier supérieur ou égal à 2. Soit K un corps et A,B deux matrices de Mn(K).
L’égalité (AB)2 = 0 implique-t-elle (BA)2 = 0 ?

1366 ENS PC

Soit A ∈ M3(R) une matrice symétrique. On suppose que

Tr(A) = 3, Tr(A2) = 5, Tr(A3) = 9.

On note E l’ensemble des matrices M appartenant M3(R), symétriques et telles que
Tr(AM) = 1 et Tr(A2M) = 3. Déterminer min {Tr(M2) | M ∈ E}.

1367 Mines/Centrale

Soit V un espace vectoriel réel de dimension finie. Soit p, q, r trois projecteurs de V
tels que p =

√
2q +

√
3r. Montrer que p = q = r = 0.

1368 Mines-Ponts

Montrer que la famille {|x− a| | a ∈ R} est libre dans C(R,R).

1369 Mines 2014

Soit A une matrice carrée réelle. On suppose que la suite (An)n∈N converge vers une
matrice B. Montrer que la matrice B est diagonalisable et de spectre inclus dans {0; 1}.

1370 Mines-Ponts MP/PC 2023

Soit M = (mi,j)1⩽i,j⩽n une matrice orthogonale de Mn(R). Montrer que∣∣∣∣∣∣
∑

1⩽i,j⩽n

mij

∣∣∣∣∣∣ ⩽ n ⩽
∑

1⩽i,j⩽n

|mij| ⩽ n
3
2 .

1371 Mines-Ponts MP 2008

Soit θ ∈ R et n ∈ N∗. Calculer le déterminant de taille n :

Dn(θ) =

∣∣∣∣∣∣∣∣∣∣∣

2 cos(θ) 1 0
1 . . . . . .

. . . . . . 1
0 1 2 cos(θ)

∣∣∣∣∣∣∣∣∣∣∣
.
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1372 Mines-Ponts MP 2023

Soit A et B deux matrices de Mn(C).
1. On suppose A inversible.

Montrer que AB et BA sont semblables.
2. Que dire si A n’est pas inversible ?

1373 ENS PC 2023

Soit A,B ∈ Mn(R).
1. Si A+ iB ∈ GLn(C), montrer qu’il existe t ∈ R tel que A+ tB ∈ GLn(C).
2. Si les matrices A et B sont semblables dans Mn(C), montrer qu’elles sont sem-

blables dans Mn(R).

1374 Mines-Ponts MP

Trouver toutes les matrices A ∈ Mn(R) telles que det(A+M) = det(A)+det(M) pour
tout M ∈ Mn(R).

1375 Mines-Ponts PC

Soit n ∈ N∗ et A,B,N ∈ Mn(C).
1. On suppose que A et B commutent. Factoriser An −Bn.
2. On suppose N nilpotente. Montrer que la matrice In −N est inversible.
3. On suppose N nilpotente et AN = NA. Montrer que A−N est inversible si et

seulement si A est inversible.

1376 Mines

Soit A ∈ M3×4(R) et B ∈ M4×3(R) telles que :

AB =

0 1 1
1 0 1
1 1 0

 .
Montrer que la matrice BA est diagonalisable.

1377 Mines-Ponts MP

Soit M ∈ Mn(C) possédant une unique valeur propre λ ∈ C. Montrer que les propriétés
suivantes sont équivalentes :

i) |λ| < 1
ii) La suite (Mk)k∈N converge vers la matrice nulle.
iii) La série

∑
k∈N

Mk converge.

1378 CCP MP

Soit A ∈ Mn(R) telle que A3 = A+ In.
1. Montrer que A est diagonalisable dans Mn(C).
2. Montrer que X3 −X − 1 admet une seule racine réelle et strictement positive.
3. En déduire que det(A) > 0.
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1379 Mines-Télécom MP

Soit p un nombre premier.
On note K = Z/pZ et K2[X] = {P ∈ K[X] | deg(P ) ⩽ 2} .

1. Calculer Card(K2[X]).
2. Calculer le cardinal de l’ensemble des polynômes de K2[X] non scindés.
3. En déduire qu’il existe des matrices de M2(K) non trigonalisables.

1380 Mines-Ponts PC

Calculer, en fonction de n, le nombre de matrices de Mn(R) qui sont orthogonales et à
coefficients entiers.

1381 CCP MP

Soit n ∈ N∗ et A ∈ Mn(R) telle que A2 + A+ In = 0.
Montrer que n est pair.

1382 CCP PSI 2005

Calculer le déterminant de la matrice
−a b c d
b −a d c
c d −a b
d c b −a

 .

1383 Mines-Télécom 2019

Déterminer le polynôme caractéristique de A =
(

1 −1
2 4

)
.

Calculer, pour n ∈ N, An de deux manières différentes.

1384 X MP

Soit E un espace vectoriel et p, q deux projecteurs de E tels que Im(p) ⊂ Ker(q). On
pose r = p+ q− pq. Montrer que r est un projecteur. Trouver son image et son noyau.

1385 Mines

Soit n ∈ N∗. Montrer que l’ensemble des matrices diagonalisables de Mn(C) est dense
dans Mn(C).

1386 X PC/MP PSI 2022

Soit A ∈ Mn(R) symétrique. Montrer que Tr(A)2 ⩽ rang(A)Tr(A2).
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1387 CCINP MP 2023

Soit E un espace vectoriel réel et f un endomorphisme de E de rang 1.
1. Montrer qu’il existe λ ∈ R tel que f 2 = λf .
2. A-t-on Im(f) ⊕ Ker(f) = E ?
3. Montrer que les assertions suivantes sont équivalentes :

i) Il existe c ∈ R∗ tel que cf est un projecteur.
ii) f ◦ f ̸= 0
iii) Im(f) ⊕ Ker(f) = E

1388 Mines-Télécom MP 2025

Soit n ∈ N∗. Résoudre l’équation matricielle dans Mn(R) :M
5 = M2

Tr(M) = n

1389 Mines-Ponts PSI 2015

Soit M ∈ M2(Z) telle que Mn = I2 pour un n ∈ N∗. Montrer que M12 = I2.

1390 CCP MP 2021

Soit n ∈ N∗ et A ∈ Mn(C) avec Tr(A) ̸= 0.
On considère l’application

f : Mn(C) −→ Mn(C)
M 7−→ Tr(A)M − Tr(M)A

1. Montrer que f est un endomorphisme de Mn(C).
2. Caractériser Ker(f) et Im(f).
3. Montrer que f est diagonalisable.

1391 X-ENS

Soit n ∈ N∗ et a0, . . . , an−1 ∈ C. Calculer :

det



a0 a1 a2 · · · an−1

an−1
. . . . . . . . . ...

... . . . . . . . . . a2

a2
. . . . . . a1

a1 a2 · · · an−1 a0


.

1392 Mines-Ponts PSI 2019

On munit Mn(R) de son produit scalaire canonique. Soit V le sous-espace vectoriel de
Mn(R) formé des matrices de trace nulle. Soit J la matrice dont tous les coefficients
sont égaux à 1. Calculer la distance de J à V .
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1393 Mines-Ponts PSI

Soit V un espace vectoriel de dimension finie et f un endomorphisme de V . Prouver
que :

dim(Ker(f)) ⩽ dim(Ker(f 2)) ⩽ 2 dim(Ker(f)).

1394 X PC 2016

Soit n, p ∈ N tels que 1 ⩽ n < p, K un corps et A ∈ Mp×n(K), B ∈ Mn×p(K).
Que dire de det(AB) ?

1395 Mines-Ponts

Soit A,B ∈ Mn(R). Montrer que AB et BA ont les mêmes valeurs propres.

1396 CCINP MP

Soit (E, ⟨·, ·⟩) un espace vectoriel euclidien et B = (ei)1⩽i⩽n une base ordonnée de E.
Soit encore f l’application définie, pour tout x ∈ E, par :

f(x) =
n∑

k=1
⟨x, ek⟩ek.

1. Montrer que f est un endomorphisme de E, que f est symétrique, bijective et
que f admet des valeurs propres toutes strictement positives.

2. Montrer qu’il existe un endomorphisme de E tel que g2 = f−1.
3. Montrer que B = (g(ei))1⩽i⩽n est une base de E.

1397 X PC 2020

Soit E un espace vectoriel euclidien et x, y deux vecteurs non nuls de E. Montrer que

∥x− y∥ ⩾
1
2 max (∥x∥; ∥ y∥) ·

∥∥∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥∥∥.
1398 X-ENS

Soit A ∈ Mn(C) telle que Tr(Ak) = 0 pour tout k ∈ N.
Montrer que la matrice A est nilpotente.

1399 CCINP MP

Soit (E, ⟨·, ·⟩) un espace vectoriel euclidien de dimension n ⩾ 3.
Soit a et b deux vecteurs unitaires et linéairement indépendants de E.
Soit encore u l’application définie, pour tout x ∈ E, par :

u(x) = ⟨x, a⟩b+ ⟨x, b⟩a.

1. Montrer que u est un endomorphisme symétrique de E.
2. Déterminer Ker(u).
3. En déduire les valeurs propres et les vecteurs propres de u.

4. Déterminer les extrema de f : x ∈ E \ {0} 7→ ⟨x, a⟩·⟨x, b⟩
∥x∥2 .
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1400 Mines-Ponts MP

Soit K un corps et f : Mn(K) → K non constante telle que, pour tout (A;B) ∈ Mn(K)2,
f(AB) = f(A)f(B). Montrer que les deux affirmations suivantes sont équivalentes :

i) f(A) = 0
ii) A /∈ GLn(K)

1401 X-ENS

Soit n ∈ N∗ et K un corps. Montrer que tout hyperplan de Mn(K) rencontre GLn(K).

1402 Mines-Ponts PC 2023

Soit n ∈ N tel que n ⩾ 2. Soit A ∈ Mn(R) et H ∈ Mn(R) la matrice ayant tous ses
coefficients égaux à 1.
Montrer que pour tout t ∈ R, det(A+ tH) det(A− tH) ⩽ det(A2).

1403 Centrale PC 2010

Soit B = (e1; . . . ; en) une base ordonnée de Rn.
Soit u = u1e1 + · · · + unen, où u1, . . . , un ∈ R.
Trouver une condition nécessaire et suffisante sur les composantes de u dans la base B
pour que le n-uplet (e1 + u; . . . ; en + u) soit une base de Rn.

1404 X PC 2015

Soit f un endomorphisme de Mn(C).
On suppose que pour tout A,B ∈ Mn(C), f(AB) = f(A)f(B).
Montrer que f est soit injectif, soit nul.

1405 X PC 2020

Soit G un sous-ensemble fini de GLn(R), non vide et stable par produit.
1. Montrer que In ∈ G. Soit A ∈ G. Montrer que A−1 ∈ G.

2. On pose P = 1
Card(G)

∑
A∈G

A.

(a) Soit A ∈ G. Montrer que AP = PA et que P est un projecteur.
(b) Déterminer les ensembles G tels que P = In.

1406 Centrale 2018

Une matrice A ∈ Mn(C) est dite à diagonale strictement dominante lorsque :

∀i ∈ [[1 ;n]], |aii| >
n∑

j=1
j ̸=i

|aij|.

Montrer que si A est à diagonale strictement dominante, alors A est inversible.
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1407 X PC 2020

Soit p, n ∈ N∗ tels que p ⩽ n et K un corps. Soit encore A ∈ Mn×p(K) et B ∈ Mp×n(K).
On suppose que

AB =
(
Ip C

0 D

)
.

1. Calculer D.
2. Calculer BA.

1408 Mines-Ponts MP/PSI

Quel est le nombre minimal de coefficients à modifier sur une matrice inversible pour
la rendre non inversible ?

1409 Mines-Ponts

Soit n ∈ N∗, P un polynôme non constant de C[X] et A ∈ Mn(C) diagonalisable.
Montrer qu’il existe M ∈ Mn(C) telle que P (M) = A.

1410 Mines-Ponts MP 2022

Soit A ∈ Mn(C) telle qu’il existe p ∈ N∗ vérifiant Ap = 0.
1. Montrer que An = 0.
2. Calculer det(A+ In).
3. Soit M ∈ Mn(C) telle que AM = MA.

Calculer det(A+M).
On pourra commencer par le cas où M ∈ GLn(C).

4. Le résultat est-il toujours valable si A et M ne commutent pas ?

1411 ENS

Soit E un K-espace vectoriel de dimension n et u un endomorphisme de E ayant
n valeurs propres distinctes. Montrer que u admet un nombre fini de sous-espaces
vectoriels stables. Combien y en a-t-il ? Décrire ces sous-espaces.

1412 X

Soit E un K-espace vectoriel de dimension n et u un endomorphisme de E nilpotent
d’ordre n. Montrer que u admet exactement n + 1 sous-espaces vectoriels stables, et
que ce sont les Ker(uk) (0 ⩽ k ⩽ n).

1413 Mines-Ponts

Soit E un espace vectoriel réel et u un endomorphisme de E tel que u3 + u = 0. On
suppose que le rang de u est fini. Montrer que le rang de u est pair.

1414 X-ENS

Déterminer l’espace tangent à On(R) en la matrice identité.
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1415 CCINP

Soit A ∈ M3(R) diagonalisable telle que dim(Ker(A)) = 2.

Soit B =
(
αA βA

γA 0

)
avec α+ β = γ et α, β, γ non nuls.

1. Montrer que χB = χγA · χ−βA.
2. Démontrer que dim(Ker(B)) = 2 dim(Ker(A)).
3. Justifier que pour α = −1, β = 3, la matrice B est diagonalisable, puis la

diagonaliser.

1416 Mines/Centrale

Soit Φ l’endomorphisme de Mn(C) défini, pour tout A ∈ Mn(C), par Φ(A) = AT .
Déterminer det(Φ) et Tr(Φ).

1417 ENS PC 2024

Résoudre dans M2(R) :

A2 + A =
(

1 1
1 1

)
.

1418 Centrale

Soit E un K-espace vectoriel de dimension finie, g un endomorphisme de E de rang 1
et f ∈ GL(E). Montrer que les deux affirmations suivantes sont équivalentes :

i) f + g ∈ GL(E)
ii) Tr(g ◦ f−1) ̸= −1

1419 Mines-Ponts MP 2019

Soit n, p ∈ N∗ et A ∈ Mn×p(R), B ∈ Mp×n(R).
Montrer que p+ rang(In + AB) = n+ rang(Ip +BA).

1420 Mines-Ponts 2019

Soit E = C∞(R,R) et D : E → E défini par D(f) = f ′.
Existe-t-il un endomorphisme φ de E tel que φ2 = D ?

1421 Mines-Ponts PC 2015

Soit α, β ∈ R. Pour tout M ∈ Mn(R), on pose :

Φ(M) = αM + βMT .

1. Montrer que Φ induit un endomorphisme de Mn(R).
2. Calculer le déterminant de Φ. En déduire une condition nécessaire et suffisante

pour que Φ appartienne à GL(Mn(R)).
3. Déterminer sous réserve de sens Φ−1.
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1422 X MP

Soit E,F deux K-espaces vectoriels de dimension finie et f, g deux applications linéaires
de E vers F . Montrer que les deux affirmations suivantes sont équivalentes :

i) rang(g) ⩽ rang(f)
ii) Il existe un automorphisme h de F et un endomorphisme k de E vérifiant

l’égalité h ◦ g = f ◦ k.

1423 X PC 2013

Montrer que toute matrice A de Mn(R) est somme de deux matrices diagonalisables.

1424 X PC

Soit A = (aij)1⩽i,j⩽2n ∈ M2n(R) une matrice antisymétrique et λ ∈ R.
Montrer que le déterminant de A est égal au déterminant de la matrice (aij +λ)1⩽i,j⩽2n.

1425 Mines-Ponts

Soit E un K-espace vectoriel de dimension finie.
1. Soit u, v deux endomorphismes diagonalisables tels que u◦v = v ◦u. Démontrer

qu’il existe une base de E dans laquelle les matrices u et v sont simultanément
diagonales.

2. Plus généralement, soit u1, . . . , um une famille d’endomorphismes diagonali-
sables de E commutant deux à deux, m ⩾ 1. Montrer qu’il existe une base
de E diagonalisant tous les ui.

1426 Mines-Ponts PC 2015

Soit n un entier naturel supérieur ou égal à 2.
Soit E un espace vectoriel réel de dimension n et u un endomorphisme de E tel que
u2 = −IdE.

1. Montrer que n est pair.
2. Montrer que u ne laisse stable aucun hyperplan de E.

1427 Mines

Soit n ∈ N∗ et A ∈ Mn(R) vérifiant A4 + A3 + 2A2 + A+ In = 0.
Montrer que n est pair et que Tr(A) ∈ Z−.

1428 X-ENS

Soit n ∈ N∗, K un corps et A ∈ Mn(K) une matrice diagonalisable.
On note λ1, . . . , λr les valeurs propres de A et n1, . . . , nr leur multiplicité.

1. Calculer la dimension de K[A] et celle du commutant de A noté C(A).
2. Montrer que dim(C(A)) = n si et seulement si r = n si et seulement si
C(A) = K[A].

1429 X-ENS

Soit K un corps et E un K-espace vectoriel de dimension finie.
Montrer que l’algèbre des endomorphismes de E est simple.
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1430 CCINP PSI 2022

Soit A ∈ Mn(R) telle que A(ATA)2 = In.
1. Montrer que A est inversible.
2. Montrer que A est symétrique.
3. Montrer que A = In.

1431 Mines-Télécom MP

1. Soit A ∈ M2(C) non diagonalisable. Montrer qu’il existe α ∈ C, N ∈ M2(C)
non nulle, nilpotente et vérifiant A = αI2 +N .

2. Soit n ∈ N. Résoudre l’équation Mn =
(

2 −1
1 0

)
.

1432 X PSI

Soit n ∈ N∗ et B = (ei)1⩽i⩽n la base canonique de Rn. Soit u un endomorphisme de Rn

tel que u(ei) = ei+1 si i ∈ [[1 ;n− 1]] et u(en) = 0.
Trouver les sous-espaces vectoriels de Rn stables par u.

1433 Mines-Ponts PSI 2018

Soit P ∈ C[X] de degré n ∈ N. Soit (t0; t1; . . . ; tn) un (n + 1)-uplet de nombres com-
plexes deux à deux distincts. Montrer que (P (X + t0);P (X + t1); . . . ;P (X + tn)) est
une base de Cn[X].

1434 Mines-Ponts

Soit un polynôme P de R[X], P = a0 + a1X + · · · + anX
n. Soit n + 1 nombres

réels distincts α0, α1, . . . , αn. Donner une condition nécessaire et suffisante pour que
(P (α0X);P (α1X); . . . ;P (αnX)) soit une base de Rn[X].

1435 Mines-Télécom MP 2021

Soit ∥·∥ une norme sur Mn(C) telle que, pour tout A et B appartenant à Mn(C),
∥AB∥ ⩽ ∥A∥∥B∥.

1. Montrer que la série
+∞∑
n=0

An

n! converge vers une matrice que l’on notera eA.

2. Montrer que det(eA) = eTr(A).

1436 X ESPCI 2024

Montrer que l’espace vectoriel{
f ∈ D1(]0 ; +∞[,R) | ∀x > 0, f(x) = xf ′

(
x

2

)}
est de dimension infinie.
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1437 Mines-Ponts PSI 2023

Soit θ ∈ ]0 ; π[. On note E l’ensemble des suites réelles (un)n∈N vérifiant, pour tout
n ∈ N,

un+2 − 2 cos(θ)un+1 + un = 0.
1. Montrer que E est un espace vectoriel réel. Donner une base.
2. Soit p ∈ N∗. Pour quelles valeurs de θ existe-t-il une suite non nulle de E telle

que u0 = up+1 = 0 ?
3. Soit A ∈ Mp(R) telle que pour tout (i; j) ∈ {1; . . . ; p}2, ai,j = δ|i−j|,1.

Déterminer les éléments propres de A. La matrice A est-elle diagonalisable ?

1438 ENS PC 2019

Résoudre dans Mn(R) l’équation eM = −In.

1439 X

1. Soit a1, . . . , ap des réels distincts deux à deux et c1, . . . , cp des réels non tous
nuls. On pose f(t) = c1ea1t + · · · + cpeapt. Montrer que f admet au plus p − 1
zéros.

2. Soit a1 < · · · < ap et b1 < · · · < bp des réels.
On pose M =

(
eaibj

)
1⩽i,j⩽p

. Montrer que det(M) > 0.

1440 X-ENS

Pour tout A ∈ Mn(C), on définit la suite (Ak)k⩾0 en posant A0 = A et pour tout k ⩾ 1 :

Ak = A
(
Ak−1 − 1

k
Tr(Ak−1)In

)
.

Montrer que An = 0.

1441 Centrale MP 2007

Soit K un corps, n ∈ N∗ et A ∈ Mn(K) une matrice de rang 1.
1. Montrer qu’un polynôme de degré inférieur ou égal à deux annule la matrice A.
2. En déduire que si Tr(A) ̸= 0, alors A est diagonalisable. Que dire si Tr(A) = 0 ?
3. Montrer que la matrice A =

(
i
j

)
1⩽i,j⩽n

est diagonalisable et trouver ses valeurs
propres et ses vecteurs propres.

1442 X

Soit E une espace vectoriel complexe de dimension supérieure ou égale à 1, et u un
endomorphisme de E. Montrer l’existence d’un unique couple (d;n) d’endomorphismes
de E tel que :

• u = d+ n,
• d et n commutent,
• d est diagonalisable et n est nilpotent.

Vérifier en outre que d et n sont des polynômes en u.
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1443 ENS Ulm MP

Soit A = (aij) ∈ Mn(R) une matrice stochastique. Soit λ une valeur propre de A de
module 1 et X = (x1; . . . ;xn) ∈ Cn un vecteur propre associé.

1. Si xi est une composante de X de module maximal, montrer que λxi est encore
une composante de X de module maximal.

2. En déduire que λ est une racine mème de l’unité avec m ⩽ n.
3. On suppose que pour tout i ∈ [[1 ;n]], aii ̸= 0. Montrer que la seule valeur propre

de A de module 1 est 1.

1444 Mines-Ponts PSI

Soit la matrice complexe

A =



a b · · · · · · · · · b

b
. . . . . . 0 ...

... . . . . . . . . . ...

... . . . . . . . . . ...

... 0 . . . . . . b
b · · · · · · · · · b a


.

Pour quelles valeurs de a et b la matrice A est-elle inversible ?

1445 X MP 2022

Soit Φ l’endomorphisme « moyenne de Cesàro » de CN défini par :

Φ((un)n∈N) =
(
u0 + · · · + un

n+ 1

)
n∈N

.

Déterminer le spectre, les sous-espaces propres et l’expression des vecteurs propres de
l’endomorphisme Φ.

1446 X MP 2006

Soit A ∈ Mn(C). On pose sim(A) = {P−1AP | P ∈ GLn(C)}.
Montrer que A est nilpotente si et seulement si 0 ∈ sim(A).

1447 Mines

Soit n ⩾ 2 et A ∈ Mn(C). On pose PA(X) = det(XIn − A) et on note :

PA(X) =
n∑

k=0
(−1)kck(A)Xn−k.

1. Rappeler l’expression de χA en fonction de Tr(A) et det(A).
2. Que valent c0(A) et c1(A) ?

3. Montrer que c2(A) = Tr(A)2 − Tr(A2)
2 .
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1448 Mines-Ponts

Cas particulier :

Soit A =

1
1
0

 et B =

0
1
1

 appartenant à M3×1(R).

Soit encore M = ABT +BAT .
1. Montrer que M est diagonalisable.
2. Calculer les valeurs propres de M .
3. Déterminer le sous-espace propre associé à la valeur propre 0 et montrer qu’il est

orthogonal à Vect({A;B}). (L’espace est muni du produit scalaire canonique.)

Cas général :
Soit A et B appartenant à Mn×1(R) linéairement indépendants.

1. Montrer que M = ABT +BAT est diagonalisable.
2. Montrer que 0 est une valeur propre de M et déterminer le sous-espace propre

associé.
3. Donner une condition (suffisante) pour que A+B soit un vecteur propre de M .

1449 ENS MP 2023

Soit A ∈ Mn(C). On pose sim(A) = {P−1AP | P ∈ GLn(C)}.
Montrer que A est diagonalisable si et seulement si sim(A) est fermée.

1450 CCP MP

1. Soit P (X) = Xn−X+1. Montrer que le polynôme P admet n racines complexes
distinctes z1, . . . , zn.

2. Soit A =


1 + z1 1 · · · 1

1 . . . . . . ...
... . . . . . . 1
1 · · · 1 1 + zn

 .
Montrer que det(A) = 2 · (−1)n.

1451 Mines-Ponts MP

Soit (ei)i∈{1;...;n} une famille libre dans un espace préhilbertien (E, ⟨·, ·⟩). On suppose
que :

∀x ∈ E, ∥x∥2 =
n∑

i=1
⟨x, ei⟩2.

1. Montrer que pour tout i ∈ {1; . . . ;n}, ∥ei∥ ⩽ 1.
2. Montrer que pour tout i ∈ {1; . . . ;n}, ∥ei∥ ⩾ 1.
3. En déduire que (ei)i∈{1;...;n} est une base orthonormée de E.
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1452 Centrale PC 2024

Soit E l’ensemble des fonctions continues de [0 ; 1] dans R.
Pour tout x ∈ [0 ; 1], on définit G : E → E par :

G(f)(x) =
∫ 1

0
min(x; t)f(t) dt.

1. Montrer que G est bien défini et est un endomorphisme de E.
2. Déterminer le noyau et l’image de G.
3. Déterminer les éléments propres de G.

1453 CCP MP

On munit Rn de son produit scalaire canonique ⟨·, ·⟩.
Soit f un endomorphisme symétrique de Rn à valeurs propres strictement positives.

1. Montrer que pour tout x ∈ Rn \ {0}, ⟨f(x), x⟩ > 0.
2. Soit u ∈ Rn. On considère :

f : Rn −→ R
(x; y) 7−→ 1

2⟨f(x), x⟩ − ⟨u, x⟩

(a) Montrer que les dérivées partielles de g existent, et les calculer.
(b) Montrer que g admet un unique point critique z.
(c) Montrer que g admet un minimum en z.

1454 Mines-Ponts PC 2016

Soit (E, ⟨·, ·⟩) un espace préhilbertien réel et soit f un endomorphisme de E tel que

∀(x; y) ∈ E2, ⟨x, y⟩ = 0 =⇒ ⟨f(x), f(y)⟩ = 0.

Montrer qu’il existe k ∈ R+ tel que, pour tout x ∈ E, ∥f(x)∥ = k∥x∥.

1455 Centrale MP 2019

Pour tout n ∈ N∗, on pose E = Mn(C).

1. Soit r ∈ [[1 ;n]]. Calculer com(diag(1, . . . , 1︸ ︷︷ ︸
r un

,

n−r zéro︷ ︸︸ ︷
0, . . . , 0)).

2. Montrer que pour tout (A;B) ∈ E2, com(AB) = com(A)com(B).
3. En déduire rang(com(A)) en fonction de rang(A).
4. Soit φ : E → E, A 7→ rang(A).

L’application φ est-elle injective ? surjective ? Déterminer Im(φ).
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1456 CCINP PC 2021

On munit R[X] du produit scalaire défini par ⟨P,Q⟩ =
∫ 1

0
P (t)Q(t) dt.

1. Soit n ∈ N. Calculer la norme de Pn =
√
n(1 −X)n.

2. Montrer qu’il n’existe pas de polynôme T ∈ R[X] tel que, pour tout polynôme
P ∈ R[X], ⟨T, P ⟩ = P (0).

1457 CCP MP

Soit a ∈ R, n ⩾ 3 et Ma =


1 a · · · a
1 0 · · · 0
... ... ...
1 0 · · · 0

 ∈ Mn(R).

1. Déterminer le rang de Ma. Donner une valeur propre évidente de Ma et sa
multiplicité.

2. Soit M ∈ Mn(C). On note λ1, . . . , λn ses valeurs propres comptées avec leur
multiplicité.

Exprimer
n∑

k=1
λk et

n∑
k=1

λ2
k en fonction de M .

3. Donner une condition nécessaire et suffisante sur a pour que Ma soit diagonali-
sable dans Mn(R).

1458 X-ENS

1. Soit x1, . . . , xn ∈ C. Calculer det
(
(xi−1

j )1⩽i,j⩽n

)
.

2. Soit A ∈ Mn(K) (avec K = R ou K = C) telle que Tr(Ak) = 0 pour k = 1, . . . , n.
Montrer que A est nilpotente.

1459 CCINP MP 2023

Soit n ⩾ 2 et A =


0 · · · 0 1
... ... ...
0 · · · 0 1
1 · · · 1 1

 ∈ Mn(R).

1. Diagonaliser la matrice A.
2. Déterminer le polynôme caractéristique de A.

1460 Mines-Télécom PSI 2022

Soit n ⩾ 2 et A =


a1 a2 · · · an

a2 0 · · · 0
... ... ...
an 0 · · · 0

 ∈ Mn(R).

1. Diagonaliser la matrice A.
2. Déterminer le polynôme caractéristique de A.
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1461 X

Trouver une base du C-espace vectoriel des suites complexes périodiques.

1462 X MP

Soit E = C([0 ; 1],R) muni de la norme ∥·∥∞. On dit qu’un endomorphisme u de E est
un opérateur positif (ce que l’on note u ⩾ 0), si u(f) ⩾ 0 pour tout f ⩾ 0.

1. Soit u un endomorphisme positif de E. Montrer que u est continu.
2. Soit f ∈ E et ε ∈ R∗

+. Montrer que :

∃c ∈ R∗
+, ∀(x; y) ∈ [0 ; 1]2, |f(y) − f(x)| ⩽ ε+ c(y − x)2.

3. (Théorème de Korovkin)
Pour tout ∈ N, on note ek l’élément de E défini par ek : x 7→ xk.
Soit (un)n∈N une suite d’opérateurs positifs de E.
On suppose que pour k ∈ {0; 1; 2}, la suite de fonctions (un(ek))n∈N converge
vers ek dans (E, ∥·∥).
Montrer que pour tout f ∈ E, la suite de fonctions (un(f))n∈N converge unifor-
mément vers f .

1463 X-ENS

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E. Montrer
que E = Im(f) ⊕ Ker(f) si et seulement si Im(f) = Im(f 2).

1464 Centrale-Supélec PC 2023

Soit n ∈ N∗ et A ∈ Mn(R) une matrice nilpotente.
1. Soit λ une valeur propre de A. Montrer que λ = 0.
2. On suppose que A commute avec AT . Montrer que A est la matrice nulle.

1465 Mines-Ponts

Soit n ∈ N∗ et A ∈ Mn(R) une matrice symétrique. On dit que A est positive (resp.
définie positive) si

∀X ∈ Mn+1(R) \ {0}, XTAX ⩾ 0 (resp. XTAX > 0)

1. Montrer que A est positive si et seulement si toutes ses valeurs propres sont
positives.

2. Montrer que A est définie positive si et seulement si toutes ses valeurs propres
sont strictement positives.

1466 X ESPCI

Soit f et g deux endomorphismes d’un espace vectoriel E de dimension finie. Montrer
que les deux affirmations suivantes sont équivalentes :

i) rang(f) + rang(g) = rang(f + g)
ii) Im(f) ∩ Im(g) = {0E} et Ker(f) + Ker(g) = E
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1467 CCINP 2023

Soit E un espace vectoriel réel de dimension finie. Trouver des endomorphismes diago-
nalisables f de E vérifiant f 3 − f 2 + f − IdE = 0.

1468 X-ENS

Déterminer les matrices de Mn(R) qui commutent avec toutes les matrices de permu-
tation.

1469 X ESPCI 2023

Soit n ⩾ 3 un naturel impair et A ∈ Mn(Z). Pour (α; β) ∈ Z2, on pose M = αA+βAT .
Montrer que det(M) est un multiple de α + β.

1470 Mines

Soit (a; b) ∈ R2 et

A =



a b · · · b b

b a
. . . b

... . . . . . . . . . ...
b

. . . a b
b b · · · b a


∈ Mn(R).

Diagonaliser la matrice A.

1471 CCINP PC 2023

Soit E un espace vectoriel réel ou complexe de dimension finie et u un endomorphisme
de E vérifiant u3 = u2. Montrer que u est diagonalisable si et seulement si u est un
projecteur.

1472 CCP MP

Soit E un espace euclidien muni du produit scalaire ⟨·, ·⟩ de norme associée ∥·∥.
Soit f un endomorphisme de E tel que, pour tout x ∈ E, ∥f(x)∥ ⩽ ∥x∥.
Soit B une base de E et A = (f)B

B.
Soit g l’endomorphisme de E tel que AT = (g)B

B.
1. (a) Montrer que :

∀(x; y) ∈ E2, ⟨f(x), y⟩ = ⟨x, g(y)⟩.

(b) En utilisant l’inégalité de Cauchy-Schwarz, montrer que pour tout x ∈ E,
∥g(x)∥ ⩽ ∥x∥.

2. Soit y ∈ E.
(a) Si f(y) = y, montrer que ∥g(y) − y∥2 = ∥g(y)∥2 − ∥y∥2.
(b) En déduire que f(y) = y si et seulement si g(y) = y.

3. (a) Montrer que Ker(f) = Im(g)⊥.
(b) Montrer que E = Ker(f − IdE) ⊞ Im(f − IdE).

1473 Mines MP 2024

Calculer dimQ (Vect(U5)), où U5 =
{
e 2kπi

5 | 0 ⩽ k ⩽ 4
}
.
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1474 Mines-Télécom MP 2023

Soit f un endomorphisme de R4 tel que f ◦ f = 0. Montrer que rang(f) ⩽ 2.

1475 Mines

Soit E un K-espace vectoriel de dimension impaire. Soit p et q deux projecteurs de E.
Montrer que p et q ont une droite propre commune.

1476 CCINP MP 2022

Soit n ∈ N∗, a0, . . . , an−1 appartenant à C et

M(a0; . . . ; an−1) =


a0 a1 · · · an−1

an−1 a0
. . . ...

... . . . . . . a1
a1 · · · an−1 a0

 .

On pose J = M(0; 1; 0; . . . ; 0).
1. Déterminer les valeurs propres et les vecteurs propres de J . Montrer que J est

diagonalisable.
2. Montrer que M(a0; . . . ; an−1) est un polynôme en J . La matrice M(a0; . . . ; an−1)

est-elle diagonalisable ?
3. Soit T = {M(a0; . . . ; an−1) | (a0; . . . ; an−1) ∈ Cn}. Montrer que l’ensemble T

est une sous-algèbre de Mn(C). Quelle est sa dimension ?

1477 X PC 2020

Calculer le déterminant de la matrice

M =


0 1 · · · 1
1 . . . . . . ...
... . . . . . . 1
1 · · · 1 0

 ∈ Mn(R).

1478 Mines-Ponts

Soit f un endomorphisme d’un espace vectoriel complexe de dimension finie. On sup-
pose que f 2 est diagonalisable. Montrer que f est diagonalisable si et seulement si
Ker(f) = Ker(f 2).

1479 Mines-Télécom MP

Soit A ∈ Mn(R) antisymétrique et B ∈ Mn(R) symétrique telles que AB = BA.
La norme euclidienne sur Mn×1(R) est notée ∥·∥.

1. Soit X ∈ Mn×1(R). Montrer que (AX)TBX = 0, puis que :

∥(A+B)X∥ = ∥(A−B)X∥.

Pour la suite, on suppose en plus que B ∈ GLn(R).
2. Montrer que A+B et A−B sont inversibles.
3. Montrer que (A+B)(A−B)−1 est orthogonale.
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1480 Mines-Télécom MP

Soit f un endomorphisme bijectif d’un espace euclidien E tel que, pour tout (x; y) ∈ E2,
⟨f(x), y⟩ = −⟨x, f(y)⟩.

1. Montrer que s = f ◦ f est symétrique.
2. Soit a une valeur propre de s et Va l’espace propre associé.

(a) Soit x ∈ Va \ {OE}. Montrer que ⟨s(x), x⟩ = a∥x∥2 = −∥f(x)∥2.
(b) En déduire que a < 0.
(c) Soit F = Vect({x; f(x)}). Montrer que F et F⊥ sont stables par f .

3. Montrer que dim(F ) = 2.

1481 CCP MP

Soit E un espace euclidien de dimension n ∈ N∗ et u un vecteur non nul de E. On
pose H = u⊥. Soit encore s la réflexion (la symétrie orthogonale) par rapport à H et
f ∈ O(E).

1. Montrer que f ◦ s ◦ f−1 est une symétrie, et déterminer ses espaces propres
caractéristiques.

2. Montrer que f et s commutent si et seulement si u est un vecteur propre de f .
3. En déduire l’ensemble C = {f ∈ O(E) | ∀g ∈ O(E), f ◦ g = g ◦ f}.

1482 CCP MP

Soit E un K-espace vectoriel de dimension n. Soit f un endomorphisme de E admettant
n valeurs propres distinctes, et g un endomorphisme de E tel que f ◦ g = g ◦ f .

1. Montrer que tout vecteur propre de f est aussi vecteur propre de g.
2. Montrer que f et g sont diagonalisables dans une même base de vecteurs propres.
3. Montrer qu’il existe un unique polynôme P de degré au plus n − 1 tel que
P (f) = g.

1483 CCP

Soit n ∈ N∗. Soit f un endomorphisme d’un espace vectoriel E de dimension n et soit
B = {e1; . . . ; en} une base de E. On suppose que f(e1) = f(e2) = . . . = f(en) = v, où
v est un vecteur donné de E.

1. Donner le rang de f .
2. L’endomorphisme f est-il diagonalisable ?
3. Avec les données de l’énoncé, exprimer Tr(f).

1484 Centrale

Trouver les matrices M ∈ Mn(R) telles que MMTM = In.

1485 Mines-Ponts

Soit A et B deux matrices appartenant à Mn(C) n’ayant pas de valeur propre commune.
1. Montrer que χA(B) est inversible.
2. Soit Y ∈ Mn(C). Montrer qu’il existe X ∈ Mn(C) telle que AX −XB = Y .
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1486 Mines PSI 2016

Soit n ∈ N∗ et F,G deux sous-espaces vectoriels de Rn.
1. Montrer qu’il existe un endomorphisme u de Rn tel que :

Im(u) = F et Ker(u) = G ⇐⇒ dim(F ) + dim(G) = n

2. Dans cette question n = 3, F est le plan vectoriel d’équation x + y + z = 0 et
G = Vect({(1; −1; 0)}). Déterminer un endomorphisme u dont l’image est F et
le noyau est G.

1487 X PC 2019

Soit E un K-espace vectoriel de dimension finie. Soit u un endomorphisme de E.
Montrer que les deux affirmations suivantes sont équivalentes :

i) Ker(u) = Im(u)
ii) Il existe une base B de E telle que

(u)B
B =

(
Op Ip

Op Op

)

où Op désigne la matrice nulle de Mp(K).

1488 ENS PSI 2021

Soit n ∈ N∗ et θ ∈ ]0 ;π[. On considère les deux matrices suivantes appartenant à
Mn(R) :

A =



0 1

1 . . . . . . 0
. . . . . . . . .

. . . . . . . . .

0 . . . . . . 1
1 0


et Bθ = 2 cos(θ)In + A.

1. Montrer que det(Bθ) =
sin((n+ 1)θ)

sin(θ) .

2. En déduire que la matrice A admet n valeurs propres distinctes. Calculer ces
valeurs propres.

1489 ENS MP 2023

Soit n ∈ N impair et M ∈ Mn(R) telle que, pour toute matrice A ∈ Mn(R) antisymé-
trique, det(A+M) = 0. Montrer que M est antisymétrique.

1490 X PC 2012

Soit (αk)1⩽k⩽n des nombres complexes distincts et pour tout k ∈ [[1 ;n]], fk : x 7→ eαkx.
Montrer que (fk)1⩽k⩽n est libre dans CR.
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1491 X PC 2012

Soit K un corps et A ∈ GLn(K). Montrer qu’il existe p ∈ N et a0, . . . , ap appartenant
à K tels que

A−1 = a0In + a1A+ · · · + apA
p.

Autrement dit, montrer que A−1 est un polynôme en A.

1492 X PC 2014

Soit K un corps et E un K-espace vectoriel de dimension finie. Soit u et v deux projec-
teurs de E. On suppose que IdE −u− v est inversible. Montrer que rang(u) = rang(v).

1493 X PC 2019

Soit A une matrice de Mn(R) dont tous les coefficients sont égaux.
1. La matrice A est-elle diagonalisable ?
2. Sous quelle condition la suite (Ap)p∈N converge-t-elle ?

1494 X PC 2019

Soit q ∈ R∗ et

A(q) =
(

q q(q + 1)
q(q − 1) −q

)
.

1. Soit p et q deux nombres réels non nuls et distincts. Les matrices A(p) et A(q)
sont-elles semblables ?

2. Même question pour les matrices B(q) = q−2A(q).
3. On considère les matrices C ∈ M2(R) telles que C2 = (A(q))2. Combien parmi

celles-ci ne sont pas semblables à A(q) ?

1495 X PC 2019

Soit E un espace vectoriel complexe de dimension finie et f, g deux endomorphismes
de E. On suppose qu’il existe α, β ∈ C tels que

f ◦ g − g ◦ f = αf + βg.

Montrer que f et g ont un vecteur propre commun.

1496 X PC 2019

Soit u un endomorphisme de R3 tel que u3 = 0 et u2 soit non nul. Trouver l’ensemble
des endomorphismes de R3 qui commutent avec u.

1497 CCP 2015

Soit a ∈ R∗ et

A =


1 a a2 a3

a−1 1 a a2

a−2 a−1 1 a
a−3 a−2 a−1 1

 .
Sans calcul, déterminer les valeurs propres et les sous-espaces propres de A. La matrice
A est-elle diagonalisable ?
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1498 CCP 2015

Soit A ∈ Mn(R) vérifiant 2A3 +3A2 +6A− In = 0. Justifier les propositions suivantes :
1. A est inversible ;
2. A est diagonalisable dans Mn(C) ;
3. det(A) > 0

1499 CCP 2015

Soit A ∈ M3(R) telle que A3 + A = 0.
Que peut-on dire du rang de A ?

1500 CCP 2015

Déterminer toutes les matrices A ∈ Mn(C), de trace égale à 7 et vérifiant l’égalité
A3 − 5A2 + 6A = 0.

1501 Mines-Ponts 2015

Soit E un C-espace vectoriel de dimension finie. Soit f un endomorphisme de E sans
point fixe autre que le vecteur nul, tel que f 2 − 2f est diagonalisable. Montrer que f
est diagonalisable.

1502 X-ENS 2015

Trouver toutes les racines carrées de A =
(

1 0
0 2

)
.

1503 Centrale 2015

Résoudre dans M2(C) l’équation M2 +M =
(

1 2
2 1

)
.

1504 Mines 2015

Soit A =


1 −2 −3 −6
0 3 6 9
7 3 13 9
4 2 8 6

 ∈ M4(R).

Trouver P,Q ∈ GL4(R) telles que PAQ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

.

1505 Mines 2015

À quelle(s) condition(s) la matrice A =


1 a b c
0 1 0 0
0 1 2 0
0 1 0 2

 ∈ M4(R) est-elle diagonalisable ?
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1506 Mines 2015

Donner une condition sur z ∈ C pour que la matrice A =

0 z z
1 0 z
1 1 0

 soit diagonalisable.

1507 CCP 2015

Soit A =
(

1 0
0 2

)
et M =

(
a b
c d

)
deux matrices de M2(R).

1. Calculer AM −MA.
2. L’endomorphisme f : M 7→ AM −MA est-il diagonalisable dans M2(R) ?

1508 CCP 2015

Montrer qu’une matrice nilpotente de Mn(C) a un indice de nilpotence inférieur ou
égal à n. En déduire qu’il n’existe pas de matrice A ∈ Mn(C) telle que

A2 =

0 0 0
3 0 0
0 −2 0

 .

1509 CCP 2015

Soit A ∈ Mn(R) telle que A3 = A2 −A+ In. Montrer que Tr(A) = dim(E1), où E1 est
le sous-espace propre de A associé à la valeur propre 1.

1510 CCP 2015

On considère l’application f qui, à tout polynôme de R3[X], fait correspondre le reste
de la division euclidienne de X2P (X) par X4 −1. Montrer que f est un endomorphisme
de R3[X]. Est-il diagonalisable ? injectif ?

1511 Mines-Télécom MP 2024

Soit A ∈ Mn(C) dont le polynôme caractéristique est scindé simple.
1. Montrer que la famille {In;A; . . . ;An−1} est libre.
2. Soit B ∈ Mn(C) telle que AB = BA. Montrer que B est une combinaison

linéaire des matrices In, A, . . . , A
n−1.

1512 CCP 2015

Soit A =

 3 −3 2
−1 5 −2
−1 3 0

 appartenant à M3(R).

1. La matrice A est-elle diagonalisable ?
2. Montrer qu’il existe une matrice R telle que R2 = A. (On ne demande pas de

calculer R.)
3. Montrer que toute matrice R appartenant à M3(R) telle que A = R2 est diago-

nalisable.
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1513 Mines 2015

Soit E l’espace vectoriel des fonctions de classe C1 sur l’intervalle [−1 ; 1], à valeurs
réelles. Montrer que l’application

Φ : E × E −→ R

(f ; g) 7−→ f(0)g(0) +
∫ 1

−1
f ′(t)g′(t) dt

définit un produit scalaire sur E. Trouver une base orthonormée du sous-espace vecto-
riel F = {P ∈ R2[X] | P (0) = 0}.

1514 CCP 2015

On considère l’endomorphisme u de Mn(R) défini par :

∀M ∈ Mn(R), u(M) = 1
3(2M −MT ).

1. Rechercher les éléments propres de u.
2. L’endomorphisme u est-il diagonalisable ?
3. Calculer Tr(u) et det(u).

1515 Centrale 2015

Soit F et G deux sous-espaces vectoriels supplémentaires d’un espace euclidien E. Soit
f : F → G et g : G → F des applications linéaires telles que :

∀(x; y) ∈ F ×G, ⟨f(x), y⟩ = ⟨x, g(y)⟩.

1. Montrer que Ker(f) = Im(g)⊥ ∩ F.

2. Montrer que F = Ker(f) ⊞ Im(g).
3. Montrer que f est injective si et seulement si g est surjective.
4. Montrer que g est injective si et seulement si f est surjective.

1516 Centrale 2015

Soit (a; b) ∈ R2. Trouver, sans calculer le polynôme caractéristique, les valeurs propres
et les sous-espaces propres de la matrice

A =


a2 ab ab b2

ab a2 b2 ab

ab b2 a2 ab

b2 ab ab a2

 .

1517 Centrale 2015

Soit (a; b; c) ∈ R3 et A =

a b c
c a b
b c a

.

Montrer que A est une matrice de rotation si et seulement si il existe h ∈
]
0 ; 4

27

[
tel

que a, b et c soient les racines du polynôme X3 −X2 + h.
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1518 Centrale 2015

Soit A ∈ GLn(R) et B =
(
A A3

A−1 A

)
.

À quelle condition sur A, la matrice B est-elle diagonalisable ?
On pourra commencer par étudier le cas n = 1.

1519 CCP 2015

Soit M ∈ M3(R) telle que M3 = I3 et M ̸= I3. Soit encore A =

0 0 1
1 0 0
0 1 0

 ∈ M3(R).

On cherche à démontrer que M est semblable à A.
1. Montrer que A est diagonalisable dans M3(C) et donner son spectre. La matrice
A est-elle diagonalisable dans M3(R) ?

2. Montrer que M est diagonalisable dans M3(C) et que SpC(M) ⊂ {1; j; j2}.
Montrer que j et j2 ont la même multiplicité algébrique.
En déduire les valeurs propres de M .

3. Montrer que M est semblable à A dans M3(C), puis dans M3(R).

1520 Petites Mines 2015

Soit E un espace vectoriel euclidien orienté de dimension 3 et B = (e1; e2; e3) une base
orthonormée de E. On considère l’endomorphisme f dont la matrice dans la base B est

A =
1
9

1 −4 8
4 −7 −4
8 4 1

 .
1. Montrer que f est un automorphisme orthogonal de E.
2. Déterminer la nature de f et ses caractéristiques géométriques.

1521 Mines-Ponts 2015

On munit l’espace vectoriel Rn[X] du produit scalaire

(P ;Q) 7−→ ⟨P,Q⟩ =
∫ 1

0
P (t)Q(t) dt.

Montrer que l’application définie par :

∀P ∈ Rn[X], ∀x ∈ R, u(P )(x) =
∫ 1

0
(t+ x)nP (t) dt

est un endomorphisme de Rn[X], et qu’il est symétrique.

1522 Centrale 2015

On considère les endomorphismes de Cn vérifiant :

u2 = v2 = IdCn et u ◦ v = −v ◦ u.

Montrer qu’il en existe une infinité si n = 4 et aucun si n = 3.
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1523 Mines-Ponts

Soit A ∈ Mn(R) orthogonale.

1. Montrer que
∑

1⩽i,j⩽n

|aij| < n
√
n.

2. Montrer que
∣∣∣∣ ∑

1⩽i,j⩽n

aij

∣∣∣∣ ⩽ n.

1524 X-ENS PC 2019

Soit E un espace vectoriel complexe de dimension n et f un endomorphisme diagona-
lisable de E. Montrer qu’il existe un élément v de E tel que {v; f(v); . . . ; fn−1(v)} soit
une base si et seulement si f possède n valeurs propres distinctes.

1525 X-ENS 2015

Soit (U1;U2; . . . ;Un) une base de Rn muni de son produit scalaire canonique. Montrer
que la matrice A = (⟨Ui, Uj⟩)1⩽i,j⩽n est diagonalisable, et que ses valeurs propres sont
strictement positives.

1526 Centrale 2015

Soit K un corps et A ∈ Mn(K). On considère l’application :

f : Mn(K) −→ Mn(K)
M 7−→ AM −MA

1. Montrer que f est un endomorphisme de Mn(K).
2. Montrer que si A est nilpotente, f l’est aussi.
3. Montrer que si A est diagonalisable, f l’est aussi.

1527 CCP MP

Soit n un entier naturel tel que n ⩾ 2. Soit E l’espace vectoriel des polynômes à
coefficients dans K (K = R ou K = C) de degré inférieur ou égal à n. Pour tout
P ∈ E, on pose f(P ) = P − P ′.

1. Démontrer que f est bijectif de deux manières :
(a) sans utiliser de matrice de f ;
(b) en utilisant une matrice de f .

2. Soit Q ∈ E. Trouver P tel que f(P ) = Q.
Indication : si P ∈ E, quel est le polynôme P (n+1) ?

3. L’endomorphisme f est-il diagonalisable ?

1528 X MP 2021

Déterminer les matrices de Mn(K) semblables uniquement à elles-mêmes.
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1529 CCP MP

Soit A =

0 0 1
1 0 0
0 1 0

 ∈ M3(R).

1. Déterminer les valeurs propres et les vecteurs propres de A. La matrice A est-elle
diagonalisable ?

2. Soit (a; b; c) ∈ C3 et B = aI3 + bA + cA2, où I3 désigne la matrice identité
d’ordre 3. Déduire de la question 1 les éléments propres de B.

1530 CCP MP

Soit E un espace euclidien.
1. Soit A un sous-espace vectoriel de E.

Démontrer que (A⊥)⊥ = A.
2. Soit F et G deux sous-espaces vectoriels de E.

(a) Démontrer que (F +G)⊥ = F⊥ ∩G⊥.
(b) Démontrer que (F ∩G)⊥ = F⊥ +G⊥.

1531 CCP MP

Soit un entier n ⩾ 1. On considère la matrice carrée d’ordre n à coefficients réels :

An =



2 −1 0 · · · 0
−1 2 −1 . . . ...
0 −1 . . . . . . 0
... . . . . . . 2 −1
0 · · · 0 −1 2


.

Pour tout n ⩾ 1, on désigne par Dn le déterminant de An.
1. Démontrer que Dn+2 = 2Dn+1 −Dn.
2. Déterminer Dn en fonction de n.
3. Justifier que la matrice An est diagonalisable. Le nombre réel 0 est-il valeur

propre de la matrice An ?

1532 CCP MP

On pose A =
(

2 1
4 −1

)
∈ M2(R).

1. Déterminer les valeurs propres et les vecteurs propres de A.

2. Déterminer toutes les matrices qui commutent avec la matrice
(

3 0
0 −2

)
.

En déduire que l’ensemble des matrices qui commutent avec A est Vect({I2;A}).
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1533 CCP MP

Soit E un espace préhilbertien et F un sous-espace vectoriel de E de dimension finie
n > 0. On admet que, pour tout x ∈ E, il existe un vecteur unique y0 tel que x − y0
soit orthogonal à F et que la distance de x à F soit égale à ∥x− y0∥.

Pour A =
(
a b
c d

)
et A′ =

(
a′ b′

c′ d′

)
, on pose ⟨A,A′⟩ = aa′ + bb′ + cc′ + dd′.

1. Démontrer que ⟨·, ·⟩ est un produit scalaire sur M2(R).

2. Calculer la distance de la matrice A =
(

1 0
−1 2

)
au sous-espace vectoriel F des

matrices triangulaires supérieures.

1534 X MP 2021

Soit M ∈ Mn(C) dont toute valeur propre est de module strictement inférieur à 1.
Montrer que la suite (Mk)k⩾0 converge vers 0.

1535 CCP MP

1. On considère la matrice A =

1 0 2
0 1 0
2 0 1

 ∈ M3(R).

(a) Justifier, sans calcul, que A est diagonalisable.
(b) Déterminer les valeurs propres de A puis une base de vecteurs propres asso-

ciés.
2. On considère le système différentiel

x′ = x+ 2z
y′ = y

z′ = 2x+ z

,

x, y, z désignant trois fonctions de la variable t, dérivables sur R.
En utilisant la question 1 et en le justifiant, résoudre ce système.

1536 CCP MP

On considère la matrice A =
(

−1 −4
1 3

)
.

1. Démontrer que A n’est pas diagonalisable.
2. On note f l’endomorphisme de R2 canoniquement associé à A. Trouver une base

(v1; v2) de R2 dans laquelle la matrice de f est de la forme
(
a b
0 c

)
.

On donnera explicitement les valeurs de a, b et c.
3. En déduire la résolution du système différentielx′ = −x− 4y

y′ = x+ 3y
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1537 CCP MP

1. Soit E un K-espace vectoriel (K = R ou K = C).
Soit u un endomorphisme de E et P ∈ K[X].
Prouver que si P annule u, alors toute valeur propre de u est une racine de P .

2. Soit n ∈ N tel que n ⩾ 2. On pose E = Mn(R).
Soit A = (aij)1⩽i,j⩽n la matrice de E définie par

aij =
0 si i = j

1 si i ̸= j

Soit u l’endomorphisme de E défini par :

∀M ∈ E, u(M) = M + Tr(M)A.

(a) Prouver que le polynôme X2 − 2X + 1 est annulateur de u.
(b) L’endomorphisme u est-il diagonalisable ?

Justifier votre réponse en utilisant deux méthodes (l’une avec, l’autre sans
l’aide de la question 1).

1538 CCP MP

On note ℓ2 l’ensemble des suites x = (xn)n∈N de nombres réels telles que la série
∑

x2
n

converge.
1. (a) Démontrer que, pour x = (xn)n∈N ∈ ℓ2 et y = (yn)n∈N ∈ ℓ2, la série

∑
xnyn

converge.

On pose alors ⟨x, y⟩ =
+∞∑
n=0

xnyn.

(b) Démontrer que ℓ2 est un sous-espace vectoriel de l’espace vectoriel des suites
de nombres réels.

Dans la suite de l’exercice, on admet que ⟨·, ·⟩ est un produit scalaire dans ℓ2.
On suppose que ℓ2 est muni de ce produit scalaire et de la norme euclidienne
associée.

2. Soit p ∈ N. Pour tout x = (xn)n∈N ∈ ℓ2, on pose φ(x) = xp.
Démontrer que φ est un application linéaire et continue de ℓ2 dans R.

3. On considère l’ensemble F des suites réelles presque nulles, c’est-à-dire l’en-
semble des suites réelles dont tous les termes sont nuls sauf peut-être un nombre
fini de termes.
(a) Déterminer F⊥.
(b) Comparer F et (F⊥)⊥.

1539 Mines 2015

Rechercher les matrices M ∈ M3(R), de trace nulle, telles que M2 +MT = I3.
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1540 CCP MP

Soit E un espace vectoriel réel ou complexe.
Soit f un endomorphisme de E tel que f 2 − f − 2Id = 0.

1. Prouver que f est bijectif et exprimer f−1 en fonction de f .
2. Prouver que E = Ker(f + Id) ⊕ Ker(f − 2Id) :

(a) en utilisant le lemme des noyaux ;
(b) sans utiliser le lemme des noyaux.

3. Dans cette question, on suppose que E est de dimension finie.
Prouver que Im(f + Id) = Ker(f − 2Id).

1541 CCP MP

Soit E un espace vectoriel muni d’un produit scalaire noté ⟨·, ·⟩.
On pose, pour tout x ∈ E, ∥x∥ =

√
⟨x, x⟩.

1. (a) Énoncer et démontrer l’inégalité de Cauchy-Schwarz.
(b) Dans quel cas a-t-on l’égalité ? Le démontrer.

2. Soit E = {f ∈ C([a ; b],R) | ∀x ∈ [a ; b] f(x) > 0}.

Prouver que l’ensemble
{∫ b

a
f(t) dt ·

∫ b

a

1
f(t) dt

∣∣∣ f ∈ E

}
admet une borne in-

férieure m et déterminer la valeur de m.

1542 CCP MP

Soit u et v deux endomorphismes d’un espace vectoriel réel E.
1. Soit λ un réel non nul. Prouver que si λ est valeur propre de u ◦ v, alors λ est

valeur propre de v ◦ u.
2. On considère, sur E = R[X], les endomorphismes u et v définis par

u : P 7−→
∫ X

1
P et v : P 7−→ P ′.

Déterminer Ker(u ◦ v) et Ker(v ◦ u). Le résultat de la question 1 reste-t-il vrai
pour λ = 0 ?

3. Si E est de dimension finie, démontrer que le résultat de la première question
reste vrai pour λ = 0.

1543 CCP MP

1. Soit n ∈ N∗, P ∈ Rn[X] et a ∈ R.
(a) Donner sans démonstration, en utilisant la formule de Taylor, la décompo-

sition de P (X) dans la base (1;X − a, (X − a)2; . . . ; (X − a)n).
(b) Soit r ∈ N∗. En déduire que :

le nombre a est une racine de P d’ordre de multiplicité r si et seulement si
P (r)(a) ̸= 0 et pour tout k ∈ [[0 ; r − 1]], P (k)(a) = 0.

(c) Déterminer deux réels a et b pour que 1 soit racine double du polynôme
P = X5 + aX2 + bX et factoriser alors ce polynôme dans R[X].
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1544 CCP MP

Soit a un nombre complexe. On note E l’ensemble des suites à valeurs complexes telles
que :

∀n ∈ N, un+2 = 2aun+1 + 4(ia− 1)un avec (u0;u1) ∈ C2.

1. (a) Prouver que E est un sous-espace vectoriel de l’ensemble des suites à valeurs
complexes.

(b) Déterminer, en le justifiant, la dimension de E.
2. Dans cette question, on considère la suite de E définie par u0 = 1 et u1 = 1.

Exprimer, pour tout entier naturel n, le nombre complexe un en fonction de n.

1545 CCP MP

Soit la matrice A =

 1 −1 1
−1 1 −1
1 −1 1

.

1. Démontrer que A est diagonalisable de quatre manières :
(a) sans calcul,
(b) en calculant directement le déterminant det(λI3 − A), où I3 est la matrice

identité d’ordre 3, et en déterminant les sous-espaces propres,
(c) en utilisant le rang de la matrice,
(d) en calculant A2.

2. On suppose que A est la matrice d’un endomorphisme u d’un espace euclidien
dans une base orthonormée. Trouver une base orthonormée dans laquelle la
matrice de u est diagonale.

1546 CCP MP

Soit p la projection vectorielle de R3, sur le plan P d’équation x + y + z = 0, parallè-

lement à la droite D d’équation x =
y

2 =
z

3.

1. Vérifier que R3 = P ⊕D.
2. Soit u = (x; y; z) ∈ R3. Déterminer p(u) et donner la matrice de p dans la base

canonique de R3.
3. Déterminer une base de R3 dans laquelle la matrice de p est diagonale.

1547 Mines 2015

On considère l’endomorphisme φ de Rn[X] défini par φ(P (X)) = P (2−X). Déterminer
les éléments propres de φ.

1548 CCP 2016

Soit A ∈ Mn(R) telle que 2A3 − 7A2 + 9A− 4In = 0. Justifier les assertions suivantes :
1. A est inversible ;
2. A est diagonalisable ;
3. det(A) > 0.
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1549 X MP 2021

Soit n ∈ N∗ pair et M ∈ Mn(Z). On suppose que les coefficients diagonaux de M sont
nuls et que les termes en dehors de la diagonale appartiennent à {−1; 1}. Montrer que
la matrice M est inversible.

1550 CCP MP

Soit n ∈ N∗.
On considère E = Mn(R) l’espace vectoriel des matrices carrées d’ordre n.
On pose, pour tout (a; b) ∈ E2, ⟨A,B⟩ = Tr(ATB), où Tr désigne la trace et AT désigne
la transposée de la matrice A.

1. Prouver que ⟨·, ·⟩ est un produit scalaire sur E.
2. On note Sn(R) l’ensemble des matrices symétriques de E.

Une matrice A de E est dite antisymétrique lorsque AT = −A.
On note An(R) l’ensemble des matrices antisymétriques de E.
On admet que Sn(R) et An(R) sont des sous-espaces vectoriels de E.
(a) Prouver que E = Sn(R) ⊕ An(R).
(b) Prouver que An(R)⊥ = Sn(R).

3. Soit F l’ensemble des matrices diagonales de E. Déterminer F⊥.

1551 CCP MP

Soit u un endomorphisme d’un espace vectoriel E sur le corps K des réels ou des
complexes. On note K[X] l’ensemble des polynômes à coefficients dans K.

1. Démontrer que : ∀(P ;Q) ∈ K[X] × K[X], (PQ)(u) = P (u) ◦Q(u).
2. (a) Démontrer que : ∀(P ;Q) ∈ K[X] × K[X], P (u) ◦Q(u) = Q(u) ◦ P (u).

(b) Démontrer que, pour tout (P ;Q) ∈ K[X] × K[X] :
P polynôme annulateur de u =⇒ PQ polynôme annulateur de u

3. Soit A =
(

−1 −2
1 2

)
.

(a) Écrire le polynôme caractéristique de A.
(b) En déduire que le polynôme R = X4 + 2X3 + X2 − 4X est un polynôme

annulateur de A.

1552 CCP MP

Soit la matrice M =

0 a c
b 0 c
b −a 0

 où a, b, c sont des nombres réels.

1. La matrice M est-elle diagonalisable dans M3(R) ?
2. La matrice M est-elle diagonalisable dans M3(C) ?

1553 CCP 2016

Soit E et F deux espaces vectoriels de dimension finie. Soit f et g deux applications
linéaires de E vers F . Montrer que :

|rang(f) − rang(g)| ⩽ rang(f + g) ⩽ rang(f) + rang(g).
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1554 CCP MP

Soit E l’espace vectoriel des applications continues et 2π-périodiques de R dans R.

1. Démontrer que ⟨f, g⟩ = 1
2π

∫ 2π

0
f(t)g(t) dt définit un produit scalaire sur E.

2. Soit F le sous-espace vectoriel engendré par f : x 7→ cos(x) et g : x 7→ cos(2x).
Déterminer le projeté orthogonal sur F de la fonction u : x 7→ sin2(x).

1555 CCP MP

Soit n ∈ N∗ et a0, a1, . . . , an des nombres réels deux à deux distincts.
1. Montrer que si n ∈ N∗ et b0, b1, . . . , bn sont des réels quelconques, alors il existe

un unique polynôme P vérifiant :

deg(P ) ⩽ n et ∀i ∈ [[0 ;n]], P (ai) = bi.

2. Soit k ∈ [[0 ;n]]. Expliciter ce polynôme P , que l’on notera Lk, lorsque :

∀i ∈ [[0 ;n]], bi =
0 si i ̸= k

1 si i = k

3. Prouver que, pour tout p ∈ [[0 ;n]],
n∑

k=0
ap

kLk = Xp.

1556 CCP MP

On définit dans M2(R)×M2(R) l’application φ par φ(A;A′) = Tr(ATA′), où Tr(ATA′)
désigne la trace du produit de la matrice AT par la matrice A′. On admet que φ est
un produit scalaire sur M2(R).

On note F =
{(

a b
−b a

) ∣∣∣ (a; b) ∈ R2
}

.

1. Démontrer que F est un sous-espace vectoriel de M2(R).
2. Déterminer une base de F⊥.

3. Déterminer la projection orthogonale de J =
(

1 1
1 1

)
sur F⊥.

4. Calculer la distance de J à F .

1557 CCP MP

Soit E un espace vectoriel réel de dimension finie n > 0 et u un endomorphisme de E
tel que u3 + u2 + u = 0. On notera Id l’application identité sur E.

1. Montrer que Im(u) ⊕ Ker(u) = E.
2. (a) Énoncer le lemme des noyaux pour deux polynômes.

(b) En déduire que Im(u) = Ker(u2 + u+ Id).
3. On suppose que u est non bijectif. Déterminer les valeurs propres de u. Justifier

la réponse.

1558 Mines PSI 2016

Soit A ∈ M2(C). Montrer que A est semblable à −A si et seulement si Tr(A) = 0.
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1559 CCP 2016

Soit f ∈ C(R,R) et U l’application définie par :

∀x ∈ R, U(f)(x) =
∫ x

0
cos(x− t)f(t) dt.

1. Montrer que U est un endomorphisme de C(R,R).
2. L’endomorphisme U est-il surjectif ?
3. Déterminer le noyau de U .

1560 CCP MP

On considère la matrice A =

0 a 1
a 0 1
a 1 0

 où a est un nombre réel.

1. Déterminer le rang de A.
2. Pour quelles valeurs de a, la matrice A est-elle diagonalisable ?

1561 Petites Mines 2016

Soit A la matrice de Mn(R) définie comme suit :

aij =
(
j

i

)
si i ⩽ j et aij = 0 sinon.

Montrer que A est inversible et calculer A−1.

1562 CCP MP

On considère la matrice A =

 0 2 −1
−1 3 −1
−1 2 0

 ∈ M3(R).

1. Montrer que A n’admet qu’une seule valeur propre que l’on déterminera.
2. La matrice A est-elle inversible ? Est-elle diagonalisable ?
3. Déterminer, en justifiant, πA.
4. Soit n ∈ N. Déterminer le reste de la division euclidienne de Xn par (X − 1)2

et en déduire la valeur de An.

1563 Mines PSI 2016

Soit A,B,M ∈ Mn(C), λ et µ deux nombres complexes non nuls et distincts tels que :
A+B = In

λA+ µB = M

λ2A+ µ2B = M2

1. Montrer que M est inversible et déterminer son inverse.
2. Montrer que A et B sont des matrices de projecteurs.
3. La matrice A est-elle diagonalisable ? Déterminer son spectre.
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1564 Mines 2016

Soit A,B ∈ Mn(R) telles que AB = A2 + A+ In. Montrer que A et B commutent.

1565 Mines 2016

Soit E et F deux espaces vectoriels de dimension finie sur un corps K, G un sous-espace
vectoriel de E. Déterminer la dimension de W = {u ∈ L(E,F ) | G ⊂ Ker(u)}.

1566 CCP 2016

Soit E un espace vectoriel réel de dimension finie, H un hyperplan de E et u un
endomorphisme de E.

1. Montrer que :

H est stable par u ⇐⇒ ∃λ ∈ C, Im(u− λIdE) ⊂ H

2. Déterminer les sous-espaces de E stables par f , f étant un endomorphisme de
E qui a pour matrice

A =

 3 1 2
0 1 0

−1 1 2


dans une base B.

1567 CCP

Soit f : Rn[X] → Rn[X] telle que f(P )(X) = X(X + 1)P ′(X) − nXP (X).
1. Montrer que f est un endomorphisme de Rn[X].
2. L’endomorphisme f est-il diagonalisable ?
3. Déterminer les valeurs propres de f .

1568 CCP 2016

Soit A =
1
2

 1 −
√

2 1√
2 0 −

√
2

1
√

2 1

 ∈ M3(R).

Déterminer la nature et les caractéristiques de f , endomorphisme canoniquement as-
socié à la matrice A.

1569 Mines 2016

On considère l’espace vectoriel E = C∞(R,R) et le sous-espace vectoriel F engendré
par les fonctions S : x 7→ sin(x) et C : x 7→ cos(x). On désigne par D l’application
dérivation.

1. Montrer que F est stable pour D et qu’il existe un endomorphisme u de F tel
que u ◦ u = D̃, où D̃ est l’endomorphisme induit par D sur F .

2. Existe-t-il un endomorphisme v de E tel que v ◦ v = D ?

1570 CCP

Existe-t-il une base de Mn(C) formée de matrices diagonalisables ?
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1571 CCP 2016

Soit E un espace vectoriel de dimension finie n. À quelle(s) condition(s) existe-t-il un
endomorphisme u de E tel que Ker(u) = Im(u) ?

1572 ENSAM 2016

Soit A une matrice non nulle de Mn(R) et f : X 7→ X + Tr(X)A.
1. Montrer que f est un endomorphisme de Mn(R).
2. Montrer que f est bijective si et seulement si Tr(A) ̸= −1.
3. Dans le cas où Tr(A) = −1, trouver Ker(f). En déduire rang(f).
4. On se place dans M2(R). Écrire la matrice de f dans la base canonique de
M2(R). Retrouver le résultat de la partie 2.

1573 TPE/EIVP 2016

On considère la matrice A =

3 1 −1
1 3 −1
0 0 2

 ∈ M3(R).

Calculer An pour tout n ∈ N.

1574 TPE/EIVP 2016

Soit A,B,C ∈ Mn(R) telles que 
A+B = C

2A+ 3B = C2

5A+ 6B = C3

Les matrices A et B sont-elles diagonalisables ?

1575 Centrale 2016

1. Écrire un développement limité à l’ordre 3 de la fonction f : x 7→
√

1 + x.
2. Soit N ∈ Mn(R) une matrice nilpotente d’ordre inférieur ou égal à 4. Montrer

que la matrice In + N admet au moins une racine carrée dans Mn(R), c’est-à-
dire qu’il existe M ∈ Mn(R) tel que M2 = In +N .

1576 Centrale PSI 2016

Soit E un espace euclidien et p un projecteur de E.
1. Montrer que si p est un projecteur orthogonal, alors p est un endomorphisme

symétrique et est 1-lipschitzien.
2. On suppose que p et q sont des projecteurs orthogonaux.

(a) Prouver que le polynôme caractéristique de p+ q est scindé dans R[X].
L’endomorphisme p+ q est-il nécessairement un projecteur ?

(b) Montrer que les valeurs propres de p+ q appartiennent à l’intervalle [0 ; 2].
3. Donner un exemple de problème faisant intervenir des projecteurs orthogonaux.
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1577 TPE/EIVP 2016

Soit A ∈ Mn(R) telle que A3 = A+ In. Montrer que A est inversible et que det(A) > 0.

1578 CCP 2016

On considère l’endomorphisme

φ : M2(C) −→ M2(C)(
a b
c d

)
7−→

(
d a
b c

)

L’endomorphisme φ est-il diagonalisable ?

1579 CCINP 2024

1. Soit A ∈ Mn(R) symétrique.
Prouver que A est positive si et seulement si Sp(A) ⊂ [0 ; +∞[.

2. Soit A ∈ Mn(R) symétrique. Montrer que A2 est positive.
3. Soit A et B appartenant à Mn(R). On suppose A symétrique et B symétrique

positive. Montrer que :

AB = BA =⇒ A2B est symétrique positive

4. Soit A ∈ Mn(R) symétrique positive.
Prouver qu’il existe une matrice B appartenant à Mn(R), symétrique positive,
telle que A = B2.

1580 CCINP 2024

Soit E un espace euclidien de dimension n et u un endomorphisme de E. On note ⟨x, y⟩
le produit scalaire de x et de y, et ∥·∥ la norme euclidienne associée.

1. Soit u un endomorphisme de E, tel que, pour tout x ∈ E, ∥u(x)∥ = ∥x∥.
(a) Démontrer que, pour tout (x; y) ∈ E2, ⟨u(x), u(y)⟩ = ⟨x, y⟩.
(b) Démontrer que u est bijectif.

2. On note O(E) l’ensemble des isométries vectorielles de E.
Autrement dit, O(E) = {u ∈ L(E) | ∀x ∈ E, ∥u(x)∥ = ∥x∥}.
Démontrer que O(E), muni de la loi ◦, est un groupe.

3. Soit u un endomorphisme de E. Soit e = (e1; e2; . . . ; en) une base orthonormée
de E.
Prouver que u ∈ O(E) si et seulement si (u(e1);u(e2); . . . ;u(en)) est une base
orthonormée de E.

1581 X MP/PSI 2023

Soit A et B deux matrices de Mn(R) symétriques positives.
Montrer que det(A+B) ⩾ max(det(A); det(B)).
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1582 X MP/PSI

Soit A et B deux matrices de Mn(R) symétriques positives.
Montrer que det(A+B) ⩾ det(A) + det(B).

1583 Mines-Télécom PC 2018

Soit la matrice A(ℓ) =


0 sin(ℓ) sin(2ℓ)

sin(ℓ) 0 sin(2ℓ)
sin(2ℓ) sin(ℓ) 0

.

Discuter de la diagonalisabilité de A(ℓ) suivant les valeurs de ℓ ∈ R.

1584 Mines-Télécom 2022

On cherche à résoudre cet exercice avec le minimum de calculs possible.

Soit A =


1 1 1 1 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1

 ∈ M5(R).

On note f l’endomorphisme canoniquement associé à A.
1. Donner rang(A), Ker(A) et Im(A).
2. Soit g la restriction de f à Im(f). Expliciter g.
3. L’endomorphisme g est-il diagonalisable ?

1585 Mines-Ponts 2022

Soit j = e 2πi
3 et A =

 1 j j2

j j2 1
j2 1 j

.

1. La matrice A est-elle diagonalisable ? trigonalisable ?
2. Combien de sous-espaces vectoriels stables par A existe-t-il ?
3. Étudier CA = {M ∈ M3(R) | MA = AM}.

1586 ENSAM

On considère l’espace vectoriel E = Rn[X] et D l’application de dérivation :

D : E −→ E
P 7−→ P ′

1. Montrer que D est un endomorphisme de E. Déterminer son noyau et son image.
2. Montrer que D est nilpotent et calculer son indice de nilpotence.
3. On note I l’endomorphisme identité. Montrer que I −D est inversible et déter-

miner son inverse.
4. Résoudre dans E, puis dans C1(R,R), l’équation différentielle y′ − y = xn

n! .
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1587 X ESPCI

Soit f un endomorphisme d’un K-espace vectoriel E. Montrer que :

∀x ∈ E, ∃λ ∈ K, f(x) = λx ⇐⇒ ∃λ ∈ K, ∀x ∈ E, f(x) = λx

1588 ENSIIE 2015

On considère une matrice A ∈ M3(R) telle que :

det(A) = 10, Tr(A) = −6 et A− I3 n’est pas inversible.

Montrer que A est inversible et exprimer A−1 comme un polynôme de la matrice A.

1589 CCINP

Déterminer toutes les formes linéaires f de Mn(K) telles que f(AB) = f(BA) pour
tout (A;B) ∈ Mn(K)2.

1590 CCP 2017

Soit A =


a1 a1 · · · a1
a2 a2 · · · a2
... ... ...
an an · · · an

 ∈ Mn(R), non nulle.

1. Quel est le rang de la matrice A ?
2. Donner une condition nécessaire et suffisante pour que A soit la matrice d’un

projecteur.
3. On revient au cas général. On pose B = 2A− Tr(A)In. Calculer le déterminant

de B.
4. Donner une condition nécessaire et suffisante pour que B soit inversible.
5. Calculer B2. Calculer B−1 dans le cas où B est inversible.

1591 CCP 2017

1. Montrer que l’on définit un produit scalaire sur Mn(R) en posant, pour A et B
dans Mn(R), ⟨A,B⟩ = Tr(ATB).

2. Soit M =

 0 1 2
2 0 1

−1 −1 0

.

On note S3(R) l’ensemble des matrices symétriques de M3(R).
Calculer la distance de M à S3(R).

3. Soit H l’ensemble des matrices de M3(R) de trace nulle. Montrer que H est un
sous-espace vectoriel et calculer sa dimension.

4. Soit J la matrice de M3(R) dont tous les coefficients sont égaux à 1. Calculer la
distance de J à H.
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1592 CCP 2017

On considère une forme linéaire non nulle φ sur un espace vectoriel E et x0 un vecteur
non nul de E. On pose, pour tout x ∈ E, u(x) = x+ φ(x)x0.

1. Montrer que u est un endomorphisme de E.
2. Montrer que 1 est une valeur propre de u. Donner la dimension du sous-espace

propre associé.
3. Donner une condition nécessaire et suffisante pour que u soit diagonalisable.

Indiquer alors les valeurs propres et les sous-espaces propres de u.

1593 Petites Mines 2017

On considère l’application

φ : Rn[X] −→ Rn[X]
P (X) 7−→ P (X + 1) − P (X − 1)

Déterminer l’image de φ.

1594 Mines-Ponts 2017

Soit A ∈ Mn(R). Montrer que :

A est symétrique ⇐⇒ ATA = A2

1595 Centrale 2017

Soit n ⩾ 2 un entier. Pour tout ω ∈ C, soit X(ω) =



1
ω
ω2

...
ωn−1

.

1. Soit ω0 = 1 et ω1, . . . , ωn−1 les racines nèmes non réelles de l’unité.
Montrer que la famille {X(ω0); . . . ;X(ωn−1)} est libre.

2. Soit A =



a1 a2 a3 · · · an

an a1 a2 · · · an−1
an−1 an a1 · · · an−2

... ... ... . . . ...
a2 a3 a4 · · · a1

.

Montrer que A est diagonalisable.

1596 Centrale 2017

1. Montrer que Rn[X] est un espace vectoriel.
2. Donner une base de Rn[X] dans laquelle la matrice de l’application dérivée
D : P 7→ P ′ est composée seulement de 0 et 1.

3. (a) Montrer que pour tout Q ∈ Rn[X], il existe un unique P ∈ Rn[X] tel que
P − P ′ = Q.

(b) Montrer que si Q ⩾ 0, alors P ⩾ 0.
(c) Montrer que si P est scindé sur R et à racines simples, alors Q l’est aussi.
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1597 Mines-Ponts 2017

Soit n ∈ N∗. Étudier la diagonalisabilité des endomorphismes de Rn[X] :

T : P 7→ P (X + 1) et S : P 7→ P (1 −X).

Trouver les vecteurs propres.

1598 Mines 2017

Montrer que la matrice A =

1 3 2
2 1 3
3 2 1

 et sa transposée sont semblables dans M3(R).

1599 X-ENS PSI 2017

1. Montrer que pour toutes matrices de Mn(C), les matrices AB et BA ont le
même polynôme caractéristique.

2. On considère deux endomorphismes inversibles f et g d’un espace vectoriel E.
Soit λ une valeur propre de f ◦ g. On note Eλ le sous-espace propre de f ◦ g
associé à la valeur propre λ et Fλ le sous-espace propre de g ◦ f associé à la
valeur propre λ.
(a) Montrer que g(Eλ) ⊂ Fλ et que f(Fλ) ⊂ Eλ.

En déduire que Eλ et Fλ ont même dimension.
(b) Montrer que si f ◦ g est inversible, g ◦ f l’est aussi.

3. Trouver deux matrices carrées X et Y telles que XY soit diagonalisable mais
pas Y X.

1600 X ESPCI 2017

1. Trouver une matrice M ∈ Mn(R) telle que M2 ̸= M et M2 = M3 ̸= 0.
2. Soit A ∈ GL3(R) telle que det(A) > 0 et A−1 = AT .

Montrer qu’il existe un vecteur colonne X ∈ Rn tel que AX = X.

1601 Mines-Ponts PSI 2017

Soit n ∈ N∗, M une matrice réelle de taille 2 telle que Mn =
(

0 1
−1 0

)
.

1. Montrer que M est diagonalisable dans M2(C) et donner ses valeurs propres.
2. Montrer qu’il existe k ∈ [[0 ; 2n− 1]] et P inversible dans M2(C) telle que :

P−1MP =

cos
(
(2k + 1) π

2n

)
− sin

(
(2k + 1) π

2n

)
sin

(
(2k + 1) π

2n

)
cos

(
(2k + 1) π

2n

)
 .

3. Montrer qu’il existe P pour la même relation, mais réelle.
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1602 Mines-Ponts PSI 2024

Soit (a0; . . . ; an) ∈ Cn+1 distincts deux à deux et (A;B) ∈ Mn(C)2.
On définit :

Φ : Cn[X] −→ Cn+1

P 7−→ (P (a0); . . . ;P (an))
1. Montrer que Φ est un isomorphisme.

En déduire l’existence de polynômes Li ∈ Cn[X] (i ∈ [[0 ;n]]) tels que :

∀k ∈ [[0 ;n]], k ̸= i, Li(ak) = 0 et Li(ai) = 1.

2. Exprimer le polynôme caractéristique de A en fonction des Li.
3. Montrer que

f : Mn(C) −→ Cn[X]
M 7−→ χM

est continue.
4. Montrer que χAB = χBA.

1603 ENSEA/ENSIIE PSI 2017

Soit E un espace vectoriel de dimension n.
Soit p ∈ [[1 ;n]] et H1, . . . , Hp des hyperplans vectoriels de E deux à deux distincts.

Montrer que dim
( p⋂

k=1
Hk

)
⩾ n− p.

Indication : considérer

ϕ : H1 × · · · ×Hp −→ Ep−1

(x1; . . . ;xp) 7−→ (x2 − x1; . . . ;xp − x1)
.

1604 CCP 2017

Soit A ∈ M6(R) inversible et vérifiant A3 − 3A2 + 2A = 0, ainsi que Tr(A) = 8.
1. Montrer que A est diagonalisable.
2. Que peut-on dire sur les valeurs propres de A ?
3. Donner une matrice diagonale semblable à A.
4. Déterminer le polynôme caractéristique et l’ensemble des polynômes annulateurs

de A.

1605 CCP 2017

Soit M une matrice de Mn(R) vérifiant la relation M2 +MT = In.
1. Montrer que M est diagonalisable.
2. Montrer que 1 n’est pas valeur propre de M , et que M n’est pas inversible.
3. Montrer queM admet un polynôme annulateur de degré 2, queM est symétrique

et de trace nulle.
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1606 X MP 2021

Soit E un K-espace vectoriel de dimension finie n ⩾ 2 et u un endomorphisme de E.
Montrer qu’il existe une base de E dans laquelle la matrice de u est de la forme

∗ · · · · · · · · · ∗
∗ ...
0 . . . ...
... . . . . . . ...
0 · · · 0 ∗ ∗


.

1607 Mines-Ponts MP 2021

Existe-t-il une norme N sur Mn(R) telle que, pour tout (A;B) ∈ Mn(R)2,
N(AB) = N(A)N(B) ?

1608 X PSI 2023

Déterminer le sous-espace vectoriel de Mn(R) engendré par les matrices orthogonales.

1609 CCP 2012

On considère trois nombres réels a, b, c et la matrice A =

0 −a −b
a 0 −c
b c 0

.

1. Calculer le polynôme caractéristique de la matrice A.
2. Exprimer, suivant la parité de n ∈ N, An en fonction de A ou de A2.

On pourra utiliser l’égalité r =
√
a2 + b2 + c2.

3. Montrer que exp(A) = I3 +
sin(r)
r

A+
1 − cos(r)

r2 A2.

1610 Mines 2012

Soit A ∈ Mn(R) telle que A3 + A2 + A+ In = 0. Montrer que Tr(A) ⩽ 0.

1611 Centrale 2012

Soit A ∈ Mp(R). On suppose qu’il existe n ∈ N∗ tel que An = AT et on pose B = An+1.
1. Montrer que B est symétrique et que ses valeurs propres sont positives.
2. (a) Calculer Bn.

(b) En déduire les valeurs propres de B.
(c) Quelle est la nature de B ? (On assimilera une matrice à son endomorphisme

canoniquement associé.)
3. Montrer que Rp = Ker(B) + Im(B) et que la somme est orthogonale.
4. (a) Montrer que Ker(B) et Im(B) sont stables par A.

(b) Montrer que l’endomorphisme induit par A sur Im(B) est une isométrie.
(c) Que peut-on dire de l’endomorphisme induit par A sur Ker(B) ?

5. Caractériser les matrices A ∈ Mp(R) telles que An = AT .
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1612 Centrale 2012

Soit n ⩾ 2 un entier et E = Rn[X].
1. Montrer que pour tout P ∈ E, il existe Q ∈ E, unique tel que :

∀x ∈ R, (x− 1)Q(x) =
∫ x

1
P (t) dt,

et que l’application f qui à P associe Q est un endomorphisme de E.
2. Montrer que f est diagonalisable.
3. Trouver tous les endomorphismes de E tels que g2 = f .

1613 Mines-Ponts 2012

Montrer qu’une matrice A ∈ Mn(K) est inversible si et seulement si A admet un
polynôme annulateur qui prend en 0 la valeur 1.

1614 Mines 2012

Soit A ∈ Mn(R) antisymétrique.
1. Montrer que si n est impair, alors A n’est pas inversible.
2. Montrer que si n est pair, alors det(A) ⩾ 0. Sous quelle(s) condition(s) l’inégalité

est-elle stricte ?

1615 ENSEA/ENSIIE 2012

On considère la matrice A =


0 · · · 0 1
... ... ...
0 · · · 0 1
1 · · · 1 0

 ∈ Mn(R).

1. La matrice A est-elle diagonalisable ?
2. Calculer A2.
3. Donner les valeurs propres de A sans utiliser le polynôme caractéristique.

1616 CCP 2012

On considère une matrice A ∈ Mn(C) et la matrice B =
(
A A

0 A

)
définie par blocs.

1. Calculer Bk pour k ∈ N, puis, pour P ∈ C[X], exprimer P (B) en fonction de
P (A) et P ′(A).

2. Montrer que si B est diagonalisable, alors A l’est aussi, et que ce n’est possible
que si A = 0.

1617 CCP 2012

Soit n ⩾ 2 un entier. À tout polynôme P ∈ Rn[X] on associe Φ(P ) : x 7→
∫ x+1

x
P (t) dt.

1. Montrer que Φ est un endomorphisme de Rn[X].
2. Calculer det(Φ).
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1618 CCP 2017

Soit A ∈ Rn une matrice colonne non nulle.
1. Montrer que B = AAT est diagonalisable.
2. Déterminer le rang de B.
3. Calculer B2.
4. Donner les éléments propres de A.
5. Calculer det(In +B) en fonction du vecteur A.

1619 CCP 2017

Soit z ∈ C et A =


0 1 0 0
1 z 1 1
0 1 0 0
0 1 0 0

.

1. Montrer que 0 est une valeur propre de A.
2. La matrice A est-elle diagonalisable ?

1620 CCP 2017

Soit A =

1 2 0
0 3 0
2 −4 −1

 ∈ M3(R).

1. Avec un minimum de calculs, déterminer les valeurs propres de A et une matrice
diagonale D ∈ M3(R) semblable à A.

2. Montrer que si une matrice M commute avec D, alors elle est diagonale.
3. Déterminer toutes les matrices M ∈ M3(R) telles que M7 +M + I3 = A.

1621 CCINP PSI 2021

Soit E un espace vectoriel de dimension 4 et u un endomorphisme de E. Montrer que :
1. Si rang(u) = 2 et u2 = 0, alors il existe une base dans laquelle u est représenté

par


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

.

2. Si rang(u) = 3 et u4 = 0, alors Ker(u2) = Im(u2) et il existe une base dans

laquelle u est représenté par


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.

1622 ENS Rennes 2017

Soit n ∈ N∗. Montrer que l’ensemble des matrices de Mn(R) de trace nulle coïncide
avec l’espace vectoriel engendré par les matrices nilpotentes.
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1623 CCP 2017

Soit E un C-espace vectoriel de dimension finie n > 1 et u un endomorphisme de E
ayant n valeurs propres distinctes.

1. Que peut-on dire de u ?
2. Montrer que si g est un endomorphisme de E solution de l’équation (E) : g2 = u,

alors tout vecteur propre de u est aussi vecteur propre de g.
3. Combien l’équation (E) admet-elle de solutions ?

1624 Centrale PSI

Soit S : C(R,R) → C(R,R) l’application qui à f associe S(f) : x 7→ 1
2

∫ x+1

x−1
f(t) dt.

1. Montrer que, si S(f) = 0, alors f est périodique.
2. L’application S est-elle injective ? surjective ?
3. Soit n ⩾ 2. Montrer que S induit un endomorphisme sur Rn[X], noté s. L’en-

domorphisme s est-il bijectif ? diagonalisable ?

1625 Centrale PSI

Soit M =


i 1 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 ∈ M4(C).

1. Déterminer le polynôme minimal πM de la matrice M .
2. Montrer qu’il n’existe pas de matrice A ∈ M4(R) semblable à M .

1626 Centrale PSI

Soit E un espace vectoriel de dimension finie et f, g des endomorphismes de E tels que
f 2 = g2 = IdE et f ◦ g + g ◦ f = 0.

1. Montrer que la dimension de E est paire.
2. Montrer qu’il existe une base de E dans laquelle les matrices de f et g sont(

In 0
0 −In

)
et
(

0 In

In 0

)
.

1627 CCP

Soit A =

a b 0
0 1 0
0 0 2

 ∈ M3(R).

À quelle(s) condition(s) portant sur a et b, la matrice A est-elle diagonalisable ?

1628 CCP PC

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E. On suppose
que f ◦ f est un projecteur. Montrer que f est diagonalisable si et seulement si f 3 = f.
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1629 Petites Mines PC

Soit n ⩾ 2 un entier, un nombre réel m et la matrice A = (aij)1⩽i,j⩽n ∈ Mn(R) où
aij = 1 si (i; j) ∈ [[1 ;n]] × [[1 ;n− 1]] et ain = m si 1 ⩽ i ⩽ n.

1. On suppose que m ̸= 1 − n. Montrer que A est diagonalisable.
2. On suppose que m = 1−n. Montrer que la matrice A est semblable à la matrice
B = (bij)1⩽i,j⩽n dont tous les coefficients sont nuls excepté b12 = 1.

1630 TPE/EIVP PC

Soit A ∈ Mn(C) et ΦA : M ∈ Mn(C) 7→ AM ∈ Mn(C).
1. Montrer que ΦA est un endomorphisme de Mn(C). Déterminer les matrices A

de Mn(C) telles que ΦA = 0.
2. Si A ∈ Mn(C) et P ∈ C[X], comparer ΦP (A) et P (ΦA).
3. Montrer que ΦA est diagonalisable si et seulement si A est diagonalisable.

1631 CCP PC

Soit (E, ⟨·, ·⟩) un espace euclidien de dimension n, p un projecteur orthogonal de E de

rang r et (e1; . . . ; en) une base orthonormale de E. Montrer que
n∑

i=1
∥p(ei)∥2 = r.

1632 Centrale PSI

Soit p et q deux projections orthogonales définies sur un espace euclidien E. Soit encore
u = p+ q.

1. Soit x un vecteur de norme 1. Encadrer ⟨x, p(x)⟩ et ⟨x, q(x)⟩. En déduire que
Sp(u) ⊂ [0 ; 2].

2. Montrer que Ker(u) = Ker(p) ∩ Ker(q).
3. Déterminer Ker(u− Id).

1633 TPE/EIVP PSI

Soit S une matrice symétrique réelle et D une matrice diagonale dont tous les coeffi-
cients sont ceux de la diagonale de S. On suppose que S et D sont semblables. Calculer
Tr(S2) de deux manières et en déduire que S = D.

1634 CCP 2017

On considère un endomorphisme f de R3, non nul, tel que f 3 + f = 0.
1. Montrer que f n’est pas inversible.
2. Montrer que f n’est pas diagonalisable.
3. Montrer que Im(f) et Ker(f) sont supplémentaires.
4. Montrer que pour tout x ∈ R3 \ Ker(f), (f(x); f 2(x)) est une base de Im(f).
5. Calculer la trace de f .

1635 TPE/EIVP PSI

Soit (a; b; c) ∈ R3 tel que a2 + b2 + c2 = 1. Écrire la matrice dans la base canonique de
la rotation d’angle π et d’axe dirigé par le vecteur

(
a b c

)T
.
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1636 X

Soit (a; b; c) ∈ R3 tel que a2 + b2 + c2 = 1 et M =


1 + a2 ab ac

ab 1 + b2 bc

ac bc 1 + c2

.

Étudier l’endomorphisme f de R3 canoniquement associé à la matrice M .

1637 CCP

Soit m ∈ R et Am =

 1 0 1
−1 −1 1

2 −m m− 2 m

.

1. Calculer le polynôme caractéristique de Am.
2. Les matrices A1 et A2 sont-elles diagonalisables dans M3(R) ? dans M3(C) ?
3. Étudier la diagonalisabilité de Am en général.

1638 X ESPCI

Soit A ∈ Mn(R). Montrer que det(A) = 0 si et seulement s’il existe B ∈ Mn(R) non
nulle telle que AB = BA = 0.

1639 Mines-Ponts PSI

Soit E un espace vectoriel, u un endomorphisme de E et f un sous-espace vectoriel de
E stable par u. On suppose que u est nilpotent et que E = F + Im(u). Montrer que
E = F .

1640 CCP

Soit n un entier supérieur ou égal à 3. On considère une matrice A symétrique réelle
telle que A3 + 4A2 + 5A = 0. Étudier les valeur propres et la diagonalisabilité de A.
Que peut-on en conclure ?

1641 CCP

Soit f l’endomorphisme de R3 dont la matrice dans une base orthonormée est

A = 1
3

 2 2 −1
1 −2 −2

−2 1 −2

 .
Reconnaître f et donner ses caractéristiques géométriques.

1642 CCP

On définit l’application :

φ : Rn[X] −→ Rn[X]
P (X) 7−→ P (X + 1)

1. Déterminer la matrice A qui représente φ dans la base canonique de Rn[X].
2. Justifier que A est inversible, et calculer A−1.
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1643 CCP PSI

Soit E un espace vectoriel de dimension finie et f, g deux endomorphismes de E.
Montrer que :

Im(f) + Ker(g) = E ⇐⇒ Im(g ◦ f) = Im(g)

1644 Mines-Ponts PSI

Soit E un K-espace vectoriel de dimension finie et soit f un endomorphisme de E.
Montrer que f 2 = 0 si, et seulement si, il existe un endomorphisme g de E tel que
f ◦ g = f et g ◦ f = 0.

1645 X MP MPI

Soit p et q deux projecteurs orthogonaux dans un espace euclidien E. Montrer que :
1. l’endomorphisme p ◦ q ◦ p est autoadjoint positif ;
2. E = Im(p) + Ker(q) + (Im(q) ∩ Ker(p)) ;
3. l’endomorphisme p ◦ q est diagonalisable ;
4. le spectre de p ◦ q est inclus dans [0 ; 1].

1646 Mines-Ponts

Soit (a; b; c) ∈ C3 et n ∈ N∗. On considère le déterminant de taille n :

∆n(a; b; c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b · · · · · · b

c
. . . . . . ...

... . . . . . . . . . ...

... . . . . . . b
c · · · · · · c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

1. Montrer que l’application x 7→ ∆n(a+ x; b+ x; c+ x) est une application poly-
nomiale de degré inférieur ou égal à 1.

2. Calculer ∆n(a; b; c) en fonction de a, b, c et n.

1647 Centrale PSI

Soit A et B dans Mn(R) et Φ : M ∈ Mn(R) 7→ AMB. Calculer la trace de Φ.

1648 Centrale PSI 2021

Soit F un sous-espace vectoriel de Mn(K) tel que toute matrice non nulle de F soit
inversible.

1. Ici K = C. Montrer que, si les matrices A et B sont inversibles, alors il existe
α ∈ C tel que αA − B n’est pas inversible. Qu’en déduire sur la dimension de
F ?

2. Ici K = R. Examiner le cas où n est impair. Donner un exemple où la dimension
de F est 2. Montrer que, si n est pair, alors dim(F ) ⩽ n.
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1649 TPE/EIVP PSI

1. Soit d ∈ N∗, a ∈ C et u : P ∈ Cd[X] 7→ (x− a)P ′ ∈ Cd[X]. Trouver les éléments
propres de u.

2. En déduire l’ensemble des polynômes de C[X] divisibles par leur dérivée.

1650 Mines-Ponts PSI

1. Soit n ∈ N∗. Trouver inf{λ ∈ R+ | ∀A ∈ Mn(R), (Tr(A))2 ⩽ λTr(ATA)}.
2. Trouver inf{λ ∈ R+ | ∀A ∈ M2(R), det(A) ⩽ λTr(ATA)}.

1651 Mines-Ponts PC

Soit A et B deux matrices de Mn(R) symétriques.
Montrer que 2Tr(AB) ⩽ Tr(A2) + Tr(B2).

1652 CCP PC

Soit A ∈ Mn(R) telle que A2 + In ne soit pas inversible.
1. Montrer qu’il existe X ∈ Mn×1(C) tel que AX = iX et X ̸= 0.
2. Montrer qu’il existe U et V dans Mn×1(R) libres tels que AU = −V et AV = U .

1653 CCP PSI

Soit A ∈ M3(R) telle que A ̸= 0 et A3 + A = 0.
1. La matrice A est-elle diagonalisable ?

2. Montrer que A est semblable à

0 0 0
0 0 1
0 −1 0

 .
1654 Centrale PC

Soit (E, ⟨·, ·⟩) un espace euclidien.
1. Soit g un endomorphisme de E autoadjoint tel que ⟨g(z), z⟩ = 0 pour tout
z ∈ E. Montrer que g = 0.

2. Soit g un endomorphisme de E autoadjoint tel que ⟨g(z), z⟩ = ∥g(z)∥2 pour tout
z ∈ E. Montrer que g est un projecteur.

1655 Mines-Ponts PSI

Soit A,B ∈ Mn(C) et χA, χB leur polynôme caractéristique respectif.
1. Montrer que si A et B ont une valeur propre commune, alors il existe U et V

non nuls dans Mn×1(C) tels que AUV T = UV TB.
2. Soit M ∈ Mn(C). Montrer que si AM = MB, alors χB(A)M = 0.
3. À quelle condition, nécessaire et suffisante, les matrices A et B ont-elles une

valeur propre commune ?

1656 CCP PSI

Soit A ∈ Mn(R) et S = 1
2(A+ AT ). On note (λ1; . . . ;λn) le spectre ordonné par ordre

croissant de S. Si µ est une valeur propre réelle de A, montrer que λ1 ⩽ µ ⩽ λn.
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1657 Mines-Ponts

Soit n ∈ N∗ et M ∈ Mn(R) symétrique.
1. Montrer que Tr(M)2 ⩽ rang(M)Tr(M2).
2. Caractériser par leurs valeurs propres les matrices symétriques réelles vérifiant

le cas d’égalité.
3. Soit M ∈ Mn(R) symétrique et définie positive.

(a) Montrer que M est inversible et que pour tous X et Y dans Mn×1(R) :

⟨MX,X⟩⟨M−1Y, Y ⟩ ⩾ ⟨X, Y ⟩2.

(b) En déduire inf{⟨MX,X⟩ · ⟨M−1X,X⟩ | ∥X∥ = 1}.

1658 CCP PC

1. On définit l’endomorphisme φ de Mn(R) par :

∀M ∈ Mn(R), φ(M) = 2M +MT .

Déterminer un polynôme annulateur de φ. Montrer que l’endomorphisme φ est
diagonalisable. Déterminer ses valeurs propres et ses sous-espaces propres.

2. Soit (a; b) ∈ R2 et
φa,b : M 7−→ aM + bMT .

Montrer que φa,b est inversible si, et seulement si, a2 ̸= b2.

1659 ENSAM PSI

Soit

J =



0 · · · · · · 0 1
1 . . . 0
0 . . . . . . ...
... . . . . . . . . . ...
0 · · · 0 1 0


et A =



a0 an−1 · · · a2 a1

a1
. . . . . . a2

a2
. . . . . . . . . ...

... . . . . . . . . . an−1
an−1 · · · a2 a1 a0


.

1. La matrice J est-elle diagonalisable dans Mn(C) ? Quel est son spectre ?
2. La matrice A est-elle diagonalisable dans Mn(C) ? Quel est son spectre ?

1660 TPE/EIVP PSI

Discuter, dans M3(R), la diagonalisabilité et la trigonalisabilité en fonction du para-
mètre réel a de 0 1 0

0 0 1
1 −a a

 .
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1661 Centrale PSI

Soit E un K-espace vectoriel, F et G deux sous-espaces vectoriels de E. On suppose
que E = F ⊕G et on note p le projecteur sur F parallèlement à G et q = IdE −p. Soit f
un endomorphisme de E. Montrer que F est stable par f si et seulement si q◦f ◦p = 0.

1662 Mines-Ponts

Soit n ∈ N∗. Posons :

A =



0 2 3 · · · · · · n

1 0 3 ...
... 2 0 ...
... ... 3 . . . ...
... ... ... . . . n
1 2 3 · · · · · · 0


∈ Mn(R).

1. Calculer det(A+mIn) pour chaque entier m avec 1 ⩽ m ⩽ n.
2. Montrer que χA est un polynôme scindé.
3. Montrer que, pour toute valeur propre λ de A,

n∑
k=1

k

k + λ
= 1.

4. Calculer la somme et le produit des valeurs propres de A.

1663 ENS MPI 2025

Soit A et B deux matrices appartenant à Sn(R). On dit que A ⩽ B si B−A appartient
à S+

n (R). On considère l’application :

f : S++
n (R) −→ S++

n (R)
A 7−→ A−1

Montrer que f est décroissante.

1664 Mines-Télécom MP 2021

Soit E l’ensemble des fonctions continues de [−1; 1] dans R.
On pose, pour tout (f ; g) ∈ E2 :

⟨f, g⟩ =
∫ 1

−1
f(t)g(t) dt.

1. Montrer que ⟨·, ·⟩ est un produit scalaire.
2. Soit F = {f ∈ E | ∀x ∈ [0 ; 1], f(x) = 0}. Calculer F⊥.
3. Que vaut F + F⊥ ?

1665 X-ENS

Montrer qu’un sous-espace vectoriel d’un espace vectoriel de dimension finie est de
dimension finie.
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1666 X

Soit V1, . . . , Vp des sous-espaces vectoriels de Rn de réunion égale à Rn. Montrer que
l’un des Vi est égal à Rn.

1667 X

Donner deux modes de description d’un plan de R4.

1668 X

On note S++
n (R) l’ensemble des matrices symétriques de Mn(R) dont les valeurs propres

sont strictement positives. Soit A une matrice antisymétrique de Mn(R) et S ∈ S++
n (R).

Montrer que SA est diagonalisable sur C à spectre imaginaire pur.

1669 X

Soit M ∈ Mn(R). Montrer que M est diagonalisable si et seulement si il existe
(S;H) ∈ Sn(R) × S++

n (R) tel que M = SH.

1670 X MP 2019

Soit A ∈ Mn(C).
1. Montrer que les conditions suivantes sont équivalentes :

i) Toutes les valeurs propres (complexes) de A sont égales à 1.
ii) A = Id +N où Nn = 0.

2. On suppose A à coefficients rationnels. Montrer qu’il existe une matrice B ap-
partenant à Mn(Q) telle que A = B2.
Indication : on peut commencer par le cas réel.

1671 CCP MP

Soit n ∈ N∗ et

An =



1 1 1 · · · 1
1 2 1 · · · 1
1 1 3 · · · 1
... ... ... . . . ...
1 1 1 · · · n

 ∈ Mn(R).

Soit Pn le polynôme caractéristique de An.
1. Montrer que Pn+1(X) = (X − n)Pn(X) −X(X − 1) · · · (X − n+ 1).
2. Montrer que, pour tout n ∈ N∗ et pour tout k ∈ [[0 ;n− 1]], (−1)n−kPn(k) > 0.
3. En déduire que chaque intervalle ]0 ; 1[, ]1 ; 2[, . . ., ]n− 1 ; +∞[ contient exacte-

ment une valeur propre de An.

1672 ENS Ulm

On considère l’application

Φ : M3(R) −→ M3(R)
A 7−→ A3

Déterminer l’image de Φ.
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1673 ENS

Soit K un corps et A,B,C trois matrices de M2(K). Montrer qu’il existe un triplet
(α; β; γ) ∈ K3 \ {0} tel que αA+ βB + γC ait une valeur propre double.

1674 Mines-Ponts PC

Soit un entier n ⩾ 2. On note A la matrice de Mn(R) dont les coefficients diagonaux
valent 0 et les autres coefficients valent 1.

1. Calculer A2. En déduire que A est inversible et exprimer A−1.
2. Déterminer les valeurs propres de A et les espaces propres correspondants.

1675 Mines-Ponts PC

Soit la matrice A =

−2 0 1
−5 3 0
−4 4 2

 ∈ M3(R).

1. Montrer que A est diagonalisable dans M3(R) et déterminer ses valeurs et vec-
teurs propres.

2. On considère l’équation
(E) : X2 − 3X = A,

en la matrice inconnue X de M3(R).
(a) Vérifier que toute solution de (E) commute avec A.
(b) Déterminer toutes les solutions de (E).

3. Calculer An où n ⩾ 2.

1676 Mines-Télécom MP 2024

Soit (e1; e2; e3) la base canonique de R3 euclidien. Donner la matrice de rotation R
autour de la droite D d’équation x−y+z = x+y+z = 0 et telle que R(e1) = 1√

2(e1+e3).

1677 Mines-Télécom MP 2024

Soit f ∈ L(R2,R3) et g ∈ L(R3,R2) tels que rang(f ◦ g) = 2.
Calculer rang(f) et rang(g).

1678 Mines-Télécom MP 2024

1. Soit A =

 0 2 2 −m
m− 2 0 1

2m m− 2 m− 2

 ∈ M3(R).

Déterminer le rang de A en fonction de m.
2. Résoudre le système :


2y + (2 −m)z = 2 −m

(m− 2)x+ z = 1
2mx+ (m− 2)y + (m− 2)z = m− 2
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1679 X FUF 2024

Soit n ∈ N∗ et N1, . . . , Nn dans Mn(C) nilpotentes qui commutent.
Montrer que N1 · · ·Nn = 0.

1680 CCINP MP 2021

Soit (a; b; c) ∈ C3, un entier n ⩾ 3 et

A =


c

0 ...
c

b · · · b a

 ∈ Mn(C).

1. Donner une condition nécessaire et suffisante pour que rang(A) = 2.
2. On suppose que rang(A) = 2.

(a) Montrer que λ ∈ Sp(A) si et seulement si λ = 0 ou λ2 − aλ− (n− 1)bc = 0.
(b) Donner les expressions des valeurs propres de A.
(c) Donner une condition nécessaire et suffisante (portant sur a, b et c) pour que

A soit diagonalisable.

1681 X FUF 2024

Soit n ∈ N∗, A et B dans Mn(R) telles que AB = BA. Soit encore p et q dans R tels
que p2 − 4q ⩽ 0. Montrer que det(A2 + pAB + qB2) ⩾ 0.

1682 Mines-Télécom MP 2023

Soit A ∈ Mn(R) symétrique telle que A2023 = A2024.
1. Montrer que

∑
1⩽i,j⩽n

a2
ij = rang(A).

2. Le résultat reste-t-il vrai si A est seulement diagonalisable ?

1683 CCINP MP 2024

Soit A une matrice de Mn(R) non colinéaire à In telle que (A+ In)3 = 0.
1. Montrer que A est inversible et expliciter son inverse. Donner un exemple d’une

telle matrice.
2. La matrice A est-elle diagonalisable ?
3. Soit p un entier naturel. Exprimer Ap en fonction de A2, de A et de In.

1684 CCINP MP 2019

1. Montrer que le polynôme P = X5 + 2X + 1 admet une unique racine réelle
strictement négative.

2. Soit A ∈ M15(R) telle que P soit annulateur de A. Que peut-on en déduire sur
les valeurs propres de A ? Montrer que det(A) < 0.
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1685 CCINP MP 2017

Soit n ∈ N∗. On considère les deux matrices suivantes de Mn(R) :

A =


−n 1 · · · 1
1 . . . ...
... . . . 1
1 · · · 1 −n

 et J =


1 · · · 1
... ...
1 · · · 1

 .

On note I la matrice identité de Mn(R).
1. Écrire A, puis A2 sous forme de combinaisons linéaires de J et I.
2. En déduire un polynôme annulateur de A. Donner son polynôme minimal πA et

ses valeurs propres possibles.
3. La matrice A est-elle inversible ?
4. Soit E un espace euclidien de dimension n, ⟨·, ·⟩ son produit scalaire et ∥·∥ la

norme associée. Soit (e1; . . . ; en) une famille de vecteurs de E tels que, pour tout
i ∈ [[1 ;n]], ∥ei∥ = 1 et pour tout (i; j) ∈ [[1 ;n]]2, avec i ̸= j, ⟨ei, ej⟩ = − 1

n
.

Montrer que (e1; . . . ; en) est une base de E.

1686 Mines-Ponts MP 2021

Déterminer l’ensemble des polynômes annulateurs de la matrice :

a 0 0 0 0 0
0 b 1 0 0 0
0 0 b 0 0 0
0 0 0 c 0 0
0 0 0 1 c 0
0 0 0 0 1 c


∈ M6(R).

1687 Mines-Ponts MP 2021

Soit D =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0
x 1 y 1 0
x2 2x y2 2y 2
x3 3x2 y3 3y2 6y
x4 4x3 y4 4y3 12y2

∣∣∣∣∣∣∣∣∣∣∣∣
.

Montrer que D = 0 si et seulement si x = y.

1688 Mines-Télécom MPI 2024

1. Montrer que
(P ;Q) 7−→ φ(P ;Q) =

∫ +∞

0
P (t)Q(t)e−t dt

est un produit scalaire sur R[X].
2. Calculer φ(Xp;Xq) pour tout (p; q) dans N2.
3. Orthonormaliser la base (1;X;X2) de R2[X] à l’aide du procédé d’orthonorma-

lisation de Gram-Schmidt.
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1689 CCINP MP 2017

Soit A ∈ Mn(C) vérifiant An = In et telle que la famille {In;A;A2; . . . ;An−1} est libre.
Démontrer que la trace de A est nulle.

1690 Mines-Ponts MP

Soit
∆ = inf

(x1;...;xn)∈Rn

(∫ 1

0
(1 + x1t+ x2t

2 + · · · + xnt
n)2 dt

)
.

On munit R[X] du produit scalaire ⟨A,B⟩ =
∫ 1

0
A(t)B(t) dt.

On note Q la projection de orthogonale de 1 sur Vect({X; . . . ;Xn}).

1. Justifier l’existence et l’unicité de (q1; . . . ; qn) ∈ Rn tel que Q = −
n∑

k=1
qkX

k et

montrer que
∆ =

∫ 1

0
(1 + q1t+ q2t

2 + · · · + qnt
n)2 dt.

2. On pose :
F (X) = 1

X + 1 + q1

X + 2 + · · · + qn

X + n+ 1 .

(a) Montrer que, pour tout k ∈ {1; . . . ;n}, F (k) = 0.

(b) En déduire que F (0) =
1

(n+ 1)2.

3. Calculer ∆ et (q1; . . . ; qn).

1691 CCINP MP

Soit Φ une application de Rn−1[X] dans lui-même telle que

Φ(P ) = P + 1 −X

n
P ′.

1. Vérifier que Φ stabilise Rn−1[X].
2. On admet que Φ est linéaire. Donner la matrice représentative de Φ dans la base

canonique. Est-elle diagonalisable ?
3. Déterminer une base de l’espace propre associé à la valeur propre 1.
4. Supposons λ une valeur propre de Φ associée au vecteur propre P telle que
λ ̸= 1. Montrer que 1 est une racine de P et donner sa multiplicité.

1692 CCINP MP 2023

Soit A ∈ Mn(R).
1. Soit ω ∈ C une valeur propre de A de multiplicité p ∈ N∗. Montrer que ω est

une valeur propre de A de multiplicité p.
2. (a) Montrer que le polynôme X3 − 3X − 4 admet une unique racine réelle.

(b) On suppose que A3 − 3A− 4In = 0. Montrer que det(A) ⩾ 0.
3. On suppose que A2 + A+ In = 0. Montrer que n est pair.
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1693 CCINP PSI 2021

Dans cet exercice, K = R ou C.
Soit (a0; a1; . . . ; an) ∈ Kn+1 et

C =



0 0 0 · · · · · · 0 −a0
1 0 0 · · · · · · 0 −a1
0 1 0 · · · · · · 0 −a2

0 0 . . . . . . ... ...
... ... . . . . . . . . . 0 −an−2
... ... . . . 1 0 −an−1
0 0 · · · · · · 0 1 −an


∈ Mn+1(K).

1. Calculer χC(X).
2. Soit φ un endomorphisme de E, où dim(E) = n+1. On dit que φ est cyclique s’il

existe x ∈ Kn+1 tel que (x;φ(x);φ2(x); . . . ;φn(x)) soit une base de E. Montrer
que si φ est cyclique, alors sa matrice est de la forme de C.

1694 CCINP MP 2019

On se place dans l’espace E = C([−1 ; 1],R). On pose :

Φ : (f ; g) 7−→
∫ 1

−1
f(x)g(x) dx.

On appelle P (resp. I) le sous-espace vectoriel des fonctions paires (resp. impaires).
1. Montrer que P ⊕ I = E.
2. Montrer que Φ est un produit scalaire.
3. Montrer que I = P⊥.
4. Déterminer l’image de f par la symétrie orthogonale par rapport à P .

1695 Centrale-Supélec MP 2022

Le but de l’exercice est de montrer que toute matrice carrée réelle de trace nulle est
orthogonalement semblable à une matrice dont tous les éléments diagonaux sont nuls.

1. Soit A =

3 6 0
0 −3 0
0 0 0

. Déterminer P ∈ O3(R) telle que P−1AP soit à éléments

diagonaux nuls.
2. Soit E un espace euclidien muni d’un produit scalaire noté ⟨·, ·⟩ et u un endo-

morphisme de E. On suppose que u admet deux valeurs propres λ et µ telles
que λµ < 0. On considère deux vecteurs propres de u, x et y, unitaires, ortho-
gonaux et respectivement associés à λ et µ. Montrer qu’il existe z unitaire tel
que z ∈ Vect({x; y}) et ⟨u(z), z⟩ = 0.

3. Montrer le résultat souhaité pour une matrice symétrique réelle.
4. Montrer le résultat souhaité pour toute matrice de Mn(R).
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1696 Mines-Ponts MP 2021

On note :
• H l’ensemble des matrices de Mn(R) de trace nulle ;
• N l’espace vectoriel engendré pas les matrices nilpotentes de Mn(R).
1. L’ensemble N est-il l’ensemble des matrices nilpotentes ?
2. Montrer que N ⊂ H.
3. A-t-on N = H ?

1697 CCINP MP 2018

Pour tout a ∈ R, soit

A(a) =


0 −1 · · · −1
a

. . . . . . ...
... . . . . . . −1
a · · · a 0

 ∈ Mn(R).

Soit encore U la matrice de Mn(R) dont tous les coefficients sont égaux à 1.
1. Calculer det(A(−1)).
2. On note P (x) = det(A(a)+xU). Montrer que P est polynomial de degré inférieur

ou égal à 1.
3. Calculer P (−a) et P (1). En déduire det(A(a)).
4. Étudier la continuité de a 7→ det(A(a)) et retrouver la valeur de det(A(−1)).

1698 CCINP MP 2025

Soit x ∈ C et n ∈ N∗. On considère la matrice An ∈ Mn(C) définie par :

An =



1 + x2 x 0 · · · · · · 0
x 1 + x2 x

. . . ...
0 x

. . . . . . . . . ...
... . . . . . . . . . x 0
... . . . x 1 + x2 x
0 · · · · · · 0 x 1 + x2


.

On note Cn = det(An).
1. Montrer que, pour tout n ∈ N∗ :

Cn+2 = (1 + x2)Cn+1 − x2Cn.

2. Calculer les valeurs exactes de C1 et C2, puis déterminer Cn pour tout n ∈ N∗.
Discuter le résultat obtenu en fonction de x.

3. Étudier l’inversibilité de la matrice An en fonction de la valeur de x.
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1699 Mines-Télécom 2025

Soit n ∈ N∗. Déterminer toutes les matrices de Mn(R) vérifiant :

MMTMMTM = In.

1700 CCINP PSI 2025

Soit a ∈ R et Ma =

0 0 a
1 0 0
1 1 0

.

1. (a) Déterminer le polynôme caractéristique χa de Ma.
(b) Effectuer la division euclidienne de 3χa par χ′

a.
(c) La matrice Ma est-elle diagonalisable sur C ?

2. On suppose que λ est une valeur propre complexe de Ma telle que |λ| > 1.

(a) Montrer que |a| >
|λ|

1 + |λ|
>

1
2.

(b) Montrer que la suite ((Ma)n)n∈N converge vers la matrice nulle pour a suffi-
samment petit.

1701 CCINP MP 2025

Soit (a; b) ∈ C2 et f l’endomorphisme du R-espace vectoriel C tel que :

∀z ∈ C, f(z) = az + bz.

1. Montrer que l’équation f(z) = 0 admet une solution z ∈ C non nulle si et
seulement si |a| = |b|.
On suppose maintenant que a = eiα et b = eiβ, avec (α; β) ∈ R2.

2. Déterminer les valeurs propres de f .
3. Déterminer α et β tels que f soit diagonalisable.

1702 TPE/EIVP PC 2019

Soit n ∈ N. Pour P dans Rn[X], on pose T (P ) = P (X + 1) − P (X).
1. Montrer que T est un endomorphisme de Rn[X].
2. Montrer que le spectre de T est {0}. Déterminer le sous-espace propre associé.

L’endomorphisme T est-il diagonalisable ?
3. Montrer que T n+1 = 0. (On pourra comparer les degrés de T (P ) et P pour
P ∈ Rn[X].)

4. Soit P ∈ Rn[X]. Montrer que :

n+1∑
k=0

(
n+ 1
k

)
(−1)n+1−kP (X + k) = 0.

(Utiliser l’endomorphisme D = T + IdRn[X].)

1703 Mines-Ponts MPI 2024

Soit B et M deux matrices de M3(C) telles que M3 = B. Que dire sur B et M ?
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1704 CCINP PC 2024

Soit A ∈ Mn(R) telle que AAT = ATA. On suppose que P = Xp est un polynôme
annulateur de A.

1. Montrer que P est annulateur de ATA.
2. En déduire que A = 0.

1705 Mines-Ponts PSI 2022

Soit (a0; a1; . . . ; an−1) ∈ Cn.

On pose A =



0 · · · · · · 0 −a0

1 . . . ... −a1

0 . . . . . . ... ...
... . . . . . . 0 −an−2
0 · · · 0 1 −an−1


.

1. Déterminer χA.
2. Montrer que :

A est diagonalisable ⇐⇒ χA est scindé à racines simples.

Pour le sens direct, on montrera l’implication par deux méthodes différentes.

1706 CCINP PSI

On note E = C1([0 ; 1],R). On définit sur E le produit scalaire :

∀(f ; g) ∈ E2, ⟨f, g⟩ =
∫ 1

0
f(t)g(t) + f ′(t)g′(t) dt.

On note :
• V = {f ∈ E | f ′′ = f},
• W = {f ∈ E | f(0) = f(1) = 0},
• H = {f ∈ E | f(0) = cosh(1) et f(1) = 0}.
1. Montrer que {cosh; sinh} est une base de V .
2. Montrer que, pour tout (f ; g) ∈ F × E :

⟨f, g⟩ = f ′(1)g(1) − f ′(0)g(0).

Calculer ⟨cosh, sinh⟩, ∥cosh∥2 et ∥sinh∥2.
3. Montrer que pour tout (f ; g) ∈ V × W , ⟨f, g⟩ = 0.
4. Soit f ∈ H.

Calculer ⟨f, cosh⟩ et ⟨f, sinh⟩.
En déduire les composantes dans la base (cosh; sinh) de la projection orthogonale∏

V(f) sur V .
5. Calculer :

inf
f∈H

∫ 1

0
f(t)2 + f ′(t)2 dt.

342



1707 ENSEA/ENSIIE MP 2021

Soit A =

1 4 2
0 −3 −2
0 4 3

 ∈ M3(R).

1. Montrer que la matrice A est diagonalisable et la diagonaliser.
2. Calculer exp(A).

1708 Mines-Ponts PC 2025

Soit (A;B) ∈ Mn(C)2.
On suppose qu’il existe (α; β) ∈ C2 tel que AB = αA+ βB.
Montrer qu’il existe P ∈ GLn(C) telle que P−1AP et P−1BP soient triangulaires
supérieures.

1709 Mines-Ponts MP 2016

1. Soit A une matrice antisymétrique réelle de taille n. Montrer que A2 est diago-
nalisable. Montrer que ses valeurs propres sont négatives ou nulles. En déduire
des informations sur A.

2. Montrer que A est orthogonalement semblable à une matrice diagonale par blocs

avec sur la diagonale des zéros et des blocs de la forme
(

0 α
−α 0

)
avec α ∈ R.

1710 Mines-Ponts MP 2024

Déterminer la dimension du Q-sous-espace vectoriel de C engendré par les racines
cinquièmes de l’unité.

1711 CCINP PC 2022

Pour toute matrice M de Md(C), on pose :

∥M∥∞ = max {|mij| | 1 ⩽ i, j ⩽ d} .

1. On pose A =

1 2 3
0 1 −1
0 0 1

. Cette matrice est-elle diagonalisable ?

2. On pose N = A− I3. Calculer N2, puis les autres puissances de N .
3. Déterminer la limite de ∥An∥∞ quand n tend vers +∞.
4. Vérifier que ∥·∥ est une norme sur Md(C).
5. Pour tout couple (M ;N) de matrices de Md(C), prouver la majoration :

∥MN∥∞ ⩽ d∥M∥∞∥N∥∞.

6. On suppose que M est diagonalisable et possède au moins une valeur propre de
module strictement supérieur à 1. Déterminer la limite de ∥Mn∥∞ quand n tend
vers +∞.
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1712 Mines-Ponts PSI 2023

Soit A ∈ M4(R) telle qu’il existe k ∈ N tel que Ak = 0.
1. Montrer qu’il existe p ⩽ 4 entier tel que Ap = 0 et Ap−1 ̸= 0.
2. On suppose que p = 4. Montrer que A est semblable à

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

1713 CCINP MP 2021

Soit K un corps et E un K-espace vectoriel de dimension finie n ∈ N∗. Soit encore u
un endomorphisme de E.

1. Montrer que si u est nilpotent, alors un = 0.
2. On suppose n ⩾ 2, où n est tel que un = 0 et un−1 ̸= 0.

(a) Montrer qu’il existe une base e de E telle que la matrice A de u dans la base
e est de la forme 

0 0 · · · 0
1 0 · · · 0
... . . . . . . ...
0 · · · 1 0

 .

(b) Résoudre l’équation X2 = A, avec X ∈ Mn(K).

1714 Mines-Ponts MP 2022

Soit n ∈ N∗ et A ∈ Mn(R).
1. Montrer que, pour tout λ ∈ R+, det(λA2 + In) ⩾ 0.
2. On suppose maintenant que A est antisymétrique.

Montrer que le résultat précédent est alors valable pour tout λ ∈ R.

1715 CCINP MP 2022

Soit a, b, c, d ∈ C tels que a2 + b2 ̸= 0 et M =


a −b −c −d
b a d −c
c −d a b
d c −b a

.

1. Calculer MMT . En déduire det(M).
2. (a) Si a2 + b2 + c2 + d2 ̸= 0, montrer que rang(M) = 4.

(b) Si a2 + b2 + c2 + d2 = 0, montrer que rang(M) = 2.
3. Soit w ∈ C tel que w2 = b2 + c2 + d2.

(a) Quelles sont les valeurs propres de M ?
(b) La matrice M est-elle diagonalisable ?
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1716 CCINP PC 2017

Soit M =


0 1 0 0 0
1 1 1 1 1
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

 ∈ M5(R).

1. Calculer M2.
2. Montrer que M est diagonalisable et donner ses valeurs propres.

1717 Mines-Télécom MP 2018

Soit =

3 1 −1
1 1 1
2 0 2

 ∈ M3(R).

Montrer qu’il existe un nombre réel λ tel que A− λI3 soit nilpotente.

1718 CCINP MP 2017

Considérons l’ensemble E des suites réelles u = (un)n∈N vérifiant :

∀n ∈ N, un+3 = 2un+2 + un+1 − 2un.

1. Démontrer que E est un espace vectoriel. Trouver la dimension de E.
(On pourra utiliser l’application u 7→ (u0;u1;u2).)

2. Déterminer les solutions de l’équation x3 −2x2 −x+2 = 0. En déduire une base
de E.

3. On considère la matrice réelle A =

 0 1 0
0 0 1

−2 1 2

.

Démontrer que

An =


1
3(−1)n + 1 − 1

32n −1
2(−1)n + 1

2
1
6(−1)n − 1

2 + 1
32n

−1
3(−1)n + 1 − 2

32n 1
2(−1)n + 1

2 −1
6(−1)n − 1

2 + 2
32n

1
3(−1)n + 1 − 4

32n −1
2(−1)n + 1

2
1
6(−1)n − 1

2 + 4
32n

 .

4. On fixe (u0;u1;u2) ∈ R3, définissant une suite u de E.

Calculer A · U0, où U0 =

u0
u1
u2

.

En déduire l’expression de un en fonction de n ainsi que de u0, u1 et u2.

1719 Mines-Télécom MP 2025

Soit A ∈ M2(R) à coefficients strictement positifs.
1. Montrer que A est diagonalisable.
2. Donner une condition nécessaire et suffisante pour que la suite (An)n∈N converge

vers une matrice L ̸= 0.

345



1720 Mines-Ponts PSI 2021

Soit A,B ∈ Mn(C) diagonalisables dans Mn(C) telles que A2 = B2 et A3 = B3.
Montrer que A = B. Est-ce toujours vrai si A et B ne sont pas diagonalisables ?

1721 Mines-Ponts MP 2024

Soit f un endomorphisme de R3 tel que f 2 = 0. Soit F un plan vectoriel stable par f .
Montrer que Im(f) ⊂ F .

1722 ENSAE MP 2022

Soit E un K-espace vectoriel de dimension n ⩾ 2 et u un endomorphisme n’ayant que
E et {0} pour seuls sous-espaces vectoriels stables.

1. Montrer que u ne possède pas de valeur propre.
2. En déduire que K ̸= C.
3. Montrer que pour tout x ∈ E \ {0}, la famille (x;u(x);u2(x); . . . ;un−1(x)) est

une base de E.
4. Comment est la matrice de u dans cette base ?

1723 Mines-Ponts MP 2019

Soit E un K-espace vectoriel de dimension n, f un endomorphisme de E et P = χf .
1. Montrer que si P est irréductible, alors les seuls sous-espaces stables par f sont
E et {0E}.

2. La réciproque est-elle vraie ?

1724 CCINP PSI 2024

Soit A et B deux matrices de Mn(R) ayant le même polynôme caractéristique P .
1. On suppose que P admet n racines. Montrer que A et B sont semblables.
2. Trouver deux matrices ayant le même polynôme caractéristique, mais qui ne

sont pas semblables.

1725 Centrale-Supélec MP 2019

Soit A,B ∈ Mn(C) telles que :

∀k ∈ N, Tr(Ak) = Tr(Bk).

1. Les matrices A et B sont-elles nécessairement semblables ?
2. Traduire par une condition sur les valeurs propres de A et B l’hypothèse de

l’exercice.
3. Montrer que χA = χB.

1726 Mines-Télécom MP 2019

On note Pn l’ensemble des matrices carrées de taille n à coefficients dans {0; 1}, telles
qu’il n’y ait qu’un seul coefficient non nul par ligne et par colonne. Montrer que toute
matrice Pn est diagonalisable sur C.
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1727 CCINP PSI 2019

Soit n ∈ N∗.
1. Soit u un endomorphisme de R2n tel que u2 = 0 et rang(u) = n.

Montrer que Ker(u) = Im(u) et qu’il existe une base B dans laquelle u a pour
matrice : (

0n In

0n 0n

)
.

2. Soit u un endomorphisme de R3n tel que u3 = 0 et rang(u) = 2n.
Montrer que Ker(u) = Im(u2) et qu’il existe une base B dans laquelle u a pour
matrice : 

0n In 0n

0n 0n In

0n 0n 0n

 .

1728 CCINP MP 2022

Soit α ∈ R et Aα =

 1 0 1
−1 2 1

2 − α α− 2 α

.

1. Pour quelles valeurs de α la matrice Aα est-elle diagonalisable ?
2. Calculer An

2 et An
1 pour tout n ∈ N.

1729 Mines-Ponts MP 2021

1. Montrer que si H est un hyperplan d’un espace vectoriel E, alors il existe une
forme linéaire φ non nulle de E telle que H = Ker(φ).

2. Soit H un hyperplan de Mn(C). Montrer que H contient au moins une matrice
inversible.

1730 Centrale-Supélec MP 2021

1. Soit M ∈ Mn(C) nilpotente.
Montrer l’existence de d = min{k ∈ N | Mk = 0} et que d ⩽ n.

2. Soit M ∈ Mn(R) nilpotente.
Montrer que M2 − In est inversible et déterminer son inverse.

3. Soit M ∈ Mn(R) telle que M4 +M3 +M2 +M + In = 0.
Montrer que Tr(M) ⩽ n, puis étudier le cas d’égalité.

1731 Mines-Télécom MP 2023

1. Soit A ∈ GLn(R) et B ∈ Mn(R).
Montrer que det(AB − In) = det(BA− In).

2. Généraliser le résultat avec A non inversible.
Indication : on pourra considérer la suite (Ap)p∈N∗ définie par Ap = A− 1

p
Ip.
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1732 Mines-Ponts MP 2022

Pour z ∈ C∗ et n ⩾ 2, calculer le déterminant n× n :

Dn(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z −
1
z

1 0 · · · 0

1 z −
1
z

1 . . . ...

0 1 z −
1
z

. . . 0
... . . . . . . . . . 1

0 · · · 0 1 z −
1
z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

1733 CCINP PC 2023

Soit
Φ : R3[X] −→ R3[X]

P 7−→
1
2 (P (X) − P (1 −X))

1. Calculer φ2.
2. Démontrer que :

Im(φ) = Vect
({
X − 1

2 ;
(
X − 1

2

)3
})

et Ker(φ) = Vect
({

1;
(
X − 1

2

)2
})

.

3. Montrer que φ est un projecteur et en identifier les éléments géométriques.

1734 CCINP PSI 2019

Soit E un espace vectoriel de dimension finie n ∈ N∗. Soit p et q deux endomorphismes
de E tels que :

p+ q = IdE et rang(p) + rang(q) ⩽ n.

Montrer que p et q sont des projecteurs.

1735 CCINP PSI 2024

Soit A ∈ M3(C) vérifiant A3 + A = 0.
1. Montrer que Sp(A) ⊂ {0; i; −i}.
2. La matrice A est-elle diagonalisable sur C ?
3. On suppose que A ∈ M3(R). La matrice A est-elle diagonalisable sur R ?

1736 Mines-Télécom MP 2024

On considère dans R3 le plan P d’équation x+ 2y + z = 0.
Déterminer la matrice de la projection orthogonale sur P .
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1737 CCINP PC 2023

1. On note F l’ensemble des matrices triangulaires supérieures d’ordre 2. Montrer
que F est un sous-espace vectoriel de M2(R), stable par produit. Donner la
dimension de F .

2. Soit F un sous-espace vectoriel de Mn(R) de dimension n2 − 1 ne contenant pas
In et stable par produit.
(a) Rappeler la valeur de Eij · Ekl avec i, j, k, l ∈ [[1 ;n]].

(On rappelle que Eij est la matrice dont tous les coefficients sont nuls, sauf
celui d’indice (i; j) qui vaut 1.)

(b) Montrer que Mn(R) = F ⊕ Vect({In}).
3. (a) Soit M,M ′ ∈ Mn(R) et p : Mn(R) → Mn(R) le projecteur sur Vect({In})

parallèlement à F .
Montrer que p(MM ′) = p(M)p(M ′).

(b) Soit M ∈ Mn(R).
Montrer que si M2 ∈ F , alors M ∈ F .

4. Déduire des questions précédentes que Eij ∈ F pour tout (i; j) ∈ [[1 ;n]]2, puis
conclure.

5. Montrer que l’ensemble des matrices de trace nulle est un sous-espace vectoriel
de Mn(R) de dimension n2 − 1. Est-il stable par produit ?

1738 TPE/EIVP MP 2018

Calculer le déterminant de la matrice A =
(

sin(i+ j)
)

1⩽i,j⩽n
.

1739 Mines-Télécom PC 2022

Soit A =



0 · · · · · · 0 1
... ... 2
... ... ...
0 · · · · · · 0 n− 1
1 2 · · · n− 1 n

 ∈ Mn(R).

Trouver les éléments propres de A.
Indication : calculer Tr(A2).

1740 Centrale-Supélec TSI 2021

Soit P le plan d’équation cartésienne x+ y+ z = 0. Déterminer les endomorphismes f
de R3 vérifiant Im(f) = P et Ker(f) ⊂ P .

1741 Mines-Ponts MP 2019

Soit E un espace vectoriel réel de dimension 3 et f un endomorphisme non nul de E
tel que f 3 + f = 0. Montrer qu’il existe une base de E dans laquelle la matrice de f
est 0 0 0

0 0 −1
0 1 0

 .
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1742 CCINP PSI 2022

Soit E un espace vectoriel réel de dimension n ∈ N∗.
Soit f un endomorphisme de E tel que la matrice de f dans toute base de E soit égale
à une même matrice A.

1. Montrer que, pour tout P ∈ GLn(R), PA = AP .
2. Soit B ∈ Mn(R).

(a) Montrer qu’il existe λ ∈ R tel que B − λIn ∈ GLn(R).
(b) En déduire que AB = BA.
(c) Montrer que f est une homothétie.

1743 CCINP PC 2024

Soit n ⩾ 2 entier.

1. Soit J =


1 · · · 1
... ...
1 · · · 1

 ∈ Mn(C).

Déterminer les valeurs propres et les vecteurs propres de J .
2. Montrer qu’il n’existe pas de forme linéaire φ de Mn(C) telle que pour toute

matrice M de Mn(C), le nombre φ(M) est une valeur propre de M .

1744 Mines-Ponts MP 2013

Soit A ∈ Mn(R) telle que A3 = ATA.
Montrer que A est diagonalisable dans C.

1745 Mines-Télécom MP 2017

Soit E et F deux K-espaces vectoriels. Considérons une application linéaire f de E
dans F .

1. Rappeler la définition de Ker(f) et de Im(f).
Démontrer que ce sont des K-espaces vectoriels.

2. Démontrer que f est injective si et seulement si Ker(f) est réduit à {0E}.

1746 CCINP TSI 2019

Soit A2n la matrice de M2n(R) donnée par

A2n =


a si i = j

b si j = 2n+ 1 − i où a et b sont deux réels
0 sinon

1. Donner A2 et A4.
2. On note ∆2n = det(A2n).

Calculer ∆2 et ∆4.
3. Calculer ∆2n si a = 0.
4. Calculer ∆2n si a ̸= 0.
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1747 CCINP PC 2017

Soit M(a; b; c) =

a b c
c a b
b c a

 et E = {M(a; b; c) | (a; b; c) ∈ R3}.

1. On note J = M(0; 1; 0). Calculer J2. Exprimer M(a; b; c) en fonction de I3, J
et J2.

2. L’ensemble E est-il un sous-espace vectoriel de M3(R) ? Si oui, quelle est sa
dimension ? Est-il stable par produit ?

3. La matrice J est-elle diagonalisable sur C ? Donner ses valeurs propres en fonc-
tion de j = e 2iπ

3 ainsi que les vecteurs propres associés.
4. La matrice M est-elle diagonalisable sur C ?
5. Montrer que M est diagonalisable sur R si et seulement si b = c.
6. On note fa,b,c l’endomorphisme associé à la matrice M(a; b; c). Donner des condi-

tions portant sur a, b, c pour que fa,b,c soit un projecteur. Donner alors son image
et son noyau.

1748 Mines-Ponts MP 2024

Soit n ∈ N∗ et a1, . . . , an ∈ C. Calculer le déterminant de

An =


a1 + a2 a2 + a3 · · · an + a1

a2
1 + a2

2 a2
2 + a2

3 · · · a2
n + a2

1
... ... ...

an
1 + an

2 an
2 + an

3 · · · an
n + an

1

 .

1749 CCINP MP 2022

Soit A =

a b c
b c a
c a b

 avec (a; b; c) ∈ R3.

1. À quelles conditions sur (a; b; c), la matrice M est-elle la matrice d’une isométrie
vectorielle directe ?

2. On pose α = a+ b+ c et β = ab+ ac+ bc, et on donne l’identité suivante :

a3 + b3 + c3 − 3abc = (a+ b+ c)3 − 2(ab+ ac+ bc)(a+ b+ c)2.

Traduire le système de la question 1 avec α et β.
3. Montrer l’équivalence suivante :

La matrice M appartient à SO3(R) si et seulement si il existe k ∈
[
0 ; 4

27

]
tel

que a, b et c soient les racines du polynôme X3 −X2 + k.
4. On suppose que M ∈ SO3(R) et que M ̸= I3. La matrice M est donc la

matrice canoniquement associée à une rotation de l’espace R3 orienté, notée r.
Déterminer l’axe D de la rotation r.

5. Orienter l’axe D et déterminer l’angle de r.
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1750 ENS MP 2019

Soit A ∈ Mn(R) vérifiant A+ AT = In. Montrer que det(A) > 0.

1751 Mines-Ponts MP 2018

Soit (a1; . . . ; an) ∈ Rn et A =
(
|ai − aj|

)
(i;j)∈[[1 ;n]]

∈ Mn(R).
Calculer det(A).

1752 ENSEA/ENSIIE MP 2024

Soit A ∈ Mn(R) de polynôme caractéristique scindé et P un polynôme réel scindé à
racines simples. Montrer que la matrice P ′(A)2 − P (A)P ′′(A) est inversible.

1753 CCINP PC 2019

Soit A =

a b c
b c a
c a b

 ∈ M3(R).

On note S = a+ b+ c et σ = ab+ bc+ ca.
1. Montrer que A ∈ O3(R) ⇐⇒ S = ±1 et σ = 0.
2. Préciser une condition pour A appartienne à SO3.

1754 Mines-Ponts MP 2017

Soit M la matrice carrée antidiagonale réelle de taille 2n, d’éléments antidiagonaux
a1, a2, . . . , a2n. Trouver une condition nécessaire et suffisante pour que M soit diagona-
lisable.

1755 Mines-Télécom PSI 2019

Soit a ∈ R∗ et A =



1 a a2 a3 · · · · · · an−1

0 1 a a2 · · · · · · an−2

0 0 1 a · · · · · · an−3

... . . . . . . ...

... . . . . . . ...

... . . . . . . ...
0 · · · · · · · · · · · · 0 1


.

Montrer que A est inversible et calculer son inverse.

1756 Mines-Ponts PC 2023

On fixe (a; b; c) ∈ R3 et on pose M =

 0 −c a
c 0 b

−a −b 0

.

Pour tout n ∈ N, on définit la matrice Sn =
n∑

k=0

Mk

k! .

1. Trouver un nombre réel θ tel que M3 = −θM .
2. Pour tout n ∈ N∗, montrer l’égalité M2n = (−θ)n−1M2.
3. Montrer que la suite (Sn)n∈N converge. Sa limite est notée S∞.
4. Trouver deux nombres réels α et β tels que S∞ = I3 + αM + βM2.
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1757 CCINP PSI 2023

Soit A ∈ M2(R) telle que A2 = AT , A ̸= I2 et A inversible.
1. Déterminer un polynôme annulateur de A.
2. Déterminer le spectre de A.
3. Montrer que A est une matrice orthogonale.
4. Calculer det(A).
5. Déterminer les matrices A.

1758 Mines-Ponts PC 2018

On fixe α ∈ R. Pour tout n ∈ N∗, on pose An =

1 −
α

n
α

n
1

.

1. La matrice An est-elle diagonalisable dans M2(R) ? dans M2(C) ?
Déterminer ses éléments propres.

2. On pose zn = 1 +
iα
n

et un = (zn)n.

(a) Montrer que zn possède un argument θn dans
]
−π

2 ; π
2

[
.

(b) Trouver un équivalent de θn quand n tend vers +∞.
(c) Déterminer la limite de un quand n tend vers +∞.

1759 Centrale-Supélec PC 2022

1. Donner un exemple de matrice de M2(C) non diagonalisable.
2. Donner un exemple de matrice de M2(C) symétrique et non diagonalisable.

1760 Mines-Ponts MP 2018

On note N l’ensemble des matrices nilpotentes et on prend M ∈ Mn(C). A-t-on l’équi-
valence entre les deux propriétés suivantes :

i) M est diagonalisable ;
ii) ∀P ∈ C[X], P (M) ∈ N =⇒ P (M) = 0 ?

1761 Mines-Télécom MP 2025

Soit la matrice :

A =


1 1 1 1 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 1 1 1 1

 ∈ M5(R).

1. Déterminer sans calculs :
(a) l’image et le noyau de A (exhiber une base) ;
(b) les espaces propres de A (trouver les valeurs propres et une base pour chaque

sous-espace).
2. Diagonaliser la matrice A.
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1762 Mines-Ponts MP 2022

Soit A ∈ GL2(C) telle que :

∃M > 0, ∀n ∈ Z, ∥An∥∞ ⩽M.

Montrer que A est diagonalisable.

1763 TPE/EIVP PSI 2019

Soit a ∈ R et A =
1
7

 −a 4 + a −(1 + a)
4 + a 1 + a a
1 + a −a −(4 + a)

.

1. Donner une condition nécessaire et suffisante sur a pour que A appartienne à
SO3(R).

2. Quel est l’endomorphisme associé à A dans ce cas ?

1764 CCINP PSI 2017

Soit D = diag(λ1, . . . , λn) avec λ1, . . . , λn des éléments deux à deux distincts d’un corps
(commutatif) K.

1. Soit M ∈ Mn(K). Montrer que M commute avec D si et seulement si M est
diagonale.

2. Soit M ∈ Mn(K) une matrice diagonale. Montrer qu’il existe un unique poly-
nôme P de degré au plus n− 1 tel que M = P (D).

1765 CCINP PSI 2016

Une matrice à diagonale propre est une matrice de Mn(R) dont la diagonale est consti-
tuée de ses valeurs propres en respectant les ordres de multiplicité. On note εn l’en-
semble des matrices à diagonale propre de Mn(R).

1. Donner des exemples de matrices à diagonale propre.

2. Soit la matrice antisymétrique A =

 0 0 1
0 0 0

−1 0 0

 ∈ M3(R).

Est-ce que A est une matrice à diagonale propre ?
3. Soit A appartenant à εn antisymétrique.

(a) Donner les valeurs propres de A.
(b) Montrer qu’il existe p ⩾ 2 tel que Ap = 0.
(c) Calculer (ATA)p et en remarquant que ATA est symétrique, montrer que

A = 0.
(d) Déterminer la dimension du sous-espace vectoriel An(R) des matrices anti-

symétriques de Mn(R).
(e) Soit F un sous-espace vectoriel de εn. Montrer que dim(F ) ⩽ n(n+1)

2 .

1766 ENS MP 2024

Déterminer les matrices M ∈ Mn(R) qui sont semblables à 2M .
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1767 Mines-Télécom MP 2024

Soit
φ : Mn(R) −→ Mn(R)

A 7−→ −A+ Tr(A)In

1. Montrer que φ est un endomorphisme de Mn(R).
2. Déterminer le spectre de φ.
3. Montrer que Ker(Tr) est un hyperplan de Mn(R).
4. Est-ce que φ est diagonalisable ?

1768 Mines-Ponts PC 2023

Soit A ∈ M3×2(R) et B ∈ M2×3(R).

On suppose que AB =

 0 −1 −1
−1 0 −1
1 1 2

.

1. Montrer que AB est une matrice de projection.
2. Montrer que BA = I2.

1769 X MP 2017

Soit A =
(
a b
b c

)
∈ S2(R). On note λ ⩽ µ les valeurs propres de A.

Montrer que λ ⩽ a ⩽ µ.

1770 CCINP PSI 2024

Soit M ∈ M2(R) telle que MMT = MTM et M2 + 2I2 = 0.
1. Montrer que MTM est diagonalisable.
2. Montrer que Sp(MTM) ⊂ {−2; 2}.
3. Montrer que, pour tout λ ∈ Sp(MTM), λ ⩾ 0. En déduire Sp(MTM).

4. Montrer que
1√
2
M est orthogonale.

5. Montrer que
1√
2
M est la matrice d’une rotation d’angle θ à déterminer.

6. Déterminer toutes les matrices M possibles.

1771 Mines-Télécom MP 2021

On note E = C([0 ; 1]). On munit E du produit scalaire :

∀f, g ∈ E, ⟨f, g⟩ =
∫ π

0
f(t)g(t) dt.

Soit H = {f ∈ E | f ′′ + f = 0}. Déterminer le projeté orthogonal sur H de la fonction
g : x 7→ x.
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1772 Mines-Ponts PC 2019

Pour K = R ou K = C, et u dans KN, on pose ∆(u) = (un+1 − un)n∈N.
1. Montrer que ∆ est un endomorphisme de KN.
2. Pour tout p ∈ N, déterminer Ker(∆p).
3. Pour tout p ∈ N et u dans KN, expliciter ∆p(u).

1773 CCINP MP 2017

1. Démontrer que l’application ϕ : R[X] × R[X] → R définie par

ϕ(P ;Q) =
∫ +∞

0
P (x)Q(x)e−x dx

est un produit scalaire.
2. Calculer ϕ(Xp;Xq) pour tous p et q entiers naturels.
3. Déterminer le projeté orthogonal de X3 sur R2[X].

1774 Mines-Télécom PC 2021

1. Soit M =


1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

 ∈ M5(R).

Déterminer, sans calcul, le rang, l’image et le noyau de M .
2. Toujours sans calcul, diagonaliser la matrice M .

1775 X MP 2016

On définit sur un C-espace vectoriel un « pseudo produit scalaire » par

⟨x, y⟩ =
n∑

i=1
xiyi.

Soit M ∈ M2(C). Montrer alors l’équivalence des propriétés suivantes :
i) M est diagonalisable dans une base « pseudo orthonormée » ;
ii) ∃(y; z) ∈ C2, µ ∈ R, θ ∈ ]0 ; 2π[ tels que

M est diagonale ou M =
(

y zeiθ

ze−iθ y + µz

)
;

iii) MTM = MMT .

1776 Mines-Télécom MP 2025

Soit A une matrice symétrique réelle telle qu’il existe k ∈ N∗ tel que Ak = In.
Montrer que A2 = In.

356



1777 CCINP MP 2021

Soit m un entier supérieur ou égal à 3. On définit le produit scalaire suivant : si
X, Y ∈ Mm×1(R), ⟨X, Y ⟩ = XTY . Soit n un entier supérieur ou égal à 1. Une matrice
A ∈ Mm(R) est dite de type n lorsque AT = An.

1. Comment appelle-t-on une matrice de type 1 ?
Pour la suite, on prendra n ⩾ 2.

2. Pour tout x ∈ R, on définit la matrice N(x) suivante :

N(x) =

0 0 0
0 cos(x) − sin(x)
0 sin(x) cos(x)

 .
(a) Montrer que pour tout k > 0, N(x)k = N(kx).
(b) Déterminer les valeurs de x pour lesquelles N(x) est une matrice de type n.

Pour la suite, on prendra m = 3.
Soit A ∈ Mm(R) une matrice de type n. Soit B ∈ Mn(R) telle que B = An+1.

(c) Montrer que An2 = A.
(d) Montrer que Bn = B puis que B est symétrique. Quelles sont les valeurs

possibles de B ?
(e) Montrer que −1 ne peut pas être valeur propre.

1778 Mines-Télécom MP 2021

1. Soit a > 0.
On définit une suite récurrente (xn)n∈N par x0 > 0 et xn+1 = 1

2

(
xn + a

xn

)
.

Étudier la suite (xn)n∈N.
2. Soit A ∈ S++

n (R) (ensemble des matrices symétriques réelles à valeurs propres
strictement positives). Montrer qu’il existe une unique matrice B ∈ S++

n (R)
telle que B2 = A.

1779 Mines-Ponts MP 2019

Soit f un endomorphisme de M2(C) tel que Tr(f(I2)) = 0 et pour toute matrice N
nilpotente, f(N) = 0. Montrer que f est nilpotente.

1780 Mines-Télécom MP 2017

Soit P ∈ Mn(R) un matrice de projection. Considérons l’application

f : Mn(R) −→ Mn(R)
M 7−→ PM +MP

1. Démontrer que pour toute matrice M ∈ Mn(R), on a

f 2(M) = PM + 2PMP +MP.

2. Démontrer que f est diagonalisable.
3. Déterminer la trace de f en fonction de n et du rang de P .
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1781 CCINP PSI 2019

Soit M ∈ Mn(R) et le système (S)
M3 − 4M2 + 4M = 0

Tr(M) = 0
1. Montrer que si M vérifie (S), alors les valeurs propres de M sont les racines du

polynôme P = X3 − 4X2 + 4X.
2. Déterminer toutes les matrices M de Mn(R) qui vérifient (S).

1782 Mines-Télécom MP 2022

On considère l’application

u : Rn[X] −→ R[X]
P 7−→ XnP

(
1
X

)
1. Montrer que l’application u est un endomorphisme.
2. Montrer que u est diagonalisable et exprimer son polynôme minimal.
3. Déterminer une base de vecteurs propres de u.

1783 Mines-Ponts MP 2014

Déterminer toutes les matrices A et B telles que :

∀M ∈ Mn(R), Tr(AMB) = 1
n

Tr(AB)Tr(M) ?

Indication : commencer par le cas B = In.

1784 CCINP MP 2024

Soit u l’application de M3(C) qui à

a b c
d e f
x y z

 associe la matrice

c b a
f e d
z y x

.

1. Montrer que u est un endomorphisme.
2. Chercher les valeurs propres et les vecteurs propres associés à l’endomorphisme
u.

3. L’endomorphisme u est-il diagonalisable ?
4. Déterminer la trace, le déterminant et le polynôme caractéristique de u.

1785 Mines-Télécom MP 2024

Soit
T : RN −→ RN

(un)n∈N 7−→ (wn)n∈N

avec :
∀n ∈ N, wn = 1

n+ 1

n∑
k=0

uk.

Déterminer les éléments propres de T .
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1786 Mines-Ponts MP 2019

On note A = GLn(C) ∪ {0n}.
1. L’ensemble A est-il un sous-espace vectoriel de Mn(C) ?
2. Quelle est la dimension maximale d’un sous-espace vectoriel de Mn(C), contenu

dans A ?
3. Qu’en est-il dans R ? On s’intéressera surtout au cas n = 2.

1787 CCINP MP 2017

Considérons l’application T : Mn(R) → Mn(R) définie par T (M) = MT .
1. Étudier le rang de T .
2. Donner la matrice de T .
3. Déterminer le déterminant de T et sa trace.
4. Étudier la diagonalisabilité de T .
5. Que peut-on dire de la matrice M +MT − 2In si M ∈ Mn(R) ?

1788 Mines-Télécom MP 2019

Soit K un corps et A ∈ Mn(K). On note com(A) sa comatrice. On suppose que A est
inversible. Déterminer le spectre de com(A) en fonction de celui de A.

1789 Mines-Ponts MP 2025

Montrer que pour tout A ∈ C,

A2 = A ⇐⇒ rang(A) ⩽ Tr(A) et rang(In − A) ⩽ Tr(In − A).

1790 Centrale-Supélec 2017

1. Rappeler le théorème du rang.
2. Soit f un endomorphisme d’un espace vectoriel E de dimension n tel que l’on

ait fn−1 = 0 et fn−2 ̸= 0.
Montrer que, pour tout 0 < k < n, dim(Ker(fk)) = k + 1.

3. Montrer qu’il existe une base de E telle que l’écriture matricielle de f dans cette

base est
(

0 0
In−2 0

)
.

1791 Mines-Ponts PSI 2021

Soit A et B deux matrices symétriques de Mn(R) telles que B = A3 + A+ In.
Montrer que A ∈ R[B].

1792 Mines-Ponts MP 2021

Soit f un endomorphisme de M2(R) tel que :
• f(N) = 0 pour toute matrice nilpotente N ;
• Tr(f(I2)) = 0.

Montrer que f ◦ f = 0.
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1793 CCINP MP 2021

1. (a) Déterminer trois polynômes A,B,C ∈ R2[X] tels que :
• A(−1) = 1, A(0) = 0, A(1) = 0,
• B(−1) = 0, B(0) = 1, B(1) = 0,
• C(−1) = 0, C(0) = 0, C(1) = 1.

(b) Montrer que (A;B;C) est une base de R2[X].
2. Soit n ∈ N, n ⩾ 3. Soit v l’endomorphisme de Rn[X] défini par :

∀P ∈ Rn[X], v(P ) = P (−1)A+ P (0)B + P (1)C.

(a) Montrer que rang(v) ⩽ 3. Qu’en déduit-on sur Ker(v) ?
(b) Déterminer une base de Ker(v).
(c) Déterminer les valeurs propres de v. L’endomorphisme v est-il diagonali-

sable ?

1794 Mines-Ponts MP 2018

Soit P ∈ C[X]. On définit une application u : C[X] → C[X] telle que :

∀z ∈ C, u(P )(z) =
+∞∑
n=0

P (n)
n! zn.

1. Montrer que u est bien définie et que u est un automorphisme.
2. Donner les valeurs propres de u.

1795 Mines-Ponts PC 2016

Soit S = (aij)1⩽i,j⩽n une matrice symétrique réelle définie positive d’ordre n.
1. Pour tout (x1; . . . ;xn) ∈ R∗

+
n, montrer que :

(x1x2 · · · xn) 1
n ⩽

1
n

(x1 + x2 + · · · + xn).

2. En déduire que :

det(S) ⩽
(

Tr(S)
n

)n

.

3. Montrer que pour tout i ∈ [[1 ;n]], aii > 0.
4. On note D = diag

(
1√
a11

; . . . ; 1√
ann

)
et A = DSD.

(a) Montrer que A est symétrique définie positive.

(b) En déduire que det(S) ⩽
n∏

i=1
aii.
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1796 Centrale-Supélec MP 2017

Soit G l’ensemble des matrices M(a) de la forme−3 9a −4 + 3a
−1 1 + 3a −1 + a
3 −9a 4 − 3a

 avec a réel.

1. Montrer que G est un groupe multiplicatif. Est-il abélien ?
2. Qu’est-ce que M(0) géométriquement. Déterminer Ker(M(0)) et Im(M(0)).
3. Montrer qu’il existe P ∈ GL3(R) tel que pour tout a ∈ R,

P−1M(a)P =

1 a 0
0 1 0
0 0 0

 .

1797 Mines-Télécom MP 2023

Soit n ∈ N∗ et A ∈ Mn(R). Montrer que :

A2 = −In =⇒ det(A) = 1.

1798 Mines-Ponts PC 2022

Soit A ∈ Mn(R).
1. Montrer que :

det(A) = 0 ⇐⇒ ∃B ̸= 0 telle que AB = BA = 0.

2. Montrer que :

det(A) = 0 ⇐⇒ ∃B ̸= 0 telle que ∀k ∈ N∗, (A+B)k = Ak +Bk.

1799 CCINP MP 2021

Soit E = R[X].

1. Montrer que φ : (f ; g) 7→
∫ +∞

0
f(t)g(t)e−t dt est un produit scalaire sur E.

2. Calculer
∫ +∞

0
tne−t dt pour tout n ∈ N.

3. Donner une base orthonormée de F = R2[X].
4. Déterminer le projeté orthogonal de X3 sur F .
5. Montrer que :

∀P ∈ E,
∣∣∣∣∫ +∞

0
P (t)e−t dt

∣∣∣∣ ⩽
√∫ +∞

0
(P (t))2e−t dt.
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1800 CCINP PC 2018

Soit A =



0 1 0 · · · 0
1 0 . . . . . . ...
0 . . . . . . . . . 0
... . . . . . . 0 1
0 · · · 0 1 0


.

1. Montrer que, pour tout λ ∈ R, rang(A− λIn) ⩾ n− 1.
2. Quelles déductions peut-on faire sur les valeurs propres de A ?

1801 CCINP PC 2024

Soit E un espace vectoriel euclidien et a, b ∈ E.
On pose :

f : E −→ E
x 7−→ x+ ⟨a, x⟩b

Montrer que f est bijective si et seulement si ⟨a, b⟩ ̸= 0.

1802 CCINP PC 2024

On munit Rn du produit scalaire canonique. On suppose que A et B sont des matrices
réelles symétriques telles que A2 = B2. On admet que, pour toute matrice diagonale,
rang(D) = rang(D2). L’objectif de l’exercice est de montrer l’existence d’une matrice
orthogonale P telle que PA = B.

1. Montrer que :
∀X ∈ Mn×1(R), (AX)TAX = (BX)TBX.

2. On suppose que 0 n’est pas valeur propre de A.
(a) Montrer que A est inversible. Montrer alors que BA−1 est orthogonale.
(b) Conclure.

3. On suppose maintenant que 0 est valeur propre de A, du multiplicité p.
(a) Montrer que Im(A) = Im(A2). En déduire que Im(A) = Im((B).
(b) Montrer que Ker(A) = Ker(B) et en déduire que 0 est valeur propre de B.

Préciser sa multiplicité.

1803 CCINP MPI 2025

On note T l’endomorphisme de R[X] défini par :

T (P ) = (8 + 3X)P + (X2 − 5X)P ′ + (X2 −X3)P ′′.

1. Déterminer l’expression et le degré de T (Xn) pour tout entier naturel n. Calculer
T (Xk) pour k = 0, . . . , 4.

2. Montrer que si P est colinéaire à T (P ), alors P est de degré 3.
3. L’endomorphisme T est-il injectif ? surjectif ?
4. Montrer que la restriction de T à R3[X], notée T1, définit un endomorphisme

sur cet espace vectoriel. Donner la matrice de T1 dans une base choisie.
5. Donner une base de diagonalisation de T1 dans R3[X].
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1804 Mines-Télécom PSI 2025

Soit a > 0 fixé. On pose :

M =

 a 1 0
a2 0 1
a3 0 0

 ∈ M3(R).

1. Montrer que M admet une unique valeur propre réelle r.
On pose, pour tout n ∈ N, sn = Tr(Mn).

2. Déterminer lim
n→+∞

sn

rn
.

1805 Mines-Ponts MP 2022

Soit E un C-espace vectoriel et f un endomorphisme de E. On suppose qu’il existe un
polynôme annulateur P de f vérifiant P (0) = 0 et P ′(0) ̸= 0. Montrer que Ker(f) et
Im(f) sont supplémentaires.

1806 Mines-Ponts MP 2025

Soit n ∈ N et F une matrice réelle symétrique de taille n. Montrer qu’il existe α ∈ R
tel que :

∀t ∈ [−α ;α], exp
(+∞∑

k=1

tk

k
Tr
(
F k
))

= det
(
(In − tF )−1

)
.

1807 ENS MP 2025

Soit A,B ∈ Mn(C) telles que AB − BA est de rang 1. Montrer que A et B sont
simultanément trigonalisables.

1808 Mines-Ponts MP 2016

Soit A etB deux matrices deMn(Z) telles que, pour tout k ∈ [[0 ; 2n]], A+kB ∈ GLn(Z).
Quelle est la valeur de |det(A)| ? de det(B) ?

1809 CCINP PC 2017

Soit An =



4 2 0 · · · 0
2 . . . . . . . . . ...
0 . . . . . . . . . 0
... . . . . . . . . . 2
0 · · · 0 2 4


.

1. Calculer det(An) pour tout n ∈ N∗.
2. Les matrices An sont-elles inversibles pour tout n ⩾ 1 ?
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1810 Mines-Ponts MP 2015

Soit K un corps et A,B ∈ Mn(K). On définit M ∈ M3n(K) :

M =


A A A

A B A

A B B

 .
1. Calculer le rang de M .
2. Calculer M−1, lorsqu’elle existe, en fonction de A−1 et de (B − A)−1.

1811 Mines-Ponts PC 2022

On considère une famille F = {F1; . . . ;Fp} d’éléments de Mp×1(R) et une famille
G = {G1; . . . ;Gn} d’éléments de Mn×1(R).
Pour tout i ∈ {1; . . . ; p} et pour tout j ∈ {1; . . . ;n}, on pose Mij = Fi ×GT

j .
1. Montrer que la famille {Mij}1⩽i⩽p,1⩽j⩽n est une base de Mn×p(R) si et seulement

si F est une base de Mp×1(R) et G est une base de Mn×1(R).

2. Soit un entier r ⩽ min(p;n). Déterminer le rang de la matrice
r∑

k=1
Mkk.

1812 Mines-Télécom MP 2023

Soit la matrice :

A =

 1 −1 0
−1 2 −1
0 −1 1

 ∈ M3(R).

Pour quels réels a la suite (anAn)n∈N converge-t-elle vers une limite non nulle ?

1813 Mines-Télécom MP 2022

Soit A ∈ Mn(R) telle que A3 = A.
1. Montrer que A est diagonalisable.
2. On suppose que rang(A) = Tr(A). Montrer que A est la matrice d’un projecteur.

1814 Mines-Télécom MP 2022

Soit E l’espace vectoriel des fonctions continues de [0 ; 1] à valeurs réelles. On pose
ϕ : f 7→ F , avec

F (x) = 1
x

∫ x

0
f(t) dt pour x ̸= 0

et F (0) = f(0).
1. Montrer que ϕ est un endomorphisme de E.
2. Déterminer les valeurs propres et les vecteurs propres de ϕ.

1815 Mines 2023

Soit K un corps et N ∈ Mn(K) nilpotente. Montrer que exp(N) − In est nilpotente.
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1816 Mines

On considère la matrice de Mn(C) :

C =



0 0 0 · · · · · · 0
1
n

1 0 0 · · · · · · 0 ...
0 1 0 · · · · · · 0 ...
0 0 . . . . . . ... ...
... ... . . . . . . . . . 0 ...
... ... . . . 1 0 ...

0 0 · · · · · · 0 1
1
n



.

Montrer que C est diagonalisable.

1817 Mines 2024

Soit A ∈ S+
n (R). Montrer que com(A) ∈ S+

n (R).

1818 Mines 2023

Soit A ∈ Mn(R). On suppose qu’il existe p ⩾ 1 tel que Mp+2 = M2 et que Tr(M) = n.
Déterminer M .

1819 Mines 2024

1. Soit A ∈ GLn(C). Trouver une relation entre χA et χA−1 .
2. Soit A ∈ Mn(C). Trouver une relation entre χA, χA2 et χ−A.

1820 Mines 2024

Soit P1, . . . , Pn ∈ K[X] et a1, . . . , an ∈ K.
Quel est le rang de la matrice (Pi(aj))1⩽i,j⩽n ?

1821 Mines 2022

Soit A une matrice symétrique de Mn(R). On suppose que la suite (Ak)k∈N converge
vers B ∈ Mn(R). Montrer que :

∑
1⩽i,j⩽n

|bij| ⩽ n
√

rang(B).

1822 CCP 2023

Soit A ∈ Mn(R) telle que A2 = ATA.
1. Montrer que, pour tout µ ∈ R∗ :

Ker(A2 − µ2In) = Ker(A− µIn) ⊕ Ker(A+ µIn).

2. En déduire le polynôme caractéristique de A, et discuter le caractère diagonali-
sable de A.
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1823 Centrale 2022

On note Nn(C) l’ensemble des matrices nilpotentes de Mn(C). Pour M ∈ Nn(C), on
désigne par d(M) l’indice de nilpotence de M . On note enfin C[M ] l’ensemble des
polynômes à coefficients complexes en M .

1. Soit N ∈ Nn(C). Montrer que C[N ] est un espace vectoriel de dimension d(N).
2. Soit N ∈ Nn(C). Montrer que N + In ∈ GLn(C), puis que N2 + 2N ∈ Nn(C)

avec d(N2 + 2N) = d(N).
3. Montrer que ϕ : N 7→ N2 + 2N réalise une injection de Nn(C) dans lui-même.

1824 Mines 2024

Soit E un K-espace vectoriel de dimension n ∈ N. On dit qu’un endomorphisme de E
est une transvection lorsque :

(u)B
B = In + λEij

pour une certaine base B de E, un certain λ ∈ K et i, j ∈ {1; . . . ;n} distincts.
Montrer l’équivalence entre les assertions suivantes :

i) u est une transvection ;
ii) rang(u− Id) = 1 et (u− Id)2 = 0.

1825 Mines 2024

On considère A ∈ Mn(C) ainsi que :

B =
(
a b
c d

)
∈ M2(C).

Montrer que si A et B sont diagonalisables, alors il en est de même pour :

C =
(
aA bA

cA dA

)
.

1826 ENS 2023

Pour A ∈ Mn(R), on note φA : M 7→ AM .
1. Montrer que |||φA||| ⩽ ∥A∥2.
2. Donner une sous-algèbre stricte de Mn(R) stable par transposition.
3. On définit la sous-algèbre de Mn(R) :

S =
{(

M1 0
0 M2

) ∣∣∣∣ (M1;M2) ∈ Mp(R) ×Mq(R), p+ q = n

}
.

On admet que B = {φA | A ∈ S} est une sous-algèbre de L(Mn(R)). Décrire
l’ensemble des endomorphismes de Mn(R) qui commutent avec tous les éléments
de B.
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1827 CCP 2023

On considère la matrice :

A =

 3 2 −2
−1 0 1
1 −1 0

 ∈ M3(R).

1. Déterminer le polynôme caractéristique de A.
2. Déterminer le polynôme minimal de A.
3. Calculer An pour n ∈ N. En déduire exp(A).
4. Montrer que A est semblable à :

B =

1 0 0
0 1 1
0 0 1

 .
5. Trouver une autre méthode pour calculer An.

1828 CCP 2023

Soit (a; b) ∈ R2 \ {0}. On considère la matrice :

A =



0 · · · · · · 0 a
... . . . ... ...
... . . . ... ...
0 · · · · · · 0 a
a · · · · · · a b

 ∈ Mn(R).

1. Justifier que A est diagonalisable.
2. Déterminer le rang de A.
3. Calculer le polynôme minimal et les valeurs propres de A. En déduire le poly-

nôme caractéristique de A.

1829 Centrale 2022

Pour A ∈ Mn(K), on pose φA : M 7→ Tr(AM) et τA : M 7→ MA− AM .
1. On suppose que A est nilpotente. Montrer que Ker(τA) ⊂ Ker(φA).
2. On suppose qu’il existe B ∈ Mn(K) telle que A = BA− AB.

Calculer BP (A) − P (A)B pour P ∈ K[X]. En déduire que A est nilpotente.
3. Caractériser les hyperplans H de Mn(K) vérifiant Im(τA) ⊂ H. En déduire

l’existence de B ∈ Mn(K) telle que B = BA− AB.
4. Montrer que A exp(In +B) = exp(B)A.
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1830 Mines 2024

Soit n ⩾ 1 entier. On considère le produit scalaire suivant sur E = Rn[X] :

⟨P,Q⟩ =
∫ +∞

0
P (t)Q(t)e−t dt.

On se donne Π ∈ R[X] de degré n, et pour P ∈ E, on pose :

u(P )(x) =
∫ +∞

0
Π(x+ t)P (t)e−t dt.

1. Montrer que u est auto-adjoint et bijectif.
2. On considère une base orthonormée (P0; . . . ;Pn) de E constituée de vecteurs

propres de u, chaque Pi étant associé à la valeur propre λi. Montrer que pour
tous x, y ∈ R :

Π(x+ y) =
n∑

k=0
λkPk(x)Pk(y).

1831 Mines 2024

1. Existe-t-il une norme ∥·∥ sur Mn(R) telle que pour tout A ∈ Mn(R) et pour
tout P ∈ GLn(R), ∥P−1AP∥ = ∥A∥ ?

2. Existe-t-il une norme ∥·∥ sur Mn(R) telle que pour tout A ∈ Mn(R) et pour
tout P ∈ On(R), ∥P−1AP∥ = ∥A∥ ?

3. Même question que la première avec une semi-norme.

1832 Mines 2023

Pour P =
+∞∑
k=0

akX
k ∈ C[X], on pose ∥P∥ = sup

k∈N
|ak|.

On considère b ∈ C vérifiant |b| < 1, et f : P 7→ P (b).
1. Montrer que f est linéaire.
2. Montrer que f est continue pour ∥·∥.
3. Déterminer |||f ||| sous réserve d’existence.

1833 Mines 2022

Soit E un K-espace vectoriel de dimension n ∈ N. On pose, pour x ∈ E :

N(x) = sup
t∈R

∣∣∣∣∣
n∑

k=1
xkt

k−1
∣∣∣∣∣

n∑
k=1

t2k−2
.

1. Montrer que N est une norme sur E.
2. Comparer N et ∥·∥2.
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1834 Centrale 2022

1. Montrer que si U ∈ S+
n (R), alors U admet une unique racine carrée.

2. Montrer que si U, V ∈ S+
n (R), alors Tr(UV ) ⩾ 0.

3. Soit I un intervalle non vide de R.
On considère une fonction dérivable f : I → Mn(R) ainsi que P ∈ R[X]. Montrer
que Tr ◦ P ◦ f est dérivable sur I et calculer sa dérivée.

1835 Mines 2024

Soit S une partie non vide de R2 et f un endomorphisme de R2. On suppose que, pour
tout v ∈ R2 :

f(v) ∈ S et v − f(v) ∈ S⊥.

Montrer que S est un espace vectoriel et que f est la projection orthogonale sur S.

1836 Centrale 2023

Soit E un espace euclidien et s un endomorphisme de E.
1. Établir l’identité du parallélogramme et l’identité de polarisation.
2. Montrer l’équivalence entre les assertions suivantes :

i) ∃c ⩾ 0, ∀x, y ∈ E, ⟨s(x), s(y)⟩ = c⟨x, y⟩ ;
ii) ∀x, y ∈ E, ⟨x, y⟩ = 0 =⇒ ⟨s(x), s(y)⟩ = 0.

3. Trouver tous les endomorphismes u de E tels que u(V ⊥) ⊂ u(v)⊥ pour tout
sous-espace vectoriel V de E.

1837 CCP 2023

Soit f ∈ L(R3) vérifiant f ̸= 0 et f 3 = −f . On pose F = Ker(f) et G = Ker(f 2 + Id).
1. Montrer que F ̸= {0} et G ̸= {0}.
2. Soit v ∈ G \ {0}. Montrer que R3 = F ⊕G et que (v; f(v)) est une base de G.
3. Soit A ∈ M3(R) telle que A3 = −A. Montrer que A est semblable à :0 0 0

0 0 1
0 −1 0

 ou

0 0 0
0 0 −1
0 1 0

 .

1838 Mines 2024

Soit E un K-espace vectoriel et f ∈ L(E). On pose :

G = {u ∈ L(E) | u ◦ f = f ◦ u, u2 ◦ f = f, ∃p ∈ N, f p+1 ◦ u = fp}.

1. Soit u ∈ G et k ∈ N. Montrer que uk+1 ◦ fk = u.
2. Soit u, v ∈ G et k ∈ N. Calculer uk ◦ fk+1 ◦ v et v ◦ fk+1 ◦ uk.
3. En déduire que G possède au plus un élément.
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1839 CCP 2024

Soit E un C-espace vectoriel de dimension n ∈ N. On considère f, g ∈ L(E) telles que :

f ◦ g − g ◦ f = f.

L’objectif est de montrer que f est nilpotente de trois manières différentes.
1. (a) Montrer que, pour tout k ∈ N, fk ◦ g − g ◦ fk = kfk.

(b) Conclure en étudiant l’application :

u : L(E) −→ L(E)
h 7−→ h ◦ g − g ◦ h

2. Montrer que pour tout P ∈ C[X], P (f) ◦ g− g ◦P (f) = f ◦P (f), puis conclure.
3. (a) Montrer que pour tout k ⩾ 1, Tr(fk) = 0.

(b) Montrer que f ne possède qu’une seule valeur propre, puis conclure.

1840 Mines 2022

Soit n ⩾ 2 et p < n. On considère M =
(
A B
C D

)
∈ Mn(R) avec A ∈ GLp(R).

1. (a) Montrer que l’application
(
X

Y

)
7→ Y induit un isomorphisme de Ker(M)

vers Ker(D − CA−1B).
(b) Montrer que rang(M) = p si, et seulement si, D = CA−1B.

2. Soit V un sous-espace vectoriel de Mn(R). On pose p = max
M∈V

rang(M).
On souhaite majorer dim(V ).
(a) Montrer que l’on peut supposer Jp ∈ V , condition que l’on supposera vérifiée

pour la suite.

(b) On pose W =
{(

0 B
BT D

) ∣∣∣ (B;D) ∈ Mn−p×p(R) ×Mn−p×n−p(R)
}
.

Étudier V ∩W .

1841 Mines 2022

Soit A,B ∈ Mn(R). Montrer que l’application f : x 7→ det(A+ xB) est polynomiale et
donner son degré.

1842 Mines 2024

Soit α > 0 et u ∈ L(Cn). Montrer qu’il existe une base ordonnée B de Cn telle que,
pour tous i, j ∈ {1; . . . ;n} :

i ̸= j =⇒
∣∣∣((u)B

B

)
ij

∣∣∣ ⩽ α.

1843 Mines 2022

Trouver une matrice M ∈ Mn(R) vérifiant M3 − M = In. Montrer que M vérifie
nécessairement det(M) > 0.
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1844 X 2022

Soit A,B ∈ Mn(C). Montrer l’équivalence entre les assertions suivantes :
i) B est nilpotente et BA = 0
ii) ∀M ∈ Mn(C), χAM = χAM+B

1845 X 2023

Soit E un C-espace vectoriel de dimension n ⩾ 1.
On considère a, b ∈ L(E) et on pose [a , b] = ab− ba. On suppose que [a , b] = f ◦ v, où
f ∈ L(C, E) et v ∈ L(E,C) vérifient v ◦ f = 0.

1. Calculer det([a , b]).
2. Montrer que a et b sont trigonalisables dans une même base.

1846 Mines-Ponts MP 2021

Soit E un espace euclidien et x, y deux vecteurs non nuls de E. Quelle(s) condition(s)
y a-t-il sur x et y pour que le projeté orthogonal de x sur Vect({y}) soit égal au projeté
orthogonal de y sur Vect({x}) ?

1847 Centrale-Supélec MP 2013

Soit E l’espace vectoriel des suites réelles. On étudie l’application qui à une suite u
associe la suite v définie par :

∀n ∈ N, vn = u0 + 2u1 + · · · + (n+ 1)un

(n+ 1)2 .

1. Montrer que si u converge, alors f(u) converge également. Préciser sa limite.
2. Montrer que f est un automorphisme de E.
3. Trouver les valeurs propres et les vecteurs propres de f .
4. On note F le sous-espace vectoriel de E constitué des suites bornées. On le

munit de la norme infinie. Montrer que F est stable par f , que f est continue
pour la norme considérée et préciser sa norme subordonnée.

1848 Mines-Télécom MP 2023

On pose E = C([0 ; 1]) que l’on munit de la norme ∥·∥∞. On pose :

∀f ∈ E, u(f)(x) =
∫ 1

0
inf(x; t)f(t) dt.

Montrer que u est un endomorphisme continu de E et calculer |||u|||.

1849 Mines-Télécom PSI 2023

Soit A =
(

−5 3
6 −2

)
∈ M2(C).

1. Montrer que A est diagonalisable.
2. Résoudre B3 = A dans M2(R), puis dans M2(C).

3. Résoudre X ′ = AX avec X(t) =
(
x(t)
y(t)

)
.
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1850 Mines-Télécom PSI 2023

Soit A =

1 2 −3
2 4 −6
4 8 −12

 ∈ M3(R).

1. Déterminer le rang de A. En déduire sans calcul le polynôme caractéristique de
la matrice A.

2. Déterminer les éléments propres de A.
3. La matrice A est-elle diagonalisable ?

1851 Mines-Télécom MP 2022

Soit A ∈ Mn(R) telle que A2 est diagonalisable à valeurs propres strictement positives.
Montrer que A est diagonalisable.

1852 CCINP MP 2018

Soit E un espace vectoriel euclidien, u un endomorphisme orthogonal de E (i.e. tel que
∀x, y ∈ E, ⟨u(x), u(y)⟩ = ⟨x, y⟩). On considère v = IdE − u.

1. (a) Montrer que Ker(v) = (Im(v))⊥.
(b) En déduire que Ker(v) et Im(v) sont des supplémentaires orthogonaux.

2. Soit p le projecteur orthogonal de E sur Ker(v).
(a) Montrer que p ◦ u = u ◦ p = p.
(b) Pour tout x ∈ E, montrer qu’il existe y ∈ E tel que p(x) = x+ u(y) − y.
(c) En déduire que :

∀x ∈ E, p(x) = lim
n→+∞

(
1
n

n−1∑
k=0

uk(x)
)
.

1853 Mines-Télécom MP 2018

Soient n ∈ N∗, (a1; . . . ; an) ∈ Cn et (b1; . . . ; bn) ∈ Cn.
On pose : A = (aibj)(i;j)∈{1;...;j}2 ∈ Mn(C).
Dans quels cas la matrice A est-elle diagonalisable ? Déterminer alors ses éléments
propres.

1854 CCINP MP 2018

On cherche à déterminer les matrices A ∈ Mn(R) telles que A4 = A2 et Tr(A) = n.
1. Montrer qu’une telle matrice est diagonalisable.
2. Conclure.

1855 Mines-télécom MP 2018

Soit A ∈ S+
n (R). Montrer que n

√
det(A) ⩽ 1

n
Tr(A).
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1856 Mines-Télécom MP 2018

Soit A =



1 · · · · · · · · · 1
0 . . . ...
... . . . . . . ...
... . . . . . . ...
0 · · · · · · 0 1


∈ Mn(R).

Calculer A3.

1857 CCINP MP 2025

Soit E un espace vectoriel de dimension 4.
1. Énoncer le lemme des noyaux pour deux polynômes.
2. Soit f ∈ L(E) tel que son polynôme minimal s’écrive : P (X) = (X2+1)(X2+4).

Montrer qu’il existe x, y non nuls dans E tels que f 2(x) = −x et f 2(y) = −4y.
3. Montrer que la famille (x; f(x); y; f(y)) est une base de E.
4. Exprimer la matrice canoniquement associée à f dans cette base.

1858 Mines-Ponts MPI 2025

1. Donner le polynôme caractéristique de :

0 · · · · · · 0 −a0

1 . . . ... −a1

0 . . . . . . ... ...
... . . . . . . 0 −an−2
0 · · · 0 1 −an−1


.

2. Trouver les n ∈ N tels qu’il existe M ∈ Mn(Z) vérifiant M3 +M + In = 0.

1859 Mines-Ponts MP 2025

Soit n ∈ N et F ∈ Sn(R). Montrer qu’il existe α ∈ R tel que :

∀t ∈ [−α ;α], exp
(+∞∑

k=1

tk

k
Tr
(
F k
))

= det
(
(In − tF )−1

)
.

1860 Mines-Ponts MP 2025

Soit E un espace euclidien et u ∈ L(E) tel que Tr(u) = 0.
1. Montrer qu’il existe un vecteur x ∈ E \ {0} tel que ⟨u(x), x⟩ = 0.
2. Montrer qu’il existe une base orthonormée de E dans laquelle la matrice de u a

une diagonale nulle.
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1861 CCINP MP 2025

On définit les deux matrices de M3(R) :

N =

0 1 0
0 0 1
0 0 0

 et T =

1 2 3
0 1 2
0 0 1

 ,
ainsi que C(N) = {M ∈ M3(R) | NM = MN}.

1. Montrer que C(N) est un espace vectoriel. Déterminer-le.
2. Montrer que N est un polynôme de degré 2 en T .

On définit E = {M ∈ M3(R) | M8 = T}.
3. Montrer que pour tout M ∈ E, M est un polynôme en N .
4. Déterminer E.

1862 CCINP MPI 2025

On note T l’endomorphisme de R[X] défini par :

T (P ) = (8 + 3X)P + (X2 −X)P ′ + (X2 −X3)P ′′.

1. Déterminer l’expression et le degré de T (Xn) pour tout en entier naturel n.
Calculer T (xk) pour k = 0, . . . , 4.

2. Montrer que si P est colinéaire à T (P ), alors P est de degré 3.
3. L’endomorphisme T est-il injectif ? surjectif ?
4. Montrer que la restriction de T à R3[X], notée T1, est un endomorphisme sur

cet espace vectoriel. Donner la matrice de T1 dans une base choisie.
5. Donner une base de diagonalisation de T1 dans R3[X].

1863 Mines-Ponts MP 2018

Soit A et B dans Mn(R) telles que ABAB = 0. A-t-on nécessairement BABA = 0 ?

1864 Mines-Télécom MP 2021

Soit A ∈ Mn(R) telle que Tr(A) = 0. Montrer qu’il existe deux matrices nilpotentes
N1 et N2 telles que A = N1 +N2.

1865 Mines-Télécom MP 2021

On note (e1; . . . ; en) la base canonique de Rn. Si σ ∈ Sn, on note fσ l’unique endomor-
phisme de Rn tel que, pour tout i ∈ [[1 ;n]], fσ(ei) = eσ(i). Enfin, on pose :

p = 1
n!

∑
σ∈Sn

fσ.

1. Soit (σ; τ) ∈ S2
n. Calculer fσ ◦ f τ .

2. Montrer que l’application τ 7→ σ ◦ τ est une bijection de Sn.
3. Montrer que p est un projecteur.
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1866 X ESPCI 2023

Soit A ∈ Mn(C). À quelle condition existe-t-il deux matrices A et B diagonalisables,
de rang 1, telles que M = A+B ?

1867 CCINP MP 2021

Résoudre le système suivant d’inconnue (x; y; z) ∈ R3 en fonction du paramètre m :
2mx+ y + z = 2
x+ 2my + z = 4m
x+ y + 2mz = 2m2

1868 Mines-Ponts MP 2021

Soit A et B deux matrices de Mn(R) qui commutent. On suppose qu’il existe n+1 réels
deux à deux distincts t1, t2, . . . , tn+1 tels que, pour tout i entre 1 et n + 1, la matrice
Ci = A+ tiB soit nilpotente. Montrer que les matrices A et B sont nilpotentes.

1869 Mines-Ponts MP 2021

Soit M ∈ Mn(C) et I = {P ∈ C[X] | P (M) est nilpotent}.
Déterminer I.

1870 CCINP PSI 2021

Soit A ∈ Mn(R) et B =
(
A A
0 0

)
∈ M2n(R).

1. Donner le rang de B en fonction du rang de A.
2. Montrer que, pour tout P ∈ R[X],

P (B) =
(
P (A) P (A)

0 0

)
+ P (0)

(
0 −In

0 In

)
.

3. On suppose que A est diagonalisable. Montrer que B l’est aussi, et donner ses
valeurs propres.

1871 Mines-Ponts MP 2021

Soit A ∈ M3(C).
Montrer que A et −A sont semblables si et seulement si Tr(A) = 0 et det(A) = 0.

1872 Mines-Télécom MP 2018

Soit n ∈ N et A ∈ Rn[X] tel que
∫ 1

0
A(t) dt ̸= 0. On pose :

∀P ∈ Rn[X], φ(P ) =
∫ 1

0
P (t) dt · A−

∫ 1

0
A(t) dt · P.

1. Montrer que φ ∈ L(Rn[X]).
2. Déterminer les éléments propres de φ.
3. L’endomorphisme φ est-il diagonalisable ?
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1873 Mines-Télécom MP 2018

Soit E un espace vectoriel réel de dimension finie n ∈ N∗.
1. Si dim(E) = 2, montrer qu’il existe f ∈ L(E) tel que f 2 = −IdE.
2. On revient au cas général et on suppose l’existence d’un endomorphisme f de
E tel que f 2 = −IdE.
(a) Montrer que f n’admet pas de valeur propre et que dim(E) est paire.
(b) Montrer que pour tout x ∈ E \ {0E}, Vect({x; f(x)}) est stable par f .
(c) En posant dim(E) = 2p, montrer qu’il existe une famille de vecteurs de E,

{e1; . . . ; ep}, telle que {e1; f(e1); . . . ; ep; f(ep)} soit une base de E.

1874 Mines-Télécom MP 2018

On donne les deux matrices réelles :

A =

−1 −4 2
1 3 −1

−1 −2 2

 et B =

 2 1 1
0 0 −2

−1 0 2

 .
Les matrices A et B sont-elles semblables ?

1875 Mines-Télécom MP 2018

Soit n ∈ N∗ et E un espace euclidien de dimension n. Soit (e1; . . . ; en) une famille de
vecteurs unitaires de E tels que, pour tous i, j ∈ [[1 ;n]] tels que i ̸= j, ∥ei − ej∥=1.
Démontrer que (e1; . . . ; en) est une base de E.

1876 Centrale-Supélec MP 2018

Soit r et s deux rotations vectorielles de R3.
1. Montrer que si les axes de r et s sont identiques, alors r et s commutent.
2. Montrer que si r et s sont des rotations d’angles π et d’axes orthogonaux, alors
r et s commutent.

3. Trouver une condition nécessaire et suffisante pour que r et s commutent.

1877 ENSEA/ENSIIE MP 2018

Soit M une matrice de M3(R) telle que M4 = 0. Montrer que M3 = 0.

1878 CCINP MP 2023

On considère un espace euclidien E dont le produit scalaire est noté, pour tous vecteurs
x et y de E, ⟨x, y⟩. On fixe deux vecteurs non nuls u et v de E.

1. Pour tout vecteur x de E, on pose : (u⊗ v)(x) = ⟨v, x⟩u.
(a) Justifier que u⊗ v est linéaire et donner son rang.
(b) Déterminer les éléments propres de u⊗ v.
(c) L’endomorphisme u⊗ v est-il diagonalisable ?

2. Calculer (u⊗ v)2 = (u⊗ v) ◦ (u⊗ v) et retrouver le résultat de la question 1.c.
3. Soit g un endomorphisme de E. On note g⋆ son adjoint. Montrer que g commute

avec u⊗ v si et seulement si il existe un réel α tel que g(u) = αu et g⋆(v) = αv.
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1879 Mines-Télécom MP 2023

1. Rappeler le théorème spectral.
2. On munit Mn×1(R) du produit scalaire usuel. Soit A ∈ Sn(R). Montrer que les

sous-espaces propres de A sont deux à deux orthogonaux.
3. Soit A ∈ Mn(R) et on suppose que A + AT est nilpotente. Montrer que A est

antisymétrique.

1880 Mines-Télécom PSI 2023

Soit A ∈ Mn(R) telle que :

∀i ∈ [[1 ;n]], ∀j ∈ [[1 ;n]], aij =
4 si i = j

1 si i ̸= j

Étudier la diagonalisabilité de A et donner ses éléments propres.

1881 CCINP MP 2023

Soit a, b, c, d, e, f des réels et

A =


1 a b c
0 −1 0 0
0 d 1 e
0 f 0 −1

 .

1. Montrer que la matrice A est trigonalisable.
2. Trouver une condition nécessaire et suffisante pour la matrice A soit diagonali-

sable.
3. Dans ce cas, trouver une base de vecteurs propres.

1882 CCINP PSI 2024

1. Rappeler la forme d’une matrice de Vandermonde et l’expression de son déter-
minant.

2. Pour tout k entier naturel compris entre 1 et n, on pose fk(x) = ekx. Montrer
que la famille {f1; . . . ; fn} est libre.

3. Montrer, sans les calculer, que le polynôme P (X) = X3 + X + 1 admet trois
racines distinctes dans C, que l’on notera α, β, γ.

4. Résoudre le système suivant, composé de 3 équations à 3 inconnues :
x+ y + z = 0
αx+ βy + γz = 0
α2x+ β2y + γ2z = 0
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1883 Mines-Ponts MPI 2023

Soit n ⩾ 2 et S ∈ Sn(R). Notons :

E = {∥X∥ | X ∈ Mn×1(R) et Tr(XTSX) = 1}.

1. Montrer que E possède un maximum si et seulement si S ∈ S++
n (R).

2. Déterminer le maximum de E si S ∈ S++
n (R).

1884 Mines-Télécom MP 2024

Soit A ∈ Mn(C) admettant une unique valeur propre λ.
1. Montrer que A− λIn est nilpotente.
2. Soit le système différentiel (E) : Y ′ = AY . Montrer que les solutions de (E)

sont bornées si et seulement si A = λIn et λ ∈ iR.

1885 Mines-Ponts PSI 2024

Soit E un espace vectoriel normé de dimension finie et f ∈ L(E).
Montrer qu’il existe C > 0 tel que ∥f 2(x)∥ ⩾ C∥f(x)∥ pour tout x ∈ E si, et seulement
si, Ker(f) = Ker(f 2).

1886 Mines-Télécom 2024

Soit E une partie de Mn(R). On appelle centre de E l’ensemble des matrices commutant
avec tous les éléments de E .

1. Déterminer le centre de Mn(R).
2. Démontrer que Vect(GLn(R)) = Mn(R). En déduire le centre de GLn(R).

1887 Mines-Télécom 2025

On étudie les matrices de Mn(R) qui vérifient la condition :

χA(X) =
n∏

k=0
(X − akk) (1),

c’est-à-dire les matrices pour lesquelles les valeurs propres sont réelles et sont exacte-
ment les coefficients diagonaux de la matrice.

1. On pose M1 =

1 0 0
0 0 1
0 1 0

 et M2 =

1 1 1
1 1 1
1 1 1

.

Les matrices M1 et M2 vérifient-elles la condition (1) ?

2. Soit (u; v) ∈ R2. On pose Mu,v =

u v v
v u v
v v u

.

À quelle condition nécessaire et suffisante la matrice Mu,v vérifie-t-elle la condi-
tion (1) ?

3. Quelles sont les matrices de M2(R) qui vérifient la condition (1) ?
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1888 Mines-Ponts MP 2024

Soit A ∈ Mn(C) telle que :

∀k ∈ [[1 ;n− 1]],Tr(Ak) = 0 et Tr(An) ̸= 0.

Montrer que A est diagonalisable.

1889 CCINP 2025

Soit A =

−2 −2 0
2 3 0
1 0 3

 ∈ M3(R) et X(t) =

x(t)
y(t)
z(t)

 ∈ M3×1(R).

1. Étudier la diagonalisabilité de A.
2. Trouver les matrices D et P telles que A = PDP−1.

On souhaite résoudre le système différentiel suivant :

(S) :


x′ = −2x− 2y
y′ = 2x+ 3y
z′ = x+ 3z

3. On pose U(t) = P−1X(t).
Trouver un système d’équations vérifié par U(t) et effectuer la résolution de ce
système.
On souhaite maintenant résoudre le système différentiel suivant :

(S ′) :


x′′ = −2x− 2y
y′′ = 2x+ 3y
z′′ = x+ 3z

4. On pose V (t) = P−1X(t).
Trouver un système d’équations vérifié par V (t).

5. Montrer que l’ensemble des solutions bornées de (S ′) est un espace vectoriel réel.
Quelle est sa dimension ?

1890 Mines-Ponts MP 2025

Soit E un espace vectoriel euclidien et f ∈ L(E) tel que :

∀x ∈ E, ∥f(x)∥ ⩽ ∥x∥.

1. Montrer que :
∀x ∈ E, f(x) = x =⇒ f ⋆(x) = x,

où f ⋆ est l’adjoint de f .
2. Étudier la suite u de L(E)N définie par :

∀n ∈ N, un = 1
n+ 1

n∑
k=0

fk.
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1891 CCINP TSI 2019

Soit φ définie pour tout (P ;Q) ∈ R3[X]2 par φ(P ;Q) =
∫ 1

−1
P (t)Q(t) dt.

1. Montrer que φ est un produit scalaire.
2. Construire une base orthonormée (Q0;Q1;Q2;Q3) de R3[X].
3. Soit Mi = sup

t∈[−1;1]
|Qi(t)|, i ∈ [[0 ; 3]]. Montrer que Mi = Qi(1).

1892 CCINP MP 2025

Soit E un espace vectoriel muni d’un produit scalaire. Soit f un endomorphisme de E
tel que :

∀x, y ∈ E, ⟨x, y⟩ = 0 =⇒ ⟨f(x), f(y)⟩ = 0.
1. (a) Montrer que :

∀x, y ∈ E, ∥x∥ = ∥y∥ =⇒ ∥f(x)∥ = ∥f(y)∥.

(b) Montrer que Ker(f) = E ou Ker(f) = {0}.
2. Supposons E de dimension finie n. Soit {ei}1⩽i⩽n une base orthonormée de E.

(a) Montrer que les ∥f(ei)∥ sont tous égaux à un même entier (1 ⩽ i ⩽ n).
(b) Montrer qu’il existe un entier k tel que :

∀x ∈ E, ∥f(x)∥ = k∥x∥.

3. Montrer que le résultat précédent reste valable en dimension infinie.
4. Montrer que :

∀x, y ∈ E, ⟨f(x), f(y)⟩ = k2⟨x, y⟩.

1893 MP ENS 2025

Une matrice carrée à coefficients réels ou complexes est dite de Bourdeaud si tous ses
coefficients diagonaux sont ses valeurs propres comptées avec leur multiplicité.

1. Montrer qu’une matrice réelle est semblable à une matrice de Bourdeaud si et
seulement si elle est trigonalisable.

2. Existe-t-il une matrice complexe, symétrique et de Bourdeaud qui ne soit pas
diagonalisable ?

3. Une matrice est dite normale si elle commute avec sa transposée. Quelles sont
les matrices réelles, symétriques et normales de Bourdeaud ?

1894 ENSEA/ENSIIE MP 2022

On pose E = R[X] et on définit f ∈ L(E) par :

∀P ∈ E, f(P ) = (X − 3)(X + 1)P ′ −XP.

Donner les valeurs propres et les vecteurs propres de f .
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1895 Mines-Télécom MP 2024

Soit E un espace euclidien. Soit {e1; . . . ; en} une famille liée génératrice de vecteurs
unitaires de E, deux à deux distincts, pour laquelle il existe α ∈ R tel que :

∀i, j ∈ [[1 ;n]], i ̸= j =⇒ ⟨ei, ej⟩ = α.

1. Montrer que
n∑

i=1
ei = 0 et α = −

1
n− 1.

2. Montrer que dim(E) = n− 1.

1896 Mines-Ponts PC 2023

Soit A ∈ Sn(R). On note :

CA = {x ∈ Rn | ⟨Ax, x⟩ = 0}.

1. Dans cette question, on prend n = 3 et A =

0 1 0
1 0 0
0 0 0

.

Déterminer l’ensemble CA.
2. Montrer que les trois assertions suivantes sont équivalentes :

i) CA = Ker(A) ;
ii) CA est un sous-espace vectoriel de Rn ;
iii) A ∈ S+

n (R) ou −A ∈ S+
n (R).

1897 CCINP MP 2025

Soit n ∈ N∗ et Un la matrice carrée réelle de taille n dont tous les coefficients sont
égaux à 1.

1. Sans calculer le déterminant, trouver les valeurs propres de Un avec leur multi-
plicité.

2. Soit (ei)1⩽i⩽n la base canonique ordonnée de Rn. On définit :

∀i ∈ [[2 ;n]], fi =
i−1∑
k=1

1
i− 1ek − ei.

Montrer que (fi)2⩽i⩽n est une base orthogonale du sous-espace propre associé à
la valeur propre 0 de Un, pour le produit scalaire canonique.

3. En déduire une base orthonormée formée de vecteurs propres de Un. Donner la
formule de diagonalisation de Un.

1898 Mines-Ponts PC 2023

Trouver tous les couples (u; v) d’isométries qui anticommutent dans un espace euclidien
de dimension 2.
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1899 Mines-Ponts MP 2017

Soit a, b, c ∈ R∗
+ et A =


0 a b
1
a

0 c
1
b

1
c

0

.

1. Donner une condition sur a, b et c afin que A soit diagonalisable.
2. Soit f l’endomorphisme associé à A. Quels sont les sous-espaces vectoriels de R3

stables par f ?

1900 Mines-Télécom PSI 2019

On considère :
φ : Rn[X] × Rn[X] −→ R

(P ;Q) 7−→
2017∑

k=−2017
P (k)Q(k)

Quelles sont les valeurs de n pour lesquelles φ est un produit scalaire ?

1901 CCINP MP 2018

Soit

C =


1 0 −1 0 0
0 0 0 −3 0
0 0 0 0 −6
0 0 0 1 0
0 0 0 0 3

 ∈ M5(R).

1. Calculer χC et πC .
2. Montrer qu’il existe A et B dans M5(R) telles que :

C = A+B, A2 = A, B2 = 3B et AB = BA = 0.

3. Déterminer le rang de A et le rang de B.
4. Montrer que, pour tout n ∈ N∗, Cn s’écrit comme une combinaison linéaire de
A et B dont on déterminera les coefficients.

1902 Mines-Ponts MP 2018

Soit A une matrice réelle symétrique, B une matrice réelle antisymétrique et M une
matrice réelle inversible telle que A = M−1BM . Montrer que A = B = 0.

1903 X MP 2018

Soit A =
(
a b
b c

)
∈ M2(R) et λ1, λ2 ses valeurs propres.

Trouver le lieu de (a; c) sachant que les deux valeurs propres de A sont fixées.

1904 Mines-Ponts MP 2018

Soit n ⩾ 2 entier. Résoudre dans Mn(C) :

M2 − Tr(M)M + det(M)In = 0.
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1905 CCINP MP 2018

Soit x un nombre réel et Ex l’ensemble des matrices M ∈ Mn(C) vérifiant l’égalité
M2 +M + xIn = 0.

1. Si x ̸= 0, montrer qu’une matrice M ∈ Ex est inversible et exprimer son inverse.
Quelles sont les matrices inversibles appartenant à E0 ?

2. Trouver α réel tel que, si x < α, alors M ∈ Ex est diagonalisable dans Mn(R).
3. Ici, x = −2. Déterminer l’ensemble T des traces des éléments de Ex. Quel est

son cardinal ?

1906 TPE/EIVP PC 2018

Soit E = R2[X]. Pour tous P,Q ∈ E, on pose :

⟨P,Q⟩ = P (0)Q(0) + P (1)Q(1) + P (2)Q(2).

1. Montrer que ⟨·, ·⟩ est un produit scalaire sur E.
2. Calculer la distance entre le polynôme X2 et le sous-espace vectoriel R1[X].

1907 TPE/EIVP MP 2018

Soit
f : Mn(R) −→ Mn(R)

X 7−→ XT −X

L’endomorphisme f est-il diagonalisable ?

1908 Mines-Ponts PC 2022

Soit A ∈ M3n(R). On suppose que A3 = 0 et que rang(A) = 2n.
Montrer qu’il existe P ∈ GL3n(R) telle que :

P−1AP =

 0 0 0
In 0 0
0 In 0

 .

1909 CCINP PSI 2022

Soit f, g des endomorphismes de R3 tels que f = g ◦ g. On note B la base canonique
de R3.

On suppose que A = (f)B
B =

1 0 0
0 2 1
1 1 2

.

1. L’endomorphisme f est-il diagonalisable ?
2. Soit e1 et e3 des vecteurs propres de f associés respectivement aux valeurs

propres 1 et 3. Montrer que g(e1) et g(e3) sont aussi des vecteurs propres de f
associés respectivement aux valeurs propres 1 et 3.

3. Montrer que e1 et e3 sont aussi des vecteurs propres de g.
4. L’endomorphisme g est-il diagonalisable ?
5. Quelles sont les valeurs propres possibles de g ?
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1910 Mines-Ponts MP 2018

Étudier les classes de similitude de M3(R).

1911 Mines-Télécom MP 2022

Soit E un espace vectoriel de dimension n muni du produit scalaire ⟨·, ·⟩, et a un vecteur
normé de E. Soit α ∈ R et fα : x 7→ x+ α⟨a, x⟩a, endomorphisme de E.

1. Montrer que :
∀(α; β) ∈ R2, fα ◦ fβ = fα+β+αβ.

2. Déterminer les α tels que fα soit bijectif.
3. Trouver les valeurs propres de fα.

1912 CCINP PSI 2023

Soit A ∈ Mn(R) une matrice qui vérifie la relation :

A3 + 9A = 0 (1)
1. Montrer que le spectre de A est inclus dans {0; 3i; −3i}.
2. La matrice A est-elle diagonalisable dans Mn(C) ?
3. La matrice A est-elle diagonalisable dans Mn(R) ?
4. On suppose n impair. Montrer que A n’est pas inversible.
5. Montrer que si A est une matrice symétrique réelle non nulle, alors elle ne vérifie

pas la relation (1).

1913 Mines-Ponts MP 2021

Soit E = C∞(R,R) et u l’application qui à f de E associe x 7→ f(px+q), avec p ∈ ]0 ; 1[
et q = 1 − p.

1. Montrer que u est un automorphisme de E.
2. Montrer que les valeurs propres de u sont dans ] − 1 ; 1].
3. Montrer que si f est un vecteur propre, alors il existe k ∈ N tel que f (k) = 0.
4. Trouver les valeurs propres de u et les vecteurs propres associés.

1914 CCINP MP 2023

Soit
f : M2(R) −→ M2(R)(

a b
c d

)
7−→

(
d 2b
2c a

)
1. Montrer que f est un endomorphisme.
2. Redéfinir la base canonique de M2(R). Écrire la matrice de f dans cette base.
3. Donner les éléments propres de f .
4. L’application f est-elle inversible ? Est-elle diagonalisable ? Si c’est le cas, expri-

mer la matrice de f dans la base canonique en fonction d’une matrice diagonale.
5. Pour n ∈ N, définir fn.
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1915 Mines-Ponts MP 2022

Soit n ∈ N. On note En l’ensemble des f ∈ C∞(R,R) telles que
n∑

k=0

(
n

k

)
f (k) = 0.

1. Montrer que En est un espace vectoriel.
2. Donner la dimension de En.
3. Donner une base de En.

1916 Mines-Ponts MP 2023

Soit F ⊂ Mn(C) une partie non vide stable par produit.
Montrer qu’il existe A ∈ F telle que Tr(A) ∈ {0; . . . ;n}.

1917 Centrale-Supélec PSI 2023

Soit A =

 3 −1 1
2 0 1

−1 1 2

 ∈ M3(R).

1. Montrer que A admet une valeur propre simple notée b et une valeur propre
double notée a. La matrice A est-elle diagonalisable ?

2. Soit f : R → R de classe C1 sur R. Montrer qu’il existe un unique polynôme P
de degré 2 tel que :

P (b) = f(b), P (a) = f(a), P ′(a) = f ′(a).

On note Pf ce polynôme.

3. Donner Pf dans le cas où f est l’application x 7→
x

2, puis x 7→
x

3.

1918 CCINP MP 2023

1. Soit A =
(

0 b
a 0

)
avec a, b ∈ R.

Démontrer que la matrice A est diagonalisable sur R si et seulement si ou bien
ab > 0, ou bien a = b = 0.

2. On note u l’endomorphisme de Rn dont la matrice dans la base (e1; . . . ; en), de
taille n, est : 

an

0 . . .
. . .

. . . 0
a1


avec n pair.
(a) Donner les sous-espaces vectoriels u-stables de dimension 2.
(b) Montrer que u est diagonalisable si et seulement si

ai = an+1−i = 0 ou aian+1−i > 0 pour tout i ∈ [[1 ;n]].

385



1919 CCINP MP 2021

On se place dans M2(R). On note :

A =
(
a11 a12
a21 a22

)
et B =

(
b11 b12
b21 ab2

)
.

On pose également :

Ã =
(
a11I2 a12I2
a21I2 a22I2

)
et B̃ =

(
B 02
02 B

)
.

On suppose A et B diagonalisables. Si
(
x1
x2

)
est un vecteur propre de A et

(
x′

1
x′

2

)
un

vecteur propre de B, on pose :

U1 =


x1
0
x2
0

 , U2 =


0
x1
0
x2

 , V1 =


x′

1
x′

2
0
0

 , V2 =


0
0
x′

1
x′

2

 .

1. Montrer que U1 et U2 sont des vecteurs propres de Ã et que V1 et V2 sont des
vecteurs propres de B̃.

2. Montrer que W = x1V1 + x2V2 est vecteur propre de Ã et de B̃.
3. Comment former une base de R4 avec des vecteurs propres communs à Ã et à
B̃ ?

4. La matrice M =
(
a11B a12B
a21B a22B

)
est-elle diagonalisable dans M4(R) ?

1920 Mines-Télécom MP 2021

Soit E = C[X]. Pour tout P ∈ E, on pose :

T (P ) = (−3X + 8)P + 5(X2 +X)P ′ − 2(X3 −X2)P ′′.

1. Soit P ∈ E de degré n. Déterminer le coefficient de Xn+1 de T (P ). En déduire
que les vecteurs propres éventuels de T sont tous de même degré.

2. Montrer que C3[X] est stable par T . On note alors T3 l’endomorphisme induit
par T sur C3[X]. Déterminer la matrice de T3 dans la base canonique de C3[X].

3. La matrice T3 est-elle diagonalisable ? inversible ?
4. On note :

(E) : 2(x3 − x2)y′′ − 5(x2 + x)y′ + (3x+ 14)y = 0.
(a) Déterminer les solutions polynomiales de (E) sur R.
(b) Comment peut-on trouver des solutions non polynomiales de (E) sur ]0 ; 1[ ?

1921 Mines-Ponts MP 2021

Soit S ∈ Sn(R) une matrice symétrique dont les coefficients diagonaux sont nuls et D
une matrice diagonale non nulle. Montrer que S+D est semblable à D si, et seulement
si, S est nulle.
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1922 Mines-Télécom MP 2021

Soit n ∈ N. Soit f, g ∈ L(Cn) tels que f ◦ g = 0 et f + g soit bijective.
Montrer que rang(f) + rang(g) = n.

1923 Mines-Télécom MP 2021

Soit
ϕ : Mn(R) −→ L(Mn(R),R)

A 7−→ M 7→ Tr(AM)
Montrer que ϕ est un isomorphisme.

1924 Mines-Ponts PSI 2016

Soit
f : Rn[X] −→ Rn[X]

P 7−→ (X2 +X)P (1) + (X2 −X)P (−1)
1. Déterminer des bases de Ker(f) et Im(f).
2. Trouver les éléments propres de f .
3. L’endomorphisme f est-il diagonalisable ?

1925 CCINP PC 2016

Soit E un espace vectoriel euclidien. Soit a et b des vecteurs de E avec a et b non nuls.
On considère :

f : E −→ E
x 7−→ x− ⟨a, x⟩b

1. Montrer que f est bijective si et seulement si ⟨a, x⟩ ̸= 1.
2. Si f est bijective, calculer f−1.

1926 Mines-Télécom MP 2016

Soit f la fonction définie sur R2[X] par :

f(a+ bX + cX2) = (2a+ c)(1 −X2) + (a+ b+ c)X.

1. Montrer que f est un endomorphisme de R2[X] et écrire sa matrice dans la base
canonique.

2. Quelles sont les valeurs propres de A ? La matrice A est-elle inversible ?
3. Trouver les vecteurs propres de A.
4. Déterminer le polynôme minimal de A.

1927 Mines-Télécom MP 2016

Soit A ∈ Mn(R) symétrique telle que A2014 = A2016.
1. Montrer que

∑
1⩽i,j⩽n

a2
ij = rang(A).

2. Ce résultat demeure-t-il vrai si A est seulement diagonalisable sur R ?
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1928 TPE/EIVP MP 2016

Soit u un endomorphisme d’un C-espace vectoriel et P ∈ C[X]. On note πu le polynôme
minimal de u.

1. Montrer que P (u) est inversible si, et seulement si, P et πu sont premiers entre
eux.

2. Montrer que si P (u) est inversible, alors P (u)−1 ∈ C[u].

1929 TPE/EIVP MP 2017

Soit t ∈ R et

A(t) =

 1 1 − t 1 − t
1 − t 1 1 − t
t− 1 t− 1 2t− 1

 .
1. La matrice A(t) est-elle diagonalisable ? Donner ses sous-espaces propres.
2. Résoudre le système :

x′(t) = x(t) + (1 − t)y(t) + (1 − t)z(t)
y′(t) = (1 − t)x(t) + y(t) + (1 − t)z(t)
z′(t) = (t− 1)x(t) + (t− 1)y(t) + (2t− 1)z(t)

1930 Centrale-Supélec MP 2017

1. On note E =
{(

−2x+ 3y −6x+ 6y
x− y 3x− 2y

) ∣∣∣ (x; y) ∈ C2
}

.

Montrer que E est un plan vectoriel d’éléments tous diagonalisables.

2. Soit A =
(
α 0
0 β

)
et B =

(
a b
c d

)
, avec α ̸= β.

On suppose que pour tout nombre complexe t, B + tA est diagonalisable.
Montrer que b = c = 0.

3. Si K est un corps, on note dn(K) la dimension maximale d’un sous-espace vecto-
riel de Mn(K) dont tous les éléments sont diagonalisables. Calculer d2(C), puis
dn(R).

1931 CCINP PSI 2017

Soit A =

1 2 0
0 3 0
4 0 −1

 ∈ M3(R).

1. Montrer que A est diagonalisable et donner ses valeurs propres.
2. Soit D la matrice diagonale portant les valeurs propres de A. Montrer que si

une matrice de M3(R) commute avec D, alors elle est diagonale.
3. Soit P (X) = X7 + 4X3 + 1. Trouver toutes les matrices M ∈ M3(R) telles que
P (M) = A.
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1932 Mines-Ponts MP 2017

Soit E un espace vectoriel euclidien et p, q deux projecteurs orthogonaux.
1. Montrer que p+ q admet des vecteurs propres.
2. Montrer que E peut se décomposer en somme directe de plans ou de droites

stables par p et q.

1933 CCINP MP 2019

Soit E un espace vectoriel euclidien de dimension n. Soit f un endomorphisme symé-
trique de E. On note a la plus petite valeur propre de f , b la plus grande.

1. Montrer que :
a∥x∥2 ⩽ ⟨x, f(x)⟩ ⩽ b∥x∥2.

2. Montrer que s’il existe un réel r tels que, pour tout x ∈ E, ⟨x, f(x)⟩ ⩽ r∥x∥2,
alors r ⩾ b.

3. Soit k un réel fixé. On pose :

A =



k 1 0 · · · 0
1 . . . . . . . . . ...
0 . . . . . . . . . 0
... . . . . . . . . . 1
0 · · · 0 1 k


∈ Mn(R).

Montrer que b ⩽ k + 2.

1934 CCINP MP 2019

Soit
Φ : R4[X] −→ R4[X]

P (X) 7−→ P (X) + 2X4P

(
1
X

)
1. Montrer que Φ est un endomorphisme de R4[X].
2. Déterminer les éléments propres de Φ.

1935 Mines-Télécom MP 2019

1. Montrer que l’ensemble E des suites

{(un)n∈N | ∃a ∈ R, ∀n ∈ N, un + un+2 = 2a}

est un espace vectoriel réel.
2. Montrer que Ψ : u 7→ (a;u0;u1) est un isomorphisme de E dans R3.

3. Montrer que les suites n 7→ 1, n 7→ cos
(
nπ

2

)
et n 7→ sin

(
nπ

2

)
forment une

base de E.
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1936 CCINP MP PSI 2019

Soit M ∈ On(R) telle que 1
3(In + 2M) ∈ On(R).

1. Montrer que pour tout x ∈ Rn, ⟨Mx, x⟩ = ∥x∥2.
2. Conclure sur M .

1937 Mines-Ponts MP 2019

On munit R[X] du produit scalaire ⟨f, g⟩ =
∑
n∈N

anbn, où f =
∑
n∈N

anX
n et g =

∑
n∈N

bnX
n.

On pose F = {P ∈ R[X] | P (1) = 0}.
1. Trouver F⊥ et vérifier que l’on n’a pas F ⊕ F⊥ = E.
2. Montrer qu’il n’existe pas de polynôme P tel que dist(1;F ) = ∥1 − P∥.

Indication : on pourra s’aider des polynômes définis par Pn = 1 −∑n
k=1

Xk

n
.

1938 ENS MP 2012

Soit p un nombre premier. Est-ce que toute matrice carrée à coefficients dans Z/pZ est
trigonalisable ?

1939 Mines-Ponts PC 2013

Soit deux formes linéaires indépendantes f1 et f2 de R4 dans R. Montrer qu’il existe
deux vecteurs x1 et x2 de R4 tels que f1(x1) = 1, f1(x2) = 0, f2(x1) = 0, f2(x2) = 1.

1940 Mines-Ponts MP 2013

Soit M une matrice de GL3(R) vérifiant MT = −M2. Que peut-on dire de M ?

1941 Mines-Ponts MP 2014

Soit
Φ : R[X] −→ R[X]

P 7−→ (X2 + 1)P ′′ − 2XP ′

On munit R[X] du produit scalaire :

⟨P,Q⟩ =
∫ 1

−1
P (x)Q(x)

√
1 − x2 dx.

1. Montrer que Φ est un endomorphisme symétrique.
2. Prouver qu’il existe une base orthonormée de vecteurs propres de Φ.
3. Prouver :

∀n ∈ N, ∃!Tn ∈ R[X], ∀θ ∈ ]0 ;π[, Tn(cos(θ)) = sin((n+ 1)θ)
sin(θ) .

4. Montrer que (Tn)n∈N est une base orthonormée de vecteurs propres de Φ.

1942 Mines-Ponts MP 2014

Soit A,B ∈ Mn(R) telles que AB = BA et det(A+B) > 0.
Montrer que, pour tout p ∈ N, det(Ap +Bp) > 0.
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1943 Mines-Ponts MP 2013

Soit A ∈ Sn(R). On suppose que tous ses coefficients sont égaux à 0 ou 1, et que

A2 =


α 1 · · · 1
1 . . . . . . ...
... . . . . . . 1
1 · · · 1 α

 .

Trouver des conditions sur n et α.

1944 Mines-Ponts MP 2014

Soit α, β, γ trois réels tels que α + β + γ = π. Calculer :∣∣∣∣∣∣∣∣∣∣
1 cos(α) tan

(
α
2

)
1 cos(β) tan

(
β
2

)
1 cos(γ) tan

(
γ
2

)
∣∣∣∣∣∣∣∣∣∣
.

1945 X PC 2023

Soit A,B ∈ Sn(R).
1. Montrer que Tr(eAeB) > 0.
2. Montrer que Tr(eA+B) ⩽ Tr(eAeB).

1946 Centrale-Supélec PSI 2015

Soit n un entier naturel supérieur ou égal à 2.
1. Soit M ∈ GLn(R). Montrer que MTM est inversible et symétrique, de spectre

inclus dans R∗
+.

2. Montrer qu’il existe une matrice orthogonale Ω et une matrice symétrique S à
valeurs propres strictement positives telles que M = ΩS.

3. Trouver Ω et S telles que M = ΩS lorsque :

M =

1 0 0
0 1 −

√
2

0
√

2 0

 .
4. Montrer qu’il existe une matrice orthogonale Ω′ et une matrice triangulaire T à

valeurs propres strictement positives telles que M = Ω′T .
5. Trouver Ω′ et T telles que M = Ω′T lorsque :

M =


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 .
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1947 Mines-Ponts MP 2014

On considère le système : M2 + In = 0
MMT = MTM

1. Résoudre le système dans Mn(R) pour n impair.
2. Résoudre le système dans Mn(R) pour n pair.

1948 Mines-Ponts MP 2015

Soit A ∈ Mn(R) une matrice diagonalisable.
1. Existe-t-il un polynôme P tel que P (A2) = A ?
2. Que dire pour P (Ak) = A, avec k impair ?

1949 CCINP MP 2016

Soit n ⩾ 2 entier, a ∈ R∗ et A ∈ Mn(R) dont tous les coefficients sont égaux à a.
1. La matrice A est-elle inversible ?
2. La matrice A est-elle diagonalisable sur R ?
3. Le polynôme Xn − (na)n−1X est-il un polynôme annulateur de A ?
4. Quel est le polynôme caractéristique de A ?

1950 Mines-Ponts MP 2016

Soit M une matrice symétrique de Mn(R) à valeurs propres positives. Montrer que :

n

√
det(In +M) ⩾ 1 + n

√
det(M).

1951 Mines-Télécom MP 2016

On considère l’endomorphisme

u : R[X] −→ R[X]
P 7−→ P (1)X + P (2)X2

Trouver les éléments propres de u.

1952 Mines-Télécom MP 2016

Trouver toutes les matrices M ∈ M4(R) vérifiant :

M2 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

1953 Mines-Ponts MP 2016

Soit A et B dans Mn(C) telles que AB = BA2. En supposant que A admet des valeurs
propres de module différent de 1, montrer que A et B ont au moins un vecteur propre
commun.
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1954 TPE/EIVP PSI 2017

Soit A,B,C ∈ Mn(R) telles que :

C = A+B, C2 = 2A+ 3B, C3 = 5A+ 6B.

Les matrices A et B sont-elles diagonalisables ?

1955 ENSEA/ENSIIE MP 2018

On considère les deux matrices suivantes :

A =
(

cos(α) − sin(α)
sin(α) cos(α)

)
et B =

(
cos(α) sin(α)
sin(α) − cos(α)

)
.

1. On se place dans C. Déterminer si A est diagonalisable ou non.
2. Même question si on se place dans R.
3. Refaire les deux premières questions pour la matrice B.

1956 Mines-Télécom MPI 2025

Soit A ∈ S++
n (R) et B ∈ S+(R).

1. Montrer que la fonction f : X ∈ Rn 7→
XTBX

XTAX
admet un maximum M et un

minimum m.
2. Montrer qu’il existe V tel que A = V 2.
3. Montrer que la matrice A−1B est diagonalisable.

1957 CCINP MP 2022

On considère dans Rn deux vecteurs non colinéaires (a1; . . . ; an) et (b1; . . . ; bn).
1. Montrer que le système d’équations :a1x1 + · · · + anxn = 0

b1x1 + · · · + bnxn = 0

où (x1; · · · ;xn) est un vecteur inconnu de Rn, définit un espace vectoriel noté
F . Donner sa dimension.

2. Application :
Dans R4 muni du produit scalaire canonique, on note e = (e1; . . . ; e4) la base
canonique. Soit le système : x− y + z + tx = 0

x+ 2y + 2z − t = 0

(a) Donner une base orthonormale de F .
(b) Calculer dist(u;F ) lorsque u = e1 − e3 + 2e4.
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1958 ENS MP 2018

Soit σ une permutation de Sn et Pσ la matrice de permutation associée. Donner une
condition nécessaire et suffisante pour que Pσ soit diagonalisable dans Mn(R).

1959 Mines-Ponts MP 2019

Soit s une symétrie d’un espace vectoriel réel E. On considère :

Φ : E −→ E

f 7−→
1
2(s ◦ f + f ◦ s)

Déterminer les éléments propres de Φ.

1960 Mines-Ponts MP 2018

Soit A ∈ Mn(R) et SA l’ensemble des matrices semblables à A. Trouver l’ensemble des
matrices A ∈ Mn(R) telles que SA soit fini.

1961 CCINP TSI 2022

Reconnaître l’application linéaire de R3 associée à la matrice suivante :

M = 1
6

 5 2 −1
2 2 2

−1 2 5

 .
1962 Mines-Ponts MP 2019

Soit n ∈ N et A,B ∈ Mn(R). On suppose que AB = A+B.
Montrer que rang(A) = rang(B).

1963 Mines-Ponts MP 2018

Soit N un opérateur nilpotent. Comparer Ker(N) et Ker(exp(N) − Id).

1964 X MP 2015

Soit L un endomorphisme de Mn(R). Montrer que L est un morphisme d’algèbre qui
conserve la transposée si et seulement s’il existe U ∈ On(R) tel que L(X) = UTXU .

1965 Mines-Ponts MP 2017

Soit n ∈ N∗. On considère deux matrices A et B de Mn(C) telles que Ker(A) = Im(A)
et Ker(B) = Im(B). Montrer que A et B sont semblables.

1966 CCINP MP 2025

Soit A =

1 0 0
2 3 1
4 −4 −1

.

1. Trouver le polynôme caractéristique et les valeurs propres de A.
2. La matrice A est-elle diagonalisable dans Mn(R) ? dans Mn(C) ?
3. Trouver une matrice triangulaire T semblable à A.
4. Quelle est la limite de An

n! quand n → +∞ ?

394



1967 Mines-Télécom MP 2025

Résoudre l’équation matricielle suivante d’inconnue M ∈ Mn(R) :

M(MTM)2 = In.

1968 Mines-Télécom MP 2025

On note u = (un)n∈N∗ ∈ RN∗ . Soit φ : u 7→ v définie par :

∀n ∈ N∗, vn = 1
n

n∑
k=1

uk.

1. Montrer que φ est un automorphisme de RN∗ . Que peut-on dire de son spectre ?
2. Déterminer les valeurs propres de φ.

1969 Mines-Télécom MP 2025

Soit Mn(R) muni du produit scalaire canonique et A ∈ Sn(R). Montrer que ∥A∥2 est
égal à la somme des carrés des valeurs propres de A.

1970 CCINP MP 2025

Soit A ∈ Mn(R) telle que ATA = AAT et A2 = −In.
1. Calculer Tr(A).
2. Montrer que (ATA)2 = In.
3. Montrer que ATA est symétrique, et en déduire que A est orthogonale.

1971 CCINP MP 2018

Soit A ∈ Mn(C).
1. Montrer que si A est diagonalisable, alors A2 l’est aussi.

2. Montrer que la réciproque est fausse à l’aide la matrice A =
(

0 1
0 0

)
.

3. Donner une condition nécessaire et suffisante faisant intervenir un polynôme
annulateur pour que A soit diagonalisable.

4. On suppose que A et A2 sont diagonalisables. Montrer que Ker(A) = Ker(A2).
5. On suppose que A2 possède n valeurs propres distinctes. Montrer que A est

diagonalisable.
6. On suppose que A2 est diagonalisable et que A est inversible. Montrer que A

est diagonalisable.

1972 ENS MP 2017

Soit A et B deux matrices de Mn(C). Montrer qu’il existe une base (e1; . . . ; en) de Cn

et une permutation σ de Sn telles que :

• A soit triangulaire dans la base (e1; . . . ; en) ;
• B soit triangulaire dans la base (eσ(1); . . . ; eσ(n)).
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1973 Mines-Ponts

Soit E un K-espace vectoriel. Une involution de L(E) est un endomorphisme f ∈ L(E)
tel que :

f ◦ f = IdE.

1. Soit a et b deux automorphismes de L(E) vérifiant :

a ◦ b ◦ a = b et b ◦ a ◦ b = a.

Montrer que a2 = b2 et que a2 est une involution.
2. On suppose maintenant que la caractéristique de K est différente de 2.

Soit a et b deux involutions de L(E). Montrer que :

Im(a ◦ b− b ◦ a) = Im(a− b) ∩ Im(a+ b).

1974 Mines-Ponts MP 2014

On définit le produit scalaire hermitien sur Cn[X] :

⟨P,Q⟩ = 1
2π

∫ 2π

0
P (eit)Q(eit) dt.

On pose M(P ) = sup
|z|=1

|P (z)|.

1. Montrer que (1;X; . . . ;Xn) est une base orthogonale de Cn[X] pour ce produit
scalaire.

2. Soit Q = Xn +
n−1∑
k=1

bkX
k. Calculer ∥Q∥ et montrer que M(Q) ⩾ 1. Montrer qu’il

existe un unique polynôme unitaire Q tel que M(Q) = 1.
3. Soit maintenant P ∈ C[X] tel que P (0) = 1 et P (1) = 0.

Montrer que M(P ) ⩾
√

1 + 1
n

.

1975 Mines-Télécom MPI 2024

Soit X ∈ Mn×1(R) \ {0}. Démontrer que :

det(In +XXT ) = 1 +XTX.

1976 Mines-Ponts MPI 2023

On note J la matrice de Mn(R) dont tous les coefficients valent 1. Soit A ∈ Mn(R) à
coefficients positifs, de diagonale nulle, et telle que :

∀i, j ∈ [[1 ;n]], i ̸= j =⇒ aij + aji = 1.

1. Exprimer A+ AT en fonction de J et In.
2. Évaluer Ker(A) ∩ Ker(J).
3. En déduire que rang(A) ⩾ n− 1.
4. Existe-t-il un n ∈ N∗ tel que toute matrice vérifiant les propriétés de A soit

inversible ?
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1977 Mines-Télécom MPI 2023

Soit A =
1
4

3 0 1
0 4 0
1 0 3

 ∈ M3(R).

1. La matrice A est-elle diagonalisable ?
2. Calculer les valeurs propres de A.
3. On considère l’application

W : R −→ M3×1(R)
t 7−→ W (t)

telle que W ′ = AW .
Exprimer W en fonction de t et d’autres paramètres que l’on précisera.

1978 Mines-Télécom MPI 2025

Soit f : Mn(R) → R. Montrer l’équivalence entre :
i) ∀A,B ∈ Mn(R), f(AB) ⩽ min(f(A); f(B)) ;
ii) ∃φ : R → R croissante telle que f = φ ◦ rang.

1979 CCINP PSI 2024

Pour tout α ∈ C∗, soit A = (αi+j−2)1⩽i,j⩽n.
1. Si α ∈ R, montrer que A est diagonalisable.
2. Déterminer le rang de A. Quelles sont les valeurs propres de A ?

1980 Mines-Ponts PSI 2023

Pour tout (a; b; c) ∈ R3, on définit :

fa,b,c : R −→ R3

t 7−→

be
t + ce−t

2a− bet

a+ ce−t


Soit F = {fa,b,c | (a; b; c) ∈ R3}.

1. Montrer que F est un espace vectoriel, en donner une base et la dimension.
2. Déterminer B ∈ M3(R) vérifiant pour tout f ∈ F et tout t ∈ R, f ′(t) = Bf(t).

1981 Mines-Ponts PSI 2022

Soit E un espace vectoriel euclidien de dimension n. On souhaite montrer qu’il n’existe
pas de famille obtusangle de n+ 2 vecteurs, c’est-à-dire une famille {u1; . . . ;un+2} telle
que :

∀(i; j) ∈ [[1 ;n]]2, i ̸= j =⇒ ⟨ui, uj⟩ < 0.
1. Étudier les cas n = 1 et n = 2.
2. Établir la propriété par récurrence pour tout n.
3. Montrer qu’il existe une famille obtusangle de n+ 1 vecteurs.
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1982 Mines-Ponts PSI 2022

On note B la base canonique de R3, ⟨·, ·⟩ le produit scalaire sur R3 et ∧ le produit
vectoriel.
Soit

f : R3 −→ R3

x 7−→ ω ∧ x

où ω est un vecteur non nul de R3.
On pose P = Vect({ω})⊥. On rappelle que la formule du double produit vectoriel n’est
pas au programme et est donc à proscrire.

1. (a) Montrer l’existence d’un endomorphisme g induit par la restriction de f à
P .

(b) Montrer que det(g) > 0.
2. (a) Trouver tous les polynômes Q ∈ R[X], unitaires de degré 3, annulateurs de

f .
(b) Sans faire de calculs, exprimer χf , le polynôme caractéristique de f .

3. (a) Redémontrer la propriété du cours suivante pour φ ∈ L(E) : le polynôme
caractéristique d’un endomorphisme induit par φ divise χφ.

(b) Montrer-le dans le cas de f et g.

1983 X ESPCI 2019

Soit n ∈ N. Trouver les polynômes P ∈ R[X] tels que :

P (X + 1) − P (X) ∈ Vect({Xn}).

1984 X ESPCI 2018

Pour tout couple (P ;Q) d’éléments de Rn[X], on pose :

⟨P,Q⟩ =
∫ 1

−1

P (t)Q(t)√
1 − t2

dt.

1. Montrer que cette intégrale existe et qu’on a défini ainsi un produit scalaire sur
Rn[X].

2. Montrer l’existence d’une base orthonormale {P0; . . . ;Pn} de Rn[X] pour ce
produit scalaire telle que pour chaque i ∈ {0; . . . ;n}, la famille {P0; . . . ;Pi} soit
une base de Ri[X].

3. Soit i ∈ [[1 ;n]]. Montrer que le polynôme Pi est scindé, à racines simples, et que
toutes ses racines sont dans [−1 ; 1].

1985 X ESPCI 2017

Soit A =
(
a b
c d

)
, où (a; b; c; d) ∈ Z4.

On suppose que det(A) est impair. On considère (ε1; ε2; ε3; ε4) ∈ {−1; 1}4 et on pose

Aε =
(
aε1 bε2
cε3 dε4

)
. Montrer que la matrice Aε est inversible.
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1986 X ESPCI 2015

Soit A est une matrice carrée réelle. Montrer que A est antisymétrique si et seulement
si, quelle que soit P orthogonale, P−1AP est à diagonale nulle.

1987 CCINP PC 2024

Soit la matrice M ∈ M2n+1(R) définie par :

M =



0 · · · 0 1 0 · · · 0
... ... ... ... ...
0 · · · 0 1 0 · · · 0
1 · · · 1 1 1 · · · 1
0 · · · 0 1 0 · · · 0
... ... ... ... ...
0 · · · 0 1 0 · · · 0


.

1. Calculer M2.
2. La matrice M est-elle diagonalisable ?
3. Donner une valeur propre de M .

1988 Mines-Ponts

Soit M ∈ Mn(R). Montrer que l’on peut écrire M sous la forme M = A+S+ cIn, avec
A ∈ An(R), S ∈ Sn(R) avec Tr(S) = 0, et c ∈ R. Montrer, de plus, que :

Tr(M2) = Tr(A2) + Tr(S2) + 1
n

Tr(M)2.

1989 CCINP PSI 2019

Soit M ∈ Mn(C) telle que M2 +MT = In.
1. Montrer que, si P est un polynôme annulateur de M , alors les valeurs propres

de M sont forcément racines de P .
2. On suppose que M est symétrique. Montrer que M est diagonalisable et que

Tr(M) det(M) ̸= 0.
3. On ne suppose plus M symétrique. Montrer que M est diagonalisable.
4. Montrer que M est inversible si et seulement si 1 ne fait pas partie de son

spectre.

1990 CCINP MP 2022

Soit A et B deux matrices orthogonales de Mn(R) avec n ⩾ 2.
1. Que peut-on dire de A+B, de AB et de com(A) ?

2. On suppose de plus que
A+B

2 est orthogonale.

Calculer ATB +BTA. Montrer que toute matrice du segment [A ;B] est ortho-
gonale.
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1991 Centrale-Supélec MP 2022

Soit K un sous-corps de C et E un K-espace vectoriel de dimension finie.
1. Montrer que tout endomorphisme de E admet au moins un polynôme annula-

teur.
2. Soit p ∈ N, p ⩾ 2, et F1, . . . , Fp des sous-espaces vectoriels de E tels que :

E =
p⋃

k=1
Fk.

Montrer qu’il existe k0 ∈ [[1 ; p]] tel que Fk0 = E.

1992 Mines-Ponts MP 2025

Soit S ∈ S++
n (R).

1. Montrer qu’il existe une matrice A ∈ S++
n (R) telle que A2 = S.

2. Montrer que A−1 ∈ S++
n (R) et que (A−1)2 = S−1.

3. On note ⟨·, ·⟩ le produit scalaire canonique de Mn×1(R). Montrer que pour toute
matrice X ∈ Mn×1(R) on a :

⟨X,X⟩ ⩽ ⟨SX,X⟩⟨S−1X,X⟩.

4. Dans quel cas a-t-on l’égalité ?

1993 Mines-ponts

Soit n ∈ N∗ et ω = e 2πi
n . Soit encore Ω =

(
ω(i−1)(j−1)

)
1⩽i,j⩽n

∈ Mn(C).

1. Soit (a1; . . . ; an) ∈ Cn et :

A =



a1 a2 a3 · · · an

an a1 a2 · · · an−1
an−1 an a1 · · · an−2

... ... ... ...
a2 a3 a4 · · · a1

 ∈ Mn(C).

Calculer det(AΩ) et en déduire la valeur de det(A).
2. Soit θ ∈ R. Calculer :

∆n(θ) = det


cos(θ) cos(2θ) · · · cos(nθ)

cos(nθ) cos(θ) · · · cos((n− 1)θ)
... ... ...

cos(2θ) cos(3θ) · · · cos(θ)

 .

1994 CCINP TSI 2023

Soit A =
(

−5 9
−1 1

)
∈ M2(R). Calculer An.
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1995 CCINP MP 2022

On note E l’espace vectoriel des polynômes réels de degré au plus n. Soit F et G deux
polynômes de degré n+ 1. On considère f l’application de E dans E qui à P associe le
reste de la division euclidienne de FP par G.

1. Montrer que f est un endomorphisme.
2. L’application f est-elle un automorphisme ? (Discuter selon que F et G sont

premiers entre eux ou pas.)
3. Supposons que F ∧ G = 1 et que G soit scindé à racines simples. Quelles sont

les valeurs propres de f ? L’endomorphisme f est-il diagonalisable ?

1996 Centrale-Supélec MP 2021

1. Soit N ∈ Mn(C) nilpotente. Justifier l’existence de d = min{p ∈ N | Np = 0}.
2. Soit M ∈ Mn(C) nilpotente. Montrer que M2 − In est inversible et déterminer

son inverse en fonction de M .
3. On suppose maintenant que M ∈ Mn(C) vérifie :

M4 +M3 +M2 +M + In = 0.

Montrer que |Tr(M)| ⩽ n. Étudier les cas d’égalité.

1997 Centrale PC 2022

Soit n ⩾ 2 et A =


0 · · · 0 a1
... ... ...
0 · · · 0 an−1
a1 · · · an−1 an

 ∈ Mn(R).

1. Diagonaliser la matrice A.
2. Déterminer le polynôme caractéristique de A.

1998 CCINP MP 2023

Soit n ⩾ 2 entier. On munit Rn du produit scalaire usuel : pour x = (x1; . . . ;xn) et

y = (y1; . . . ; yn) dans Rn, on pose ⟨x, y⟩ =
n∑

i=1
xiyi.

Soit F = {x = (x1; . . . ;xn) | x1 = xn}.
1. Montrer que F est un hyperplan.
2. Trouver une base orthonormée de F .
3. Déterminer F⊥.
4. Écrire la matrice de la projection orthogonale sur F dans la base canonique de

Rn.
5. Calculer dist(e1;F ).

401



1999 Mines-Ponts MP 2025

Soit E un espace vectoriel euclidien et p un projecteur de E. Montrer que les deux
affirmations suivantes sont équivalentes :

i) p est orthogonal ;
ii) ∀x ∈ E, ∥p(x)∥ ⩽ ∥x∥.

2000 Mines-Télécom PSI 2023

Soit
ϕ : R3[X] −→ R4

P 7−→ (P (0);P ′(0);P (−1);P ′(−1))
1. Montrer que ϕ est linéaire.
2. Déterminer Ker(ϕ). L’application ϕ est-elle bijective ?
3. Exprimer M , matrice de ϕ dans la base canonique.
4. (a) Montrer que M est diagonalisable.

(b) Donner un polynôme annulateur de M .
(c) La matrice M est-elle inversible ? Si oui, donner son inverse.

5. (a) Montrer qu’il existe un unique polynôme Q tel que ϕ(Q) = (0; 1; 0; 1).
(b) Déterminer Q.

(c) En déduire la valeur de la somme
n∑

k=0
k2.

2001 X MP MPI 2024

La matrice
(

1 2024
0 1

)
peut-elle s’écrire

+∞∑
n=0

(−1)n

(2n+ 1)!A
2n+1 avec A ∈ M2(R) ?

2002 Mines-Ponts PSI 2023

Soit M ∈ M2(R) telle que M2 + 4I2 = 0 et MMT = MTM .

Montrer que
1
2M ∈ O2(R) et en déduire M .

2003 Mines-Ponts MP 2023

Soit E un espace vectoriel de dimension finie. Soit u un endomorphisme de E tel que
l’on ait Im(u2) = Ker(u3). Montrer que Im(u) = Ker(u4). Le résultat est-il toujours
vrai en dimension infinie ?

2004 CCINP MP 2025

Soit K le corps des réels ou des complexes. On considère la matrice

A =


1 a b c
0 1 d e
0 0 1 f
0 0 0 −1

 ∈ M4(K).

Donner une condition nécessaire et suffisante sur a, b, c, d, e, f pour que A soit diago-
nalisable. Dans l’hypothèse où A est diagonalisable, diagonaliser A.
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2005 Centrale-Supélec MP 2024

Soit A =



2 −1 0 · · · 0 −1
−1 2 −1 . . . 0
0 −1 . . . . . . . . . ...
... . . . . . . . . . −1 0
0 . . . −1 2 −1

−1 0 · · · 0 −1 2


∈ Mn(R).

1. (a) Montrer que toute matrice symétrique réelle admet des sous-espaces propres
orthogonaux. Énoncer le théorème spectral.

(b) Justifier que A est diagonalisable et que Sp(A) ⊂ R.
2. Montrer que Sp(A) ⊂ [0 ; 4].
3. Lister les éléments de Sp(A).

2006 CCINP MP 2024

Soit E = R3 muni du produit scalaire usuel noté ⟨·, ·⟩.
Soit u un vecteur unitaire de E et pour a dans R on pose :

fa : x 7−→ x+ a⟨x, u⟩u.

1. Montrer que fa est un endomorphisme de E.
2. (a) Montrer qu’il existe un unique a′ ∈ R∗ tel que :

∀x ∈ E, ∥fa′(x)∥ = ∥x∥.

(b) Montrer que Ker(fa′ + IdE) et Im(fa′ + IdE) sont supplémentaires dans E.
3. On se replace dans le cas général. Déterminer les éléments propres de fa.

2007 CCINP MP 2024

Soit M ∈ Mn(R) une matrice de rang 1.
1. Montrer que M = CL, où C une matrice colonne non nulle et L une matrice

ligne non nulle.
2. Soit A,B ∈ Mn(R) telles que rang(AB −BA) = 1. Calculer (AB −BA)2.

2008 ENS MP 2024

Soit n ⩾ 1 entier et In = {A ∈ Mn(R) | ∃λ ∈ Sp(A), Im(A) ⊂ Eλ(A)}.
1. Montrer que si A ∈ In, alors pour tout P ∈ GLn(R), on a P−1AP ∈ In.
2. Soit A,B ∈ In. Montrer que :

A semblable à B ⇐⇒ rang(A) = rang(B) et Tr(A) = Tr(B).
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2009 Centrale-Supélec MP 2019

Soit E un espace préhilbertien réel, F un sous-espace vectoriel de E.
1. Ici, E = R[X]. Pour tous P,Q ∈ R[X], soit

⟨P,Q⟩ = P (0)Q(0) +
∫ 1

0
Px)Q(x) dx.

(a) Montrer que ⟨·, ·⟩ est un produit scalaire.
(b) Montrer que F ⊂ (F⊥)⊥.

2. Soit F = {Q ∈ R[X] | Q(0) = 0}. Montrer que l’inclusion précédente est stricte.
3. Soit E = C([0 ; 1],R) avec comme produit scalaire :

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx.

Soit F l’ensemble des fonctions de E qui sont nulles sur
[
0 ; 1

2

]
. Montrer que

F ⊕ F⊥ ̸= E.

2010 CCINP MP 2019

Soit A =


0 a b c
a 0 c b
b c 0 a
c b a 0

 ∈ M4(R).

1. On cherche des vecteurs propres de la forme


1
ε1
ε2
ε3

 avec,

pour tout i ∈ {2; 3; 4}, |εi| = 1 et ε2ε3ε4 = 1.
Donner les éléments propres de A.

2. Que peut-on dire des sous-espaces propres de A ?
3. Donner χA.
4. Si a = b = c = 1, donner πA.
5. Si a = 1, b = 2 et c = 3, donner πA.
6. Donner une condition nécessaire et suffisante pour que deg(πA) = 4.
7. Donner une condition sur a, b et c pour que deg(πA) = 3.

2011 Mines-Télécom PSI 2019

Soit A et B deux matrices de M4(C) telles que A4 = B4 = I4 et AB +BA = 0.
1. Montrer que A et B sont diagonalisables.
2. Donner Tr(A) et Tr(B).
3. Donner les valeurs propres de A et B avec leur ordre de multiplicité.
4. Montrer que C = iAB est diagonalisable et déterminer ses valeurs propres.
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2012 Mines-Ponts MP 2019

Soit A ∈ Mn(C). On note A la matrice conjuguée de A. Montrer l’équivalence entre les
deux propriétés suivantes :

i) AA = In ;
ii) ∃S ∈ GLn(C) telle que A = SS

−1.
Indication : on pourra, pour une des implications, prendre ω ∈ C bien choisi et poser
S = ωA+ ωIn.

2013 Mines-Télécom MP 2022

Soit E un K-espace vectoriel non réduit à {0}. Soit f ∈ L(E) nilpotent d’ordre p.
1. L’application f est-elle injective ? surjective ?
2. On suppose que dim(E) = n et que p = n.

(a) Montrer qu’il existe x0 ∈ E tel que B = (x0; f(x0); . . . ; fn−1(x0)) soit une
base de E.

(b) Quelle est la matrice de f dans cette base B ? On note A cette matrice.
(c) La matrice A est-elle diagonalisable ?

3. On choisit E = Kn−1[X]. Donner un exemple de f dans L(E) nilpotent d’ordre
n, et d’une base telle que la matrice de f dans cette base soit la matrice A.

4. (a) Pour t ∈ R, calculer exp(t(In + A)).
(b) Résoudre : 

X ′(t) = X(t) + AX(t)

X(0) =


x0

x1
...

xn−1



2014 Mines-Ponts MP 2022

Soit E = {f ∈ C2([0 ; 1],C) | f(0) = f(1) = 0} et F l’ensemble des fonctions continues
sur [0 ; 1].

1. Montrer que ϕ : f 7→ f ′′ est un isomorphisme de E dans F .
2. Soit g ∈ F . On pose :

∀x ∈ [0 ; 1], G(x) =
∫ 1

0
|x− t|g(t) dt.

Montrer que G est de classe C2 et calculer G′′.
3. Déterminer une fonction continue k telle que :

ϕ−1(g)(x) =
∫ 1

0
k(x; t)g(t) dt.

4. Étudier l’existence et la valeur de sup
∥g∥∞⩽1

∥ϕ−1(g)∥∞.
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2015 CCINP PSI 2024

Étudier la diagonalisabilité de M =

1 0 1
0 1 0
1 0 1

 ∈ M3(R), puis de N =

a b a
b a b
a b a

 avec

a, b ∈ C.

2016 Centrale-Supélec PC 2016

Soit A ∈ M3×2(R) et B ∈ M2×3(R) telles que AB =

0 0 0
0 1 0
0 0 1

.

1. Montrer que AB est la matrice d’un projecteur.
2. Déterminer rang(A) et rang(B).
3. En déduire que BA = I2.

2017 Centrale-Supélec MP 2016

1. Soit P ∈ C[X] non constant et n ∈ N∗. Existe-t-il toujours M ∈ Mn(C) telle
que P (M) = 0 ?

2. Soit P ∈ R[X] non constant et n ∈ N∗. Existe-t-il toujours M ∈ Mn(R) telle
que P (M) = 0 ?

3. Soit P = X3 + X + 1. Donner une condition nécessaire et suffisante pour qu’il
existe M ∈ Mn(Q) telle que P (M) = 0.

2018 Mines-Ponts PC 2016

Soit A,B ∈ Mn(C) telles que AB = 0. Montrer que A et B ont au moins un vecteur
propre commun.

2019 Mines-Ponts MP 2017

Trouver dans Mn(R) et Mn(C) les implications entre les propositions suivantes :
i) Les matrices A et B sont diagonalisables et AB = BA ;
ii) pour tout λ ∈ K (K = R ou C), A+ λB est diagonalisable.

2020 Mines-Télécom MP 2017

Soit E un espace vectoriel réel. On définit un système générateur positif sur E par le
fait qu’il génère tous les éléments de E et que tous les éléments de E peuvent être
générés par ce système en utilisant uniquement des coefficients positifs. Montrer que si
dim(E) = n, le cardinal d’un système générateur positif est supérieur ou égal à n+ 1.

2021 Mines-Télécom MP 2017

1. Donner la définition d’un polynôme annulateur d’un endomorphisme.
2. Énoncer le théorème de Cayley-Hamilton.
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2022 Centrale-Supélec MP 2017

On note L l’espace vectoriel des suites réelles indexées par N∗. On introduit l’endomor-
phisme D : L → L qui réalise un décalage d’indexation : D(u)n = un+1.

1. Soit P ∈ R2[X]. Déterminer Ker(P (D)).
2. Soit d ∈ N∗ et P ∈ Rd[X] fixé. Soit (un)n∈N ∈ Ker(P (D)). Soit Q ∈ Rd[X] tel

que, pour tout i ∈ [[1 ; 2d]], Q(D)(u)i = 0. Montrer que (un)n∈N ∈ Ker(Q(D)).
3. Connaissant (u1; . . . ;u2d), proposer une méthode pour retrouver P .

2023 Mines-Ponts MP 2017

Soit a1, . . . , an des nombres complexes. Calculer le déterminant d’ordre n :∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1
1 a2

1 · · · an−2
1 an

1

1 a1
2 a2

2 · · · an−2
2 an

2
... ... ... ... ...
... ... ... ... ...
1 a1

n a2
n · · · an−2

n an
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Attention, ce n’est pas un déterminant de Vandermonde, il n’y a pas de colonne avec
des puissances n− 1.

2024 Centrale-Supélec MP 2017

On considère une fonction continue f de R dans R telle que toute matrice carrée d’ordre
n > 0 réelle inversible A = (aij), la matrice A = (f(aij)) soit également inversible.

1. Montrer que pour tous réels distincts x, y la matrice
(

1 1
x y

)
est inversible. En

déduire que f est injective.

2. On suppose que f est surjective. En considérant les matrices

1 0 1
0 1 1
x y z

 pour

x, y, z réels avec z ̸= x+ y, montrer que f(x+ y) = f(x) + f(y).
3. Montrer que f est surjective. Conclure quant à f .

2025 ENS MP 2019

Soit A ∈ Mn(Z). Montrer que soit le spectre de A contient un nombre complexe de
module supérieur à 1, soit il existe k ∈ N∗ tel que Ak − In soit nilpotente.

2026 CCINP PC 2019

Soit A ∈ Mn(R) vérifiant A2 = A et AT = A.
1. Montrer que rang(A) = Tr(A).

2. Montrer que
n∑

i=1

n∑
j=1

|aij| ⩽ n
√

rang(A).
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2027 Mines-Télécom PC 2019

Soit E un espace vectoriel de dimension finie, u un endomorphisme de E et A sa matrice
associée dans une base B.

1. Donner la définition de u est diagonalisable et donner la version matricielle de
cette définition.

2. Donner une caractérisation de u diagonalisable.
3. On suppose E = Rn, u diagonalisable et u4 = IdE. Montrer que u est une

symétrie vectorielle.
4. On donne Tr(u) = n− 2. Préciser le résultat précédent.

2028 Mines-Télécom PC 2019

Soit E = R3 muni de son produit scalaire usuel et u une isométrie vectorielle.
1. Définir une isométrie vectorielle.
2. Quelles sont les valeurs propres possibles de u ? Justifier.
3. L’isométrie u admet-elle nécessairement une ou plusieurs valeurs propres réelles ?

Justifier.

4. La matrice de u dans la base canonique est A =

1 0 0
0 0 1
0 1 0

.

Caractériser géométriquement u.

2029 ENSEA/ENSIIE MP 2013

Soit K la matrice définie de la façon suivante : pour tout (p; q) ∈ [[1 ;n]]2, le coefficient
Kp,q vaut e2iπpq. On définit K ′ la matrice dont les coefficients sont les conjugués de
ceux de K.

1. Calculer KK ′.
2. Montrer que K est inversible et donner son inverse.
3. Calculer |det(K)|.

2030 Centrale-Supélec PSI 2013

Soit A et B deux matrices non nulles de M3(C) telles que A2 = B2 = 0. Montrer que
A est semblable à B. Est-ce vrai en dimension 4 ?

2031 Centrale-Supélec PSI 2014

Soit A ∈ Mn(R) dont tous les coefficients valent exclusivement 1 ou −1.
1. Montrer que det(A) est un multiple de 2n−1.
2. Calculer det(A) pour A comprenant −1 dans la diagonale et 1 partout ailleurs.

2032 CCINP PC 2014

Soit n ⩾ 3 entier et A ∈ Mn(C). On suppose rang(A) = 2, Tr(A) = 0 et A − In non
inversible. Quel est le spectre de A ? La matrice A est-elle diagonalisable ?
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2033 Centrale-Supélec PSI 2014

Soit E = R3 muni du produit scalaire usuel. Soit f un endomorphisme de E tel que :

∀(x; y) ∈ E2, ⟨x, y⟩ = 0 ⇐⇒ ⟨f(x), f(y)⟩ = 0.

1. Montrer que f est inversible.
2. Montrer que l’image d’un plan est un plan.
3. Montrer que l’image d’une sphère est une sphère.
4. Montrer que pour tout (x; y) ∈ E2, il existe k ∈ R tel que ⟨x, y⟩ = k⟨f(x), f(y)⟩.

2034 Mines-Ponts 2016 PC

Soit A =


a 2 · · · 2
1 0 · · · 0
... ... ...
1 0 · · · 0

 ∈ Mn(R).

Déterminer les éléments propres de A.

2035 CCINP PC 2014

On considère l’ensemble

A2 =
{(

a −c
c b

) ∣∣∣ (a; b; c) ∈ R3
}
.

Le but de cet exercice est de prouver que toute matrice de M2(R) est semblable à un
élément de A2.
Dans tout l’exercice, on considère un élément M de M2(R) et on note f l’endomor-
phisme de R2 qui lui est canoniquement associé.

1. Démontrer la propriété attendue dans le cas où M est diagonalisable.

2. Dans cette question, on prend M =
(

0 0
1 0

)
.

(a) Prouver que M n’est pas diagonalisable.
(b) Trouver un vecteur e1 qui n’est pas dans le noyau de f .

On pose e2 = f(e1) − e1.
(c) Vérifier que (e1; e2) est une base de R2.
(d) Trouver une matrice de A2 semblable à M .

3. On se place dans le cas général où M n’est pas diagonalisable.
(a) Montrer qu’il existe un vecteur e1 de R2 tel que le couple (e1; f(e1)) soit une

base de R2.
(b) Montrer que la matrice de f relativement à cette base est de la forme

(
0 a
1 b

)
pour un certain couple (a; b) de R2.

(c) Montrer que le coefficient a est forcément négatif.
(d) Si a est nul, montrer que b l’est forcément aussi. Conclure dans ce cas.
(e) Traiter enfin le cas où a est strictement négatif.
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2036 Mines-Ponts PSI 2014

1. Soit E un espace vectoriel réel ou complexe de dimension finie. Pourquoi le rang
d’un projecteur est-il égal à sa trace ?

2. Soit A ∈ Mn(K) (avec K = R ou C) telle que Aq = In. Montrer que :

dim(Ker(A− In)) = 1
q

q−1∑
k=0

Tr(Ak).

2037 CCINP MP 2016

Soit E un espace vectoriel, u ∈ L(E) et P un polynôme admettant une racine simple,
tel que P (u) = 0. Montrer de deux manières différentes que Ker(u) = Ker(u2), dont
une utilisant le théorème de Bézout.

2038 Mines-Ponts MP 2016

Soit (a1; . . . ; an) ∈ Rn tel que
n∑

i=1
a2

i = 1.

Soit A = (aij) ∈ Mn(R) définie par aij = aiaj pour i, j ∈ {1; . . . ;n}.
1. Montrer que A est la matrice d’un projecteur orthogonal.
2. Montrer que In − 2A est la matrice d’une symétrique orthogonale.

2039 Mines-Télécom MP 2016

Soit f un endomorphisme d’un K-espace vectoriel E et a ∈ K∗ tel que :

f 3 − 3af 2 + a2f = 0.

Montrer que E = Ker(f) ⊕ Im(f).

2040 X MP 2016

Définissons pour A = (aij)1⩽i,j⩽n ∈ Mn(R) et B = (bij)1⩽i,j⩽n ∈ Mn(R) :

A ⋆ B = (aij · bij)1⩽i,j⩽n.

Montrer que si A et B appartiennent à S+
n (R), alors A ⋆ B appartient aussi à S+

n (R).

2041 CCINP PSI 2016

Montrer que les matrices réelles A =

3 −1 1
2 0 1
1 −1 2

 et B =

1 0 0
0 2 1
0 0 2

 sont semblables.

2042 Mines-Télécom MP 2017

Considérons la matrice A =

1 0 0
0 0 1
0 −1 2

 ∈ M3(R).

1. La matrice A est-elle diagonalisable ? La réduire.
2. Résoudre l’équation exp(M) = A, d’inconnue M ∈ M3(R).
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2043 Mines-Télécom MP 2017

Considérons H = {AB −BA | (A;B) ∈ Mn(R)2}.
1. Démontrer que l’application trace Tr : Mn(R) → R est une forme linéaire non

nulle.
2. Notons (Eij)i,j la base canonique de Mn(R). Calculer EijEkℓ.
3. Démontrer que pour tout (A;B) ∈ Mn(R)2, Tr(AB) = Tr(BA). En déduire que

Ker(Tr) = H.
4. Soit φ une forme linéaire sur Mn(R) vérifiant :

∀(A;B) ∈ Mn(R)2, φ(AB) = φ(BA).

Démontrer que {φ; Tr} est liée.
5. Déterminer un supplémentaire de Ker(Tr).

2044 Mines-Ponts PSI 2017

Soit A =
(

5 3
1 3

)
∈ M2(R).

1. Diagonaliser A.
2. On cherche les matrices M ∈ M2(R) solutions de l’équation :

(E) : M2 +M = A.

(a) Si M est solution de (E), montrer que Sp(M) ⊂ {−3; −2; 1; 2} et que M est
diagonalisable.

(b) Trouver toutes les solutions de (E).

2045 Centrale-Supélec PC 2017

Soit A ∈ Mn×p(R). On pose B = AAT et C = ATA. Soit λ un réel non nul. Montrer que
si λ est valeur propre de B, alors elle est valeur propre de C avec la même multiplicité.

2046 X ESPCI 2017

Soit n ∈ N∗, E un espace vectoriel de dimension n et (vi)i∈[[1;n]] une famille de vecteurs
de E. Montrer que dim(Vect({vi − vj | 1 ⩽ i, j ⩽ n})) ⩽ n− 1.

2047 Mines-Ponts MP 2017

Soit A et B des matrices symétriques réelles d’ordre n. On suppose que pour tout X
appartenant à Mn×1(R) \ {0}, XTBX > 0. Montrer que A+ iB est inversible.

2048 ENSEA/ENSIIE MP 2017

Soit A,B ∈ Mn(C). Montrer que :

χA(B) ∈ GLn(C) ⇐⇒ SpC(A) ∩ SpC(B) = ∅.

Dans Mn(R), l’équivalence est-elle conservée ?
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2049 Mines-Ponts MP 2017

On se place dans un espace préhilbertien réel. On définit, pour des vecteurs quelconques
e1, . . . , en, la matrice M des produits scalaires ⟨ei, ej⟩.

1. Montrer que :
det(M) ̸= 0 ⇐⇒ {e1; . . . ; en} est libre.

2. Montrer que :
0 ⩽ det(M) ⩽

n∏
i=1

∥ei∥2.

3. Étudier les cas d’égalité.

2050 Mines-Ponts MP 2017

Soit (a1; . . . ; an) ∈ Rn et (b1; . . . ; bn−1) ∈ (R∗)n−1. On pose :

A =



a1 b1

b1 a2 b2 0
b2

. . . . . .

. . . . . . . . .

0 . . . an−1 bn−1

bn−1 an


∈ Mn(R).

Montrer que A admet n valeurs propres distinctes.

2051 Mines-Télécom MP 2017

Soit E un espace vectoriel de dimension finie.
1. Donner la définition d’un sous-espace vectoriel stable par un endomorphisme u.
2. Soit F un tel sous-espace vectoriel. Que dire de la matrice de u dans une base

adaptée à E = F ⊕G (G étant bien évidemment un supplémentaire de F ) ?

2052 Mines-Ponts PC 2019

Soit M et N deux matrices de M2n+1(R). On suppose que MN est nulle et que M+MT

est inversible. Montrer que N +NT n’est pas inversible.

2053 TPE/EIVP PSI 2019

Soit
M : R −→ Mn(R)

t 7−→ M(t)

On suppose que M est de classe C1 sur R et que pour tout t ∈ R, M2(t) = M(0) = In.
1. Montrer que M(t) est diagonalisable pour tout réel t.
2. Montrer que MM ′ = −M ′M et M ′ = −MM ′M .
3. Montrer que l’application Φ : t 7→ Tr(M(t)) est constante sur R.
4. Déterminer M(t), pour t ∈ R.
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2054 CCINP PSI 2019

Soit f un endomorphisme de R3. Montrer que Ker(f 2) ⊕ Ker(f − 2Id) = R3.

2055 Mines-Ponts MP 2019

Soit A =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 ∈ M4(R).

1. La matrice A est-elle diagonalisable ? Calculer les puissances de A.
2. Trouver B telle que A = B2.

2056 Mines-Télécom MP 2019

Soit Pn l’ensemble des matrices de Mn(R) à coefficients dans {0; 1}, telles qu’il n’y
ait qu’un seul 1 par ligne et un seul 1 par colonne. Montrer que les matrices de cet
ensemble sont diagonalisables sur C.

2057 Mines-Ponts MP 2019

Soit A ∈ Mn(C). Montrer l’équivalence entre :
i) AA = In ;
ii) il existe S ∈ GLn(C) telle que A = SS

−1.

2058 Mines-Ponts MP 2018

Soit E un espace vectoriel de dimension n ∈ N∗, et f, g ∈ L(E).
1. On suppose qu’il existe h ∈ L(E) de rang r ⩾ 1 tel que h ◦ g = f ◦ h. Montrer

que χf et χg ont un facteur commun de degré r.
2. La réciproque est-elle vraie ?

2059 Mines-Ponts MP 2018

Soit E un espace préhilbertien. Soit (ei)i∈N∗ une suite d’éléments de E telle qu’il existe
une fonction f de N dans R vérifiant :

∀i, j ∈ N, ⟨ei, ej⟩ = f(|i− j|).

On pose :
∀n ∈ N∗, Mn = (⟨ei, ej⟩)1⩽i,j⩽n.

1. Montrer que Mn est inversible si, et seulement si, la famille {e1; . . . ; en} est libre.
2. On suppose Mn inversible et Mn+1 non inversible.

Montrer que la famille {e1; . . . ; er} est liée pour tout r ⩾ n+ 1.
3. On suppose Mn inversible et Mn+1 non inversible.

Montrer que er ∈ Vect({e1; . . . ; er−1}) pour tout r ⩾ n+ 1.
4. On suppose f(0) ̸= 0 et lim

n→+∞
f(n) = 0.

Montrer que Mn est inversible pour tout n ∈ N∗.
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2060 CCINP MP 2019

Soit M =


0 1 · · · 1
1 0 · · · 0
... ... ...
1 0 · · · 0

 ∈ Mn(R) et f l’endomorphisme associé.

1. Quel est le rang de M ?
2. Déterminer les valeurs propres et les sous-espaces propres de M .
3. Déterminer la matrice de la projection orthogonale sur l’image de f .

2061 Mines-Ponts MP 2018

Soit n un entier naturel supérieur ou égal à 2. Soit E l’ensemble des matrices A ∈ Mn(R)
telles que AT = A2+A−In. On appelle a l’endomorphisme de Rn canoniquement associé
à A.

1. Décrire a si A est symétrique, avec A ∈ E .
2. Décrire a si on ne suppose plus A symétrique, avec A ∈ E .

2062 CCINP PC 2018

On travaille dans l’espace E = Rn[X]. On définit un produit scalaire dans E par :

⟨P,Q⟩ =
∫ 1

−1
P (t)Q(t) dt.

On note ∥·∥ la norme associée.
Sur E on définit également :

φ(P ) =
∫ 1

−1
P (t) dt et fα(P ) = P + αφ(P )X.

1. (a) Montrer que φ est linéaire.
(b) On admet que fα est un endomorphisme de E. Pour cette question, on sup-

pose n = 3. Donner la matrice Aα de fα dans la base canonique de R3[X].
(c) Donner le spectre de fα. En déduire si fα est bijectif ou non. L’endomor-

phisme fα est-il diagonalisable ?
On définit l’endomorphisme gα sur E par gα(P ) = P + αφ(P ).

2. (a) Donner le rang de φ. Montrer que (Ker(φ))⊥ = R0[X].
(b) Donner le spectre de gα. L’endomorphisme gα est-il diagonalisable ? bijectif ?
(c) Montrer que ∥gα(P )∥ ⩽ (1 + 2|α|)∥P∥.
(d) En déduire qu’il existe M tel que :

M = sup
P ∈E,P ̸=0

(
∥g1(P )∥

∥P∥

)
.

Donner la valeur de M .
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2063 Mines-Ponts MP 2018

On note N l’ensemble des matrices complexes nilpotentes et T l’ensemble des matrices
complexes de trace nulle.

1. A-t-on Vect(N) = N ?
2. Montrer que Vect(N) ⊂ T .
3. A-t-on l’inclusion réciproque ?

2064 Mines-Ponts MP 2018

Soit E = R3 et A =


1 0 0
0 1

2 p

0 0 1
2

 ∈ M3(R).

On note f l’endomorphisme associé à A dans la base canonique de E.
1. Déterminer une condition sur p telle que l’on ait :

∀X ∈ M3(R), ∥AX∥2 ⩽ ∥X∥2.

2. Soit x ∈ E. Déterminer la limite éventuelle de
n∑

k=0
fk(x) quand n tend vers +∞.

2065 Mines-Télécom PC 2018

Soit A =
(

3 −4
2 −3

)
∈ M2(R). Calculer An pour tout n ∈ N.

2066 Mines-Ponts MP 2018

On identifie Mn×1(R) et Rn. Soit B ∈ Rn et A ∈ Sn(R) à valeurs propres strictement
positives. On définit f : Rn → R par la relation :

f(X) = XTAX − 2BTX.

1. Donner l’expression du gradient de f .
2. Montrer que f admet un minimum. Calculer ce minimum.

2067 Mines

Soit A,B ∈ Mn(R) et

M =
(
A+B A−B

A−B A+B

)
∈ M2n(R).

1. Donner une condition nécessaire et suffisante sur A et B pour que M soit inver-
sible.

2. Si M est inversible, calculer M−1.
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2068 CCINP PC 2018

Soit une matrice M ∈ M4(C), M = (C1 | C2 | C3 | C4) (Ci étant la ième colonne de M).
Montrer que :

det((C1 + C3 | C2 + C4 | C1 − C3 | C2 − C4)) = 4 det(M).

2069 CCINP PC 2018

On munit M2(R) du produit scalaire défini par ⟨M,N⟩ = Tr(MTN).
Pour tout x ∈ R, soit

A =
(

cosh(x) − 1 4
−2 sinh(x)

)
et B =

(
cosh(x) 3

6 − sinh(x)

)
.

1. A-t-on ⟨A,B⟩ = 0 ?
2. Montrer que l’espace des matrices symétriques et celui des matrices antisymé-

triques sont supplémentaires et orthogonaux dans M2(R).
3. Déterminer la distance de A à l’espace vectoriel des matrices symétriques.

2070 Mines-Télécom MP 2018

Soit (x; y; z) ∈ C3 et

A =

x
2 xy xz
xy y2 yz
xz yz z2

 .
1. Quel est le rang de A ?
2. Donner une condition nécessaire et suffisante pour que A soit diagonalisable.

2071 TPE/EIVP MP 2018

Soit E un espace euclidien de dimension 3 orienté et u un vecteur unitaire de E. On
définit l’application f de E dans E par f(x) = u ∧ (u ∧ x) pour tout x ∈ E.

1. Montrer que f est symétrique.
2. Déterminer les valeurs propres et les sous-espaces propres de f .

2072 Mines-Ponts PC 2024

Soit n ∈ N∗ et E un sous-espace vectoriel de Mn(R) ne contenant que des matrices
diagonalisables.

1. Montrer que dim(E) ⩽
n(n+ 1)

2 .

2. Quelle est la dimension maximale de E ?

2073 Mines-Ponts MP 2018

Soit E un espace vectoriel réel de dimension finie et u ∈ L(E).
1. On suppose que u3 = u2. Montrer que u2 est diagonalisable et que u − u2 est

nilpotent.
2. On suppose uk+1 = uk pour k > 0. Montrer qu’il existe un entier p tel que up

est diagonalisable et que u− up est nilpotent.
3. Conclure.
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2074 Mines-Ponts MP 2018

Soit n ∈ N∗.

1. Soit A =
{
M ∈ M2(C) | Mn =

(
1 0
0 2

)}
. Déterminer la dimension de Vect(A).

2. Soit B = {M ∈ M2(C) | M2 = I2}. Déterminer la dimension de Vect(B).

2075 Mines-Ponts MP 2015

Soit A =


x1 1 · · · 1
c

. . . . . . ...
... . . . . . . 1
c · · · c xn

 ∈ Mn(R) et J = (1) ∈ Mn(R).

On définit P (x) = det(A+XJ).
1. Majorer « fortement » le degré de P .
2. Que vaut det(A) ? (On distinguera les cas c ̸= 1 et c = 1.)

2076 CCINP MP 2012

Soit E un espace vectoriel réel de dimension 4, f un endomorphisme de E tel que
Ker(f − IdE) ̸= Ker((f − IdE)2), Ker(f) ̸= {0} et Tr(f) = 4.

1. Montrer que 0 et 1 sont valeurs propres de f et que f n’est pas diagonalisable.
2. Montrer l’existence d’un vecteur x0 ∈ Ker((f − IdE)2) \ Ker(f − IdE) tel que
F = Vect({x0; f(x0)}) soit un plan de E.

3. Montrer que 1 est valeur propre de multiplicité 2.
4. Montrer l’existence d’une base de E dans laquelle la matrice de f est

M =


2 0 0 0
0 0 0 0
0 0 1 1
0 0 0 1

 .

2077 Centrale-Supélec MP 2015

On considère l’ensemble

Un(C) = {M ∈ Mn(C) | MT
M = In}.

1. Soit u et v deux endomorphismes tels que u◦v = v ◦u. Montrer que tout espace
propre de l’un est stable pour l’autre.

2. Soit M ∈ Un(C) tel que MT = M . Montrer qu’il existe U et V symétriques
réelles telles que :
• M = U + iV
• UV = V U

• U2 + V 2 = In

3. Montrer qu’il existe une matrice S symétrique réelle telle que M = exp(iS).
4. Montrer que M ∈ Un(C) si et seulement s’il existe P orthogonale (réelle), S

symétrique réelle telle que M = P exp(iS).
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2078 Mines-Ponts MP 2013

Soit A ∈ Mn(R) fixée. On note :

φA : Sn(R) −→ Sn(R)
S 7−→ ASAT

Montrer que det(φA) = (det(A))n+1.

2079 Mines-Ponts PSI 2024

Soit A ∈ Mn(C). On suppose Tr(A) = 0, rang(A) = 2 et An ̸= 0.
Montrer que A est diagonalisable.

2080 CCINP PC 2017

Soit A une matrice réelle symétrique telle que A5 + A4 + A3 + A2 + A = 0.
1. Montrer que A est diagonalisable.
2. Soit λ une valeur propre de A. Montrer que λ5 + λ4 + λ3 + λ2 + λ = 0.
3. En déduire que A = 0.

2081 CCINP PSI 2022

Soit E un espace euclidien et f un endomorphisme de E. Soit encore z ∈ E.
1. Montrer que min

x∈E
∥f(x) − z∥ existe et expliquer la méthode de calcul.

2. Calculer min
X∈M3×1(R)

∥AX +B∥ avec :

A =

1 4 7
2 5 8
3 9 15

 et B =

1
1
1

 .

2082 Mines-Ponts MP 2016

On note J la matrice carrée de taille n dont tous les coefficients sont égaux à 1, et e
le vecteur de Rn dont toutes les composantes dans la base canonique sont égales à 1.
Soit M une matrice carrée symétrique de taille n telle que :

• Sur chacune de ses lignes, d coefficients sont égaux à 1 et les autres sont nuls.
• Ses coefficients diagonaux sont tous nuls.
• Pour tout i ̸= j : si mij = 0, alors il existe un unique k tel que mki = mkj = 1

et si mij = 1, alors il n’existe pas de tel k.
1. Quelles sont les valeurs propres de J ?
2. Écrire MJ , JM et M2 comme combinaison linéaire de M,J et In.
3. Montrer que Ker(M − dIn) = Im(J). En déduire une relation entre d et n.
4. Montrer que les valeurs propres de M autres que d sont racines du polynôme
X2 +X + 1 − d.
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2083 Mines-Ponts MP 2016

Soit E l’espace vectoriel des fonctions réelles continues sur le segment [0 ; 1], muni de
la norme uniforme. Soit u l’application définie sur E par :

u(f) =
∫ 1

2

0
f(t) dt−

∫ 1

1
2

f(t) dt.

1. Montrer que u est une forme linéaire continue sur E.

2. Montrer que sup
f ̸=0

|u(f)|
∥f∥

= 1, mais que cette valeur n’est pas atteinte.

2084 ENSEA/ENSIIE MP 2016

Soit P1 = X3 − 12X − 12 et P2 = X3 + 12X − 12.
1. Soit P ∈ R[X], α ∈ R et n ∈ N∗. Rappeler ce que signifie « α est racine de

multiplicité n de P » et donner une condition nécessaire et suffisante pour que
α soit racine de multiplicité n de P .

2. (a) Combien de racines réelles admet P1 ? Donner leur ordre de multiplicité.
(b) Soit M ∈ M3(R) telle que P1(M) = 0. La matrice M est-elle diagonalisable ?

3. Soit M ∈ M3(R) telle que P2(M) = 0. Montrer que M est diagonalisable si et
seulement si M est une matrice scalaire.

2085 CCINP PC 2017

Pour tout polynôme P de R[X], on pose :

f(P ) = P (X + 1) − P (X).

Pour tout entier n, on note fn l’endomorphisme de Rn[X] induit par f .
1. Donner la matrice de f3 relativement à la base canonique de R3[X].
2. Soit P ∈ Ker(f). Montrer que P−P (0) admet une infinité de racines. En déduire

Ker(f).
3. Déterminer le noyau et l’image de fn.
4. Prouver que f est surjectif.
5. Trouver tous les polynômes P tels que :

P (X + 1) − P (X) = X2.

6. En déduire une expression simple de
n∑

k=0
k2.

2086 X ESPCI

Soit n ∈ N impair. Montrer que −In n’est pas la somme de deux carrés de Mn(R).
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2087 Mines-Ponts MP

1. Soit E1, E2, E3 des espaces vectoriels de dimension finie.
Soit f ∈ L(E1, E2), g ∈ L(E1, E3) tels que Ker(f) ⊂ Ker(g).
Montrer qu’il existe h ∈ L(E2, E3) tel que g = h ◦ f .

2. On suppose ici E = Mn(R).
(a) Soit ϕ une forme linéaire de E. Montrer qu’il existe C ∈ E telle que :

∀M ∈ E, ϕ(M) = Tr(CM).

(b) Soit A une matrice nilpotente de E. Montrer qu’il existe C ∈ E telle que :

∀M ∈ E, Tr(AM) = Tr(C(AM −MA)).

En déduire que A = CA− AC.

2088 Centrale-Supélec PSI 2025

Soit E un espace euclidien, f ∈ L(E) bijective vérifiant pour tous x, y ∈ E :

⟨f(x), y⟩ = −⟨x, f(y)⟩.

On définit s = f ◦ f .
1. Montrer que s est un endomorphisme auto-adjoint.
2. Soit λ une valeur propre de s. Montrer que λ < 0. En déduire que la dimension

de E est paire.
3. Soit x un vecteur non nul appartenant au sous-espace propre relatif à λ. On

pose F = Vect({x; f(x)}). Montrer que F est un plan vectoriel stable par f et
que F⊥ est stable par f .

4. Montrer alors que dans une base orthonormale B bien choisie, (f)B
B =

(
0 −b
b 0

)
.

2089 Mines-Ponts MP 2017

Soit A ∈ Mp(R) et
∆ : M ∈ Mp(R) 7−→ AM −MA.

1. Montrer que ∆ est un endomorphisme de Mp(R) et que :

∀n ∈ N∗, ∀(M ;N) ∈ Mp(R)2, ∆n(MN) =
n∑

k=0

(
n

k

)
∆k(M)∆n−k(N).

2. Soit H ∈ Mp(R). On suppose que B = ∆(H) commute avec A. Montrer que
∆2(H) = 0 et que, pour tout n ∈ N∗, ∆n+1(Hn) = 0.

3. Montrer que ∆n(Hn) = n!Bn.
4. En déduire que B est nilpotente.
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2090 Mines-Télécom MP 2017

Soit U =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, V =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

, W =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 et A =


0 a b c
a 0 c b
b c 0 a
c b a 0


des matrices réelles.

1. Calculer U2. Déterminer les éléments propres de U .
2. Déterminer les éléments propres de V et W .
3. Montrer que l’on peut trouver une base de vecteurs propres commune à U, V et
W .

4. La matrice A est-elle diagonalisable ? Quels sont les éléments propres de A ? À
quelle condition nécessaire et suffisante A est-elle inversible ?

2091 Mines-ponts MP 2023

Soit n ∈ N∗. On pose N = A− In avec :

A =



1 1 0 · · · · · · 0
0 . . . . . . . . . 0 ...
... . . . . . . . . . . . . 0
... . . . . . . . . . 0
... 0 . . . . . . 1
0 · · · · · · · · · 0 1


∈ Mn(R).

1. Déterminer l’ensemble des matrices de Mn(R) qui commutent avec N .
2. Soit (E) : A = X2 d’inconnue X ∈ Mn(R).

(a) Montrer que si X est solution de (E), alors il existe des réels α1, . . . , αn−1
tels que :

X = ±



1 α1 α2 · · · · · · αn−1

0 . . . α1 α2
...

... . . . . . . . . . . . . ...

... . . . . . . . . . α2

... 0 . . . . . . α1
0 · · · · · · · · · 0 1


.

(b) Montrer qu’il existe au plus deux solutions de (E).
3. (a) Donner le développement limité au voisinage de 0 de

√
1 + x à la précision

o(xn).
(b) Résoudre (E).

2092 Mines-Ponts MP 2016

Soit M ∈ Mn(R). Montrer que M ∈ Sn(R) si, et seulement si, le polynôme caractéris-
tique de M est scindé sur R et si MTM = MMT .
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2093 CCINP PC 2024

Soit (a; b) ∈ R2 et

A =


a b a b
b a b a
a b a b
b a b a

 .
1. Déterminer le rang de la matrice A.
2. La matrice A est-elle diagonalisable ? Déterminer les valeurs propres de A.

2094 Mines-Ponts PSI 2016

Soit a, b ∈ R et

A =



a b 0 · · · 0 b
b a b 0 · · · 0
0 b

. . . . . . . . . ...
... 0 . . . . . . . . . 0
0 ... . . . . . . a b
b 0 · · · 0 b a


∈ Mn(R).

La matrice A est-elle inversible ?

2095 CCINP PSI 2016

Soit M =

a c b
c a+ b c
b c a

 ∈ M3(R).

1. Soit K =

0 1 0
1 0 1
0 1 0

 ∈ M3(R). Montrer que K est diagonalisable.

2. Montrer que M s’écrit en fonction de puissances de K.
3. Diagonaliser M .
4. En déduire Mn.

2096 Mines-Ponts PSI 2013

Soit f un endomorphisme de Cn.
1. Supposons que rang(f) = 2. Exprimer le polynôme caractéristique de f en

fonction de Tr(f) et Tr(f 2).
2. Supposons que rang(f) = 3. Exprimer le polynôme caractéristique de f en

fonction de Tr(f), Tr(f 2) et Tr(f 3).

2097 Centrale-Supélec PSI 2016

Soit Sn(R) l’ensemble des matrices symétriques réelles de taille n et S++
n (R) celui des

matrices symétriques réelles à valeurs propres strictement positives.
1. Énoncer le théorème spectral.
2. Soit A ∈ S++

n (R). Montrer qu’il existe B ∈ S++
n (R) telle que A = B2.

3. Soit M ∈ GLn(R). Montrer que MTM ∈ S++
n (R). Montrer alors qu’il existe O

orthogonale et S ∈ S++
n (R) tel que M = OS.
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2098 ENS 2025

Soit E un K-espace vectoriel de dimension finie n et u un endomorphisme de E. Montrer
que :

u est simple ⇐⇒ χu est irréductible dans K[X].

2099 CCINP PC 2015

Soit n un entier strictement positif, E = Rn muni de sa structure euclidienne canonique,
u un vecteur fixé de E, A une matrice symétrique de Mn(R) et φ l’endomorphisme de
E de matrice A dans la base canonique. On étudie la fonction f de E dans R qui à
tout vecteur x = (x1; . . . ;xn) associe f(x) = ⟨x, φ(x)⟩ − 2⟨x, u⟩.

1. Ici n = 2, A =
(

3 −1
−1 3

)
et u = (5; 1). Vérifier que :

f(x) = 3x2
1 + 3x2

2 − 2x1x2 − 10x1 − 2x2.

Montrer que X0 = (2; 1) est un point critique de f .
2. Avec les conditions de la question 1, soit h = (h1;h2). Montrer que

f(X0 + h) − f(X0) = ah2
1 + bh2

2 + ch1h2,

où a, b, c sont trois réels que l’on déterminera. En déduire que f admet un
extremum en X0.

3. On revient au cas général et on suppose de plus que pour tout x non nul de E,
⟨x, φ(x)⟩ > 0. Montrer que les valeurs propres de φ sont strictement positives.
En utilisant une base orthonormée de vecteurs propres de φ, montrer que f
possède un extremum que l’on précisera.

2100 CCINP PC 2019

Soit A ∈ Mn(C). On note :

∥A∥ = max
1⩽i⩽n

 n∑
j=1

|aij|

 et ρ(A) = max{|λ| | λ valeur propre de A}.

1. Déterminer la norme de ∥A∥ et ρ(A) lorsque A =
(

1 1 + i
0 eiθ

)
.

2. Montrer que ∥AB∥ ⩽ ∥A∥∥B∥ pour A,B ∈ Mn(C).
3. (a) Soit x un vecteur propre associé à la valeur propre λ. Montrer que :

|λxi| ⩽
n∑

j=1
|aijxj|

pour tout i ∈ [[1 ;n]].
(b) En déduire que ρ(A) ⩽ ∥A∥.

4. Montrer que la suite (Ak)k∈N converge vers la matrice nulle dans Mn(C) si et
seulement si ρ(A) < 1.

5. Montrer que ρ(A)k = ρ(Ak) pour tout k ∈ N∗.
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2101 CCINP PSI 2021

Soit H =

0 1 1
1 0 1
1 1 0

 ∈ M3(R).

1. La matrice H est-elle diagonalisable ?
2. Si (a; b) ∈ R2, on pose :

R(a; b) =

a b b
b a b
b b a

 ,
notée plus simplement R.
Exprimer R en fonction de H et I3. La matrice R est-elle diagonalisable ?

3. Pour tout n ∈ N, on pose un = Tr(Hn). Montrer que la suite (un)n∈N est à
valeurs entières et diverge.

4. Pour tout n ∈ N, on pose vn = Tr(Rn). Peut-on trouver a et b tels que la suite
(vn)n∈N converge ?

2102 CCINP PSI 2021

Pour tout m ∈ N, on définit :

Am =

−m− 1 m 2
−m 1 m
−2 m 3 −m

 .
1. Donner les valeurs propres et les sous-espaces propres de Am.
2. Donner, si existence, les valeurs de m telles que Am soit diagonalisable. Même

question pour l’inversibilité.
3. Si Am est diagonalisable, déterminer la matrice de passage P .

2103 CCINP MP 2015

1. Soit A ∈ Mn(R). Comparer det(A) et det(−A).
2. (a) Soit B ∈ Mn(R) antisymétrique. Discuter de la parité du polynôme caracté-

ristique de B.
(b) Retrouver le fait que si n est impair et B ∈ Mn(R) est antisymétrique, alors

det(B) = 0.

2104 Mines-Ponts MP 2017

Soit A,B ∈ Mn(C).
1. On suppose que 0 est la seule matrice qui vérifie AM = MB. Montrer que toute

matrice s’écrit de façon unique comme AN −NB.
2. On suppose que Sp(A) ∩ Sp(B) = ∅. Montrer que la seule matrice qui vérifie
AM = MB est la matrice nulle.

3. Est-ce encore le cas dans Mn(R) ?
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2105 Centrale-Supélec MP 2016

1. Donner le polynôme caractéristique de A ∈ M2(R) en fonction de sa trace et de
son déterminant.

2. Soit E l’ensemble des nombres premiers p tels que :

∃A ∈ M2(R), Ap + · · · + A = pI2.

Montrer à l’aide de A2 =
(

1 0
0 −2

)
et A3 =

(
−3 −2
3 1

)
que {2 ; 3} ⊂ E.

3. Montrer que pour tout p ∈ E et A associé, Xp+1−(p+1)X+p annule A. Montrer
que A est diagonalisable sur C et que 1 est sa seule valeur propre réelle.

2106 Centrale-Supélec MP 2017

On se donne un espace vectoriel de dimension finie E et u ∈ L(E). On considère les
deux propositions :

• (P1) : Il existe F et G deux sous-espaces vectoriels supplémentaires tels que
u(F ) ⊂ G et u(G) ⊂ F .

• (P2) : Il existe a et b des endomorphismes de E tels que u = a+b et a2 = b2 = 0.
1. Montrer que (P1) implique (P2).
2. On suppose ici que u est un automorphisme. Montrer que si (P2) est vérifiée

alors E = Ker(a) ⊕ Ker(b) = Im(a) ⊕ Im(b).
3. Montrer que (P2) implique (P1) dans chacun des cas suivants :

(a) u est un automorphisme ;
(b) u est nilpotent.

2107 CCINP PSI 2017

On se place dans Rn[X]. On définit le produit scalaire :

∀P,Q ∈ Rn[X], ⟨P,Q⟩ =
n∑

k=0
P (k)(1)Q(k)(1).

1. Justifier qu’il s’agit bien d’un produit scalaire.
2. Soit E = {P ∈ Rn[X] | P (1) = 0}. Montrer que E est un sous-espace vectoriel

et donner sa dimension.
3. Que vaut dist(1;E) ?

2108 CCINP MP 2017

Soit A =
1
4

 3 1
√

6
1 3 −

√
6

−
√

6
√

6 2

 ∈ M3(R).

1. Montrer que A est orthogonale.
2. Étudier la nature de A et ses éléments caractéristiques.
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2109 Mines-Ponts MP 2017

1. Déterminer une condition sur λ réel tel qu’il existe A une matrice antisymétrique
réelle vérifiant A2 = λIn.

2. Déterminer les matrices B symétriques réelles telles qu’il existe A une matrice
antisymétrique réelle vérifiant A2 = B.

2110 Mines-Ponts MP 2019

Résoudre l’équation eA = In pour A ∈ Mn(C).

2111 Mines-Télécom PSI 2018

L’endomorphisme f a pour matrice

 0 0 −1
−1 0 0
0 1 0

 dans une base orthonormée d’un

espace euclidien. Déterminer la nature de f .

2112 CCINP PC 2022

Soit (p; q) ∈ R2. On considère l’équation (E) suivante :

M2 + pM + qIn = 0

d’inconnue M ∈ Mn(R).
1. On pose ∆ = p2 − 4q. Vérifier l’identité :

M2 + pM + qIn =
(
M + p

2In

)2
− ∆

4 In.

On suppose désormais que ∆ > 0.
2. Montrer que résoudre (E) revient à résoudre l’équation Y 2 = In, d’inconnue
Y ∈ Mn(R).

3. Élever la matrice
(

0 1
1 0

)
au carré. En déduire une matrice de Mn(R) diagonale

par blocs mais pas diagonale, solution de Y 2 = In.
On considère une solution de (E), notée A, et on suppose que A n’est pas
colinéaire à In.

4. Soit (α; β) ∈ R2. On pose M = αA+ βIn.
(a) Montrer que l’égalité M2 = M équivaut au système suivant :α(2β − αp− 1) = 0

β2 − β − α2q = 0

(b) Montrer que ce problème a exactement quatre solutions.
Les matrices correspondantes différentes de 0 et de In sont notées U et V .

(c) Calculer les produits UV et V U . Commenter.
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2113 Mines-Ponts MP 2024

1. Trouver une condition nécessaire et suffisante sur A ∈ Mn(R) pour qu’il existe
S ∈ Sn(R) telle que A2 = S2 + S + In.

2. Déterminer A ∈ Mn(R) telle qu’il existe une unique matrice S ∈ Sn(R) telle
que A2 = S2 + S + In.

2114 CCINP PC 2018

Soit A =
(

−1 a
−a 3

)
∈ M2(R).

1. Pour quelles valeurs de a la famille {A;A2} est-elle liée ?
2. Pour quelles valeurs de a la matrice A est-elle diagonalisable ?

2115 CCINP PC 2018

Soit E un espace vectoriel tel que dim(E) = 2p+ 1 où p ∈ N. Soit encore f ∈ L(E).
1. Si λ est une valeur propre et x un vecteur propre associé, que vaut fn(x) ?
2. Supposons f 3 − f 2 + f − IdE = 0E. Justifier que f admet au moins une valeur

propre réelle et la donner.

2116 Centrale-Supélec PC 2022

Pour tout (α; β) ∈ [0 ; 1]2, on définit la matrice

A(α; β) =
(

1 − α α
β 1 − β

)
.

1. Étudier la convergence de la suite (A(α; β)p)p∈N.
2. Dans le cas de convergence, déterminer le rang de la matrice limite.

2117 CCINP PC 2022

Soit (a; b; c; d) ∈ R4. On pose A =

1 a b
0 1 c
0 0 d

.

Trouver une condition nécessaire et suffisante sur (a; b; c; d) pour que la matrice A soit
diagonalisable.

2118 CCINP PSI 2022

Soit A =

−1 3 −2
−3 5 −2
−3 4 −1

 ∈ M3(R).

1. Étudier la diagonalisabilité de A.
2. Résoudre le système différentiel suivant :

x′′ = −x+ 3y − 2z
y′′ = −3x+ 5y − 2z
z′′ = −3x+ 4y − z
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2119 Mines-Ponts

Soit K un corps commutatif fini à q éléments. Soit E un K-espace vectoriel et f ∈ L(E).
Montrer que f est diagonalisable si et seulement si f q = f .

2120 Mines-Ponts MP 2022

Soit E un C-espace vectoriel de dimension finie n ∈ N et u ∈ L(E).
1. Montrer que si u est de rang r, alors son polynôme minimal a un degré inférieur

ou égal à r + 1.
2. Dans le cas général, peut-on améliorer cette majoration ?

2121 Centrale-Supélec MP 2016

Soit P = X2 +αX+β un polynôme n’ayant pas de racine réelle, E un espace vectoriel
réel de dimension n, et f ∈ L(E) telle que P (f) = 0.
On cherche à prouver qu’il existe une base dans laquelle la matrice de f est

A 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 A



où A =
(

0 1
−β −α

)
.

1. Montrer que n est pair et que f n’admet pas de valeur propre.
2. Soit x ∈ E et y = f(x) + αx. On pose Hx = Vect({x; y}). Montrer que Hx est

stable par f .
3. Démontrer le résultat annoncé.

2122 Mines-Ponts MP 2019

Calculer :

lim
n→+∞


cos

(
1
n

)
sin

(
1
n

)

sin
(

1
n

)
cos

(
1
n

)


n

.

2123 CCINP MP 2019

Soit E un espace vectoriel réel de dimension n. Soit f ∈ L(E) de rang 1.
1. Montrer que Im(f) ⊂ Ker(f) si et seulement si f est non diagonalisable.
2. Donner un exemple concret d’une matrice à coefficients réels de taille 3 × 3 de

rang 1 qui ne soit pas diagonalisable. Justifier par une autre méthode qu’elle
n’est pas diagonalisable.
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2124 Mines-Ponts PC 2019

On considère une suite complexe (an)n⩾1 telle que a2 ̸= 0. Pour tout n ∈ N∗, on
introduit la matrice

An =



a1 a2 · · · · · · an

a2 0 · · · · · · 0
... ... . . . ...
... ... . . . ...
an 0 · · · · · · 0


et son polynôme caractéristique et noté χn.

1. Déterminer χ2 et χ3.
2. Montrer que χn est divisible par Xn−2.

3. On pose bn =
n∑

k=2
a2

k. Montrer alors que χn = Xn−2(X2 − a1X − bn).

4. Selon que bn est nul ou non, étudier la diagonalisabilité de An.

2125 Mines-Télécom PSI 2019

Soit A =

 2 0 1
1 1 0

−1 1 3

 ∈ M3(R).

1. Trouver les éléments propres de A.
2. La matrice A est-elle diagonalisable ?
3. Montrer que A est semblable à la matrice

T =

2 1 0
0 2 1
0 0 2

 .
4. Calculer T n puis An, pour tout n ∈ N.

2126 Mines-Ponts PC 2019

Soit T ∈ N∗. On note ET l’ensemble des suites réelles T -périodiques. On note σ l’en-
domorphisme (un)n∈N 7→ (un+1)n∈N de ET . Cet endomorphisme est-il diagonalisable ?

2127 Mines-Télécom MP 2019

Soit A ∈ S++
n (R) et B ∈ Sn(R). Montrer que AB est diagonalisable.

2128 ENS MP 2019

Soit X,Y ∈ Sn(R). Montrer que Tr(XYXY ) ⩽ Tr(X2Y 2).

2129 Mines-Ponts PC 2015

Soit f un endomorphisme de Rn avec rang(f) = rang(f 2).
1. Montrer que Rn = Ker(f) ⊕ Im(f).
2. Étudier la réciproque.
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2130 ENSEA/ENSIIE PSI 2015

Soit A =
(

2 1
1 2

)
∈ M2(R) et B =

A A A
A A A
A A A

.

Donner les valeurs propres de la matrice B.

2131 ENSEA/ENSIIE MP 2015

Soit A une matrice de Mn(R) telle que A2 + A+ 4In = 0.
1. Montrer que A ne peut pas avoir de valeurs propres réelles.
2. Montrer que n est nécessairement pair.
3. Trouver le déterminant et la trace de A.

2132 Centrale-Supélec MP 2015

Soit (α; β) ∈ C2. On définit :

An =



α + β 1 0 · · · 0
αβ

. . . . . . . . . ...
0 . . . . . . . . . 0
... . . . . . . . . . 1
0 · · · 0 αβ α+ β


∈ Mn(C).

1. Rappeler la forme des solutions de aun−2 + bun−1 + cun = 0 pour a ̸= 0.
2. Étudier l’inversibilité de An.
3. Étudier la diagonalisabilité de An dans C puis dans R.

2133 ENSEA/ENSIIE MP 2015

Soit M =

 1 2 4
−2 1 0
1 −1 −1

 ∈ M3(R).

1. Montrer que le polynôme caractéristique de M est (X − 1)2(X + 1).
2. La matrice M est-elle diagonalisable ?
3. Montrer que M est semblable à

A =

1 1 0
0 1 0
0 0 −1

 .
2134 Mines-Ponts MP 2015

Trouver l’inverse de 

1 2 · · · · · · n

0 . . . . . . ...
... . . . . . . . . . ...
... . . . . . . 2
0 · · · · · · 0 1


∈ Mn(R).

430



2135 Centrale-Supélec PC 2015

Soit n un entier supérieur à 3 et a ∈ R. On considère la matrice

An =



2 1 · · · · · · 1 a

1 . . . . . . ... ...
... . . . . . . . . . ... ...
... . . . . . . 1 ...
1 · · · · · · 1 2 ...
a · · · · · · · · · · · · a


∈ Mn(R).

Déterminer les éléments propres de An.

2136 CCINP MP 2015

Soit E un espace euclidien muni d’un produit scalaire ⟨·, ·⟩ et p un entier naturel, avec
p ⩾ 2. Soit e1, . . . , ep p vecteurs de E tels que, pour tous 1 ⩽ i, j ⩽ p, si i ̸= j, alors
⟨ei, ej⟩ < 0.

1. Pour 1 ⩽ i, j ⩽ p, comparer λiλj⟨ei, ej⟩ et |λi||λj|⟨ei, ej⟩.

2. Comparer
∥∥∥∥∥∥

p−1∑
k=1

λkek

∥∥∥∥∥∥
2

et
∥∥∥∥∥∥

p−1∑
k=1

|λk|ek

∥∥∥∥∥∥
2

.

Montrer que
p−1∑
k=1

λkek = 0E =⇒
p−1∑
k=1

|λk|ek = 0E.

3. Montrer que toute sous-famille de p−1 vecteurs extraite de {e1; . . . ; ep} est libre.

2137 Mines-Ponts

Soit E un C-espace vectoriel de dimension finie n ∈ N∗. Si (u; v) ∈ L(E)2, on note
[u, v] = uv − vu. soit f, g ∈ L(E)2.

1. On suppose qu’il existe α ∈ C∗ tel que [f, g] = αf .
(a) Calculer, pour tout p ∈ N∗, [fp, g] et en déduire que f est nilpotente.
(b) Montrer que f et g sont trigonalisables dans la même base.

2. On suppose qu’il existe (α; β) ∈ C∗2 tel que [f, g] = αf + βg. Montrer que f et
g sont trigonalisables dans une même base.

2138 X MP 2017

Soit f un endomorphisme de R[X] et deux polynômes A = α2X
2 + α1X + α0 et

B = β1X + β0. Pour tout P ∈ R[X], on pose :

f(P ) = AP ′′ +BP ′.

On suppose de plus que :
∀k ∈ N, α2 + β1 ̸= 0.

Montrer que f est diagonalisable.
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2139 X PC 2008

Soit n ∈ N∗. Résoudre dans M2(C) l’équation :

Xn =
(

1 1
0 1

)
.

2140 CCINP MP 2022

Soit E un espace vectoriel de dimension n ⩾ 2.
Soit B = (e1; . . . ; en) une base de E.
On note B′ = (ε1; . . . ; εn) la base B orthonormalisée selon le procédé d’orthonormali-
sation de Schmidt.

1. Rappeler le procédé de Schmidt ainsi que l’expression des εi en fonction de ei.

2. Prouver que (IdE)B′

B =
n∏

i=1
⟨ei, εi⟩.

3. Montrer que pour toute base B′′ orthonormale de E, on a :
∣∣∣det((IdE))B′′

B

∣∣∣ ⩽ n∏
i=1

∥ei∥ (∗)

4. Prouver que (∗) devient une égalité si et seulement si (IdE)B′′
B est diagonale.

2141 Centrale-Supélec MP 2021

Soit A ∈ M3(R) une matrice à coefficients strictement positifs tels que :

∀(i; j) ∈ [[1 ; 3]]2, aijaji = 1.

1. Déterminer le polynôme caractéristique de A.
2. On suppose que A n’est pas inversible. Étudier la réduction de A.
3. Établir une condition nécessaire et suffisante pour que A soit inversible.

Montrer que dans cette condition, A n’est pas diagonalisable dans R. L’est-elle
dans C ?

2142 Centrale-Supélec PSI 2021

Soit f un endomorphisme de R3. Sa matrice dans la base canonique est

A =


−2 1 −2
−8 13

3 −14
3

−4 5
3 −4

3

 ∈ M3(R).

Soit u =

 1
1

−1

, v =

0
2
1

 et w =

1
2
1

 trois vecteurs de R3. On note B = (u; v;w).

1. Montrer que B est une base de R3.
2. Écrire la matrice de f dans la base B.
3. Exprimer An pour tout n ∈ N.
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2143 Centrale-Supélec PC 2015

Soit E l’ensemble des fonctions de classe C∞ de R dans R et p ∈ ]0 ; 1[. On considère
l’endomorphisme u de E défini par :

u(f) : x 7−→ f(p(x− 1) + 1).

Déterminer les valeurs propres et les vecteurs propres de u.

2144 ENSAM PSI 2015

Soit A =

a b b
b a b
b b a

 ∈ M3(C).

1. Étudier la diagonalisabilité de A.
2. Déterminer ses sous-espaces propres.

2145 ENSAM PSI 2015

Soit m et p deux entiers tels que m ⩾ p ⩾ 1 et ∆(m; p) le déterminant suivant :

∆(m; p) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m
0

) (
m
1

)
· · ·

(
m
p

)
(

m+1
0

) (
m+1

1

)
· · ·

(
m+1

p

)
· · · · · · · · · · · ·(
m+p

0

) (
m+p

1

)
· · ·

(
m+p

p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Déterminer ∆(m; p+ 1).

2146 Mines-Télécom PC 2022

1. Rappeler la définition d’un endomorphisme diagonalisable et ses caractérisa-
tions.

2. Soit A ∈ M7(R). On suppose que SpC(A) = {2; i; −i}.
Trouver toutes les valeurs possibles pour la trace de A et le déterminant de A.

2147 Mines-Ponts PSI 2016

Soit M ∈ Mn(R) nilpotente, d’indice p, et telle que MTM = MMT .
1. Déterminer MTM .
2. Déterminer M .

2148 TPE/EIVP PC 2018

Soit A ∈ Mn(R) une matrice antisymétrique. La matrice M = A+In est-elle inversible ?

2149 CCINP PSI 2016

Soit A ∈ Mn(C) telle que Tr(A) = rang(A) = 1. Montrer que A2 = A.
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2150 CCINP PSI 2015

Soit D une matrice diagonale de Mn(R) à coefficients positifs ou nuls et H une matrice
de On(R). Montrer que Tr(HD) ⩽ Tr(D).

2151 CCINP PSI 2015

Soit P ∈ Mn(R) orthogonale. Trouver une majoration de la somme de ses coefficients
meilleure que n2.

2152 ENSAM PSI 2015

Étant donné un vecteur non nul u⃗ de R3, on note α = ∥u⃗∥. On considère

f : x⃗ 7−→ u⃗ ∧ x⃗

endomorphisme de R3.
1. Déterminer Im(f) et Ker(f). Calculer f ◦ f .

On rappelle que :
a⃗ ∧ (⃗b ∧ c⃗) = (⃗a · c⃗)⃗b− (⃗a · b⃗)c⃗.

2. Déterminer la matrice A de f et A2 dans la base canonique.
3. Déterminer fn en fonction de α, f et f 2.
4. Déterminer l’endomorphisme suivant :

exp(f) =
+∞∑
n=0

fn

n! .

2153 Mines-Ponts MP 2018

Soit E un espace euclidien et (yj)j∈J une famille de vecteurs telle qu’il existe A,B > 0
tels que :

∀x ∈ E, A∥x∥2 ⩽
∑
j∈J

⟨x, yj⟩2 ⩽ B∥x∥2.

1. Montrer que la famille (yj)j∈J est génératrice de E.
2. On considère dans cette question uniquement :

E = R2 et y1 = (1; 0), y2 =
(
−

√
3

2 ; −1
2

)
, y3 = y2.

Montrer que cette famille convient.
3. On suppose ici que A = B = 1 et que, pour tout j ∈ J , ∥yj∥ = 1. Montrer que

la famille (yj)j∈J est une base orthogonale de E.
4. On suppose seulement A = B. Montrer que :

∀x ∈ E, x = 1
A

∑
j∈J

⟨x, yj⟩yj.
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2154 Centrale-Supélec PSI 2022

On note I =
[
0 ; π

2

]
et E = C(I,R). On munit E du produit scalaire usuel :

⟨f, g⟩ =
∫ π

2

0
f(t)g(t) dt.

Pour f ∈ E, on définit deux fonctions A(f) et B(f) sur I en posant :

A(f)(x) =
∫ x

0
f(t) dt et B(f)(x) =

∫ π
2

x
f(t) dt.

1. Montrer que :
∀(f ; g) ∈ E2, ⟨A(f), g⟩ = ⟨f,B(g)⟩.

En déduire que les valeurs propres de B ◦ A sont toutes positives.
2. Montrer que :

∀f ∈ E, ∀x ∈ I, (A(f)(x))2 ⩽ x
∫ x

0
f(t)2 dt.

En déduire l’existence d’un réel K indépendant de f tel que ∥A(f)∥ ⩽ K∥f∥.
3. Montrer que A est un endomorphisme continu de E.

2155 TPE/EIVP PC 2017

Soit dans un espace vectoriel euclidien f telle que f(0) = 0 et pour tout couple de
vecteurs x, y, ∥f(x) − f(y)∥ = ∥x− y∥.

1. Montrer que f conserve la norme.
2. Montrer que f conserve le produit scalaire.
3. Montrer que f est linéaire.
4. Que peut-on conclure sur f ?

2156 Central-Supélec MP 2019

1. Montrer que deux polynômes de C[X] sont premiers entre eux si et seulement
s’ils n’ont pas de racine commune.

2. Soit A,B ∈ Mn(C).
(a) Montrer que B et BT ont les mêmes valeurs propres. On suppose que A et B

ont une valeur propre commune. Montrer qu’il existe C ∈ Mn(C) non nulle
telle que AC = CB.

(b) On suppose maintenant que A et B n’ont aucune valeur propre commune.
Montrer que la seule matrice complexe C telle que AC = CB est C = 0.

2157 X-ENS

Soit A ∈ Mn(C). Montrer que :

Sp(A) ⊂
n⋃

i=1

z ∈ C
∣∣∣∣ |z − aii| ⩽

n∑
j=1
j ̸=i

|aij|

 .
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2158 CCINP MP 2019

Soit M ∈ Mn(C). On note M̃ la transposée de la comatrice de M . On rappelle que :

MM̃ = M̃M = det(M)In.

1. Soit P ∈ GLn(C).
(a) Montrer que P̃ est inversible.
(b) Montrer que det(P̃ ) = det(P )n−1.
(c) Calculer ˜̃P .
(d) Trouver une relation entre P̃−1 = P̃−1.

2. Soit A,B ∈ GLn(C).
(a) Montrer que ÃB = B̃Ã.
(b) Soit P ∈ GLn(C) tel que B = P−1AP . Montrer que B̃ = P−1ÃP .

3. Soit A ∈ Mn(C).
(a) Montrer que si A est diagonalisable, Ã l’est aussi.
(b) La réciproque est-elle vraie ?

2159 Mines-Télécom MP 2021

Soit A et B deux matrices de Mn(R) telles que A et B commutent et B est nilpotente.
1. Démontrer que det(In +B) = 1.
2. Montrer que det(A+B) = det(A).

2160 Mines-Ponts PC 2015

Soit E l’ensemble des fonctions de classe infinie sur R et D l’opérateur de dérivation
sur E. On définit les quatre fonctions suivantes :

f1(x) = cosh(x), f2(x) = sinh(x), f3(x) = x cosh(x), f4(x) = x sinh(x).

Soit B = (f1; f2; f3; f4) et F = Vect(B).
1. Montrer que B est une base de F .
2. Montrer que D induit un endomorphisme d sur F .
3. Écrire la matrice A de d dans B.
4. Calculer A4 et trouver un polynôme annulateur de d.
5. La matrice A est-elle diagonalisable ?

2161 Mines-Ponts PC 2014

Soit A une matrice non nulle de M3(R). On suppose que A2 est la matrice nulle.
1. Que vaut la dimension de Ker(A) ?
2. Déterminer la dimension de {M ∈ M3(R) | AM +MA = 0}.
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2162 Mines-Ponts PC 2016

Montrer que

1 2 3
3 1 2
2 3 1

 ∈ M3(R) et AT sont semblables.

2163 Centrale-Supélec PC 2015

Soit a un nombre réel différent de 0, 1 et −1. On suppose que M et aM sont semblables.
1. Montrer que si x est une valeur propre de M , alors pour tout naturel k non nul,
xak est une valeur propre de M .

2. En déduire que M est nilpotente.

2164 ENSEA/ENSIIE

Trouver l’ensemble des matrices A ∈ Mn(R) diagonalisables sur R, vérifiant l’équation
A3 + A = 2In.

2165 ENS MP 2018

Soit (A;B) ∈ Mn(R)2 tel que AB = In. Montrer que BA = In.

2166 Mines-Télécom MP 2016

1. Donner le théorème du rang.
Soit f et g des endomorphismes de E.

2. On suppose que g ◦ f = 0. Montrer que rang(f) + rang(g) ⩽ n.
3. On suppose que g + f est bijective. Montrer que rang(f) + rang(g) ⩾ n.

2167 X MP 2016

Soit A ∈ Mn(C).
1. On suppose A3 = A2. Calculer exp(A).
2. On suppose A4 + A3 − 2A2 = 0. Calculer exp(A).

2168 CCINP MP 2016

1. Localiser les racines réelles de X3 −X − 1.
2. Soit A ∈ Mn(R) et χA(X) son polynôme caractéristique.

Calculer lim
x→+∞

χA(x), lim
x→−∞

χA(x) et χA(0).

3. On suppose A3 = A+ In. Montrer que det(A) > 0.

2169 Mines-Ponts MP 2015

Trouver toutes les matrices A ∈ Mn(R) vérifiant :(A+ In)7 − (A7 + In) = 0
Tr(A) = 0
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2170 CCINP PSI 2021

Soit C =


a1
...
an

 ∈ Mn×1(R) et M =
(1 −CT

C In

)
.

1. Calculer MTM .
La matrice M est-elle inversible ?

2. On pose N = (M−1)TM .
Montrer que N ∈ On+1(R).

2171 Mines-Télécom PSI 2021

Soit A =

a c b
b a c
c b a

 ∈ M3(C) et J =

0 1 0
0 0 1
1 0 0

 ∈ M3(C).

1. Exprimer A en fonction de J et J2.
2. Calculer le polynôme caractéristique de J . La matrice J est-elle diagonalisable ?
3. Diagonaliser A.

2172 TPE/EIVP PSI 2019

Soit

ϕ(a; b) =



a+ b ab

1 a+ b ab 0
. . . . . . . . .

. . . . . . . . .

0 1 a+ b ab

1 a+ b


∈ Mn(R).

1. Calculer le déterminant de ϕ(a; b).
2. Déterminer, pour (x; y; z) ∈ R3 tel que x2 = yz, le déterminant de

M =



2x z

y 2x z 0
. . . . . . . . .

. . . . . . . . .

0 y 2x z

y 2x


∈ Mn(R).

2173 CCINP PSI 2018

Soit E un K-espace vectoriel, f ∈ L(E) et p un projecteur de E. Montrer que p et f
commutent si et seulement si Ker(p) et Im(p) sont stables par f .
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2174 CCINP PSI 2018

Soit E un K-espace vectoriel et f ∈ L(E).
1. On suppose f surjective. L’application f 2 est-elle surjective ?
2. On suppose f 3 = f . Montrer que si f est injective, f est surjective.

2175 Mines-Ponts PSI 2015

On note E l’ensemble des fonctions continues sur R et E ′ l’ensemble des fonctions
continues et bornées sur R. Soit g une fonction continue de R dans R∗

+. Pour f ∈ E,
on note :

T (f)(x) = 1∫ x
0 g(t) dt

∫ x

0
f(t)g(t) dt.

1. Montrer que T (f) appartient à E, puis que T est un endomorphisme.
2. Déterminer les valeurs propres de T |E′ .

Quelle est la dimension des sous-espaces propres ?

2176 X

Soit A ∈ Mn(R) telle que A3 − 3A2 + 3A = 0.
Montrer que Tr(A) et det(A) sont des multiples de 3.

2177 X-ENS/Mines/Centrale

Soit A et B deux matrices de Mn(C). On considère l’application :

f : Mn(C) −→ Mn(C)
M 7−→ AM +MB

Quel est le spectre de f ?

2178 TPE/EIVP PSI 2015

Soit M ∈ M3(C) semblable à iM .
1. Soit λ une valeur propre de M . Montrer que iλ est aussi une valeur propre de

la matrice M .
2. Montrer que M est nilpotente (i.e. il existe k ∈ N tel que Mk = 0).

2179 Centrale-Supélec PC 2016

Soit A ∈ Mn(R). On pose :

λ = inf
M∈Sn(R)

∑
1⩽i,j⩽n

(aij −mij)2

1. Prouver l’existence de λ, puis le calculer.

2. On suppose que A =

1 0 α
0 1 0
0 0 1

.

Montrer de deux manières que lim
α→0

λ = 0.
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2180 Mines-Télécom PSI 2017

Soit A ∈ Mn(R) une matrice nilpotente telle que AAT = ATA. Montrer que A = 0.

2181 Mines-Télécom PSI 2016

On considère l’endomorphisme :

f : Rn[X] −→ Rn[X]
P 7−→ XP ′ + P

Déterminer det(f).

2182 CCINP PSI 2016

Soit A ∈ M2(R) telle que A2 = AT et A ̸= 0.
1. Trouver un polynôme annulateur de A.
2. On suppose que 0 appartient au spectre de A. Déterminer ce spectre.

3. Montrer que A est semblable à B =
(

1 0
0 0

)
avec une matrice de passage ortho-

gonale.

2183 Mines-Ponts MP 2015

Soit A ∈ Mn(C). On appelle classe de A l’ensemble :

{PAP−1 | P ∈ GLn(C)}.

On suppose que la classe de A est bornée.
1. On appelle matrice de dilatation toute matrice de la forme In + (λ − 1)Ei,i

avec λ ̸= 0. Montrer que A est diagonale en utilisant les matrices de dilatation.
Montrer que toutes les matrices appartenant à la classe de A sont diagonales.

2. En utilisant les matricesMi = In+Ei,i+1, montrer que A est une matrice scalaire.

2184 TPE/EIVP PC 2015

Soit f et g deux endomorphismes tels que f ◦ g ◦ f = f .
1. Montrer que f ◦ g et g ◦ f sont des projecteurs.

Montrer que Im(f) = Im(f ◦ g) et Ker(f) = Ker(g ◦ f).
2. Soit les propositions suivantes :

(P1) f ◦ g ◦ f = f

(P2) g ◦ f ◦ g = g

(P3) rang(f) = rang(g)

(a) Montrer que (P1) et (P2) entraînent (P3).
(b) Montrer que (P3) et (P1) entraînent (P2).

440



2185 Mines-Télécom PSI 2019

Soit E un espace vectoriel réel de dimension finie et f, g deux endomorphismes de E
vérifiant f ◦ g = f + g.

1. Montrer que Ker(f) = Ker(g) et Im(f) = Im(g).
2. On suppose que f et g sont diagonalisables. Montrer que f ◦ g est aussi diago-

nalisable et que Sp(f ◦ g) ⊂ R\]0 ; 4].

2186 ENSEA/ENSIIE PC 2014

Soit (E, ⟨·, ·⟩) un espace vectoriel normé euclidien de dimension n. Soit (ui)1⩽i⩽p une
famille de vecteurs de E telle que :

∀(i; j) ∈ [[1 ; p]]2, i ̸= j, ⟨ui, uj⟩ = −1.

On considère pour tout (u; v) ∈ E2 et pour tout (x; y) ∈ R2 :

⟨⟨(u; x), (v; y)⟩⟩ = ⟨u, v⟩ + xy.

1. Montrer que ⟨⟨·, ·⟩⟩ est un produit scalaire.
2. Que peut-on dire de la famille ((ui; 1))1⩽i⩽p ? En déduire une inégalité entre p

et n+ 1.

2187 Mines-Ponts MP 2019

Soit M ∈ M2(C). Établir l’équivalence :

M non diagonalisable ⇐⇒ M = D + T avec D scalaire et T nilpotente non nulle

Étudier les matrices X ∈ M2(C) telles que Xn =
(

1 1
0 1

)
.

2188 Mines-Ponts MP 2021

Soit E l’ensemble des fonctions continues de R dans R. Pour f ∈ E, on définit f̂ par :

f̂(x) =


1
x

∫ x

0
f(t) dt si x ̸= 0

f(0) si x = 0

1. Montrer que ϕ : f 7→ f̂ est un endomorphisme de E.
2. Déterminer les éléments propres de ϕ.
3. L’endomorphisme ϕn induit par ϕ sur Rn[X] est-il diagonalisable ?

2189 Mines-Ponts MP 2022

Soit n ⩾ 2 entier et α réel. On considère la matrice suivante :

A =
(
α|i−j|

)
1⩽i,j⩽n

.

Donner une condition nécessaire et suffisante pour que A soit inversible.
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2190 Mines-Ponts PC 2016

Soit E un espace vectoriel de dimension finie n, F et G deux sous-espaces vectoriels
de E. Montrer que F et G ont même dimension si et seulement s’il existe un sous-
espace vectoriel H de E tel que E = F ⊕ H et E = G ⊕ H, c’est-à-dire s’ils ont un
supplémentaire commun H.

2191 Mines-Ponts PC 2016

Soit f et g des endomorphismes d’un espace vectoriel de dimension finie. Montrer que :

dim(Im(f) ∩ Ker(g)) = rang(f) − rang(g ◦ f).

2192 Mines-Ponts Pc 2015

Soit K le corps des réels ou celui des complexes, A et B deux matrices de Mn(K).
Trouver la relation entre dim(Ker(AB)) et dim(Ker(A)) + dim(Ker(B)). Étudier le cas
d’égalité.

2193 Mines-Ponts PSI 2015

Soit A ∈ Mn(R) et ϕ : Rn × Rn définie par :

ϕ(X;Y ) =
∣∣∣∣∣ A X

Y T 0

∣∣∣∣∣ .
Trouver une condition nécessaire et suffisante sur A pour que ϕ soit un produit scalaire
sur Rn.

2194 Mines-Ponts PSI 2013

On considère le déterminant suivant :

det(A+ xB)

avec A et B deux matrices de Mn(R).
1. Quel type de fonction est-ce ? (sinus, exponentielle,. . .)
2. Déterminer le degré de ce déterminant.

2195 Mines-Ponts MP 2013

Soit A ∈ Mn(R) fixée. On considère :

φA : Sn(R) −→ Sn(R)
S 7−→ ASAT

Montrer que det(φA) = (det(A))n+1.

2196 ENS

Déterminer les matrices A ∈ Mn(R) vérifiant :

∀k ⩾ n, A+ Ak = AT .
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2197 Centrale-Supélec PSI 2014

Soit A =
(

1 1
−2 3

)
∈ M2(C) et ∥·∥ une norme sur M2(C).

Trouver le rayon de la convergence de la série entière
∑

∥An∥zn.

2198 Centrale-Supélec PSI 2014

Soit E un espace vectoriel et f un endomorphisme de E vérifiant :

(f − Id)3 ◦ (f − 2Id) = 0 et (f − Id)2 ◦ (f − 2Id) ̸= 0.

L’application f est-elle diagonalisable ?

2199 Mines-Ponts MP 2014

On considère M =

2 1 1
1 2 1
0 0 3

 ∈ M3(R).

Déterminer les sous-espaces vectoriels de R3 stables par M .

2200 X MP 2014

Soit (E, ∥·∥) un espace vectoriel réel normé. On note :

µ(E) = sup
(x;y)∈E2\{(0;0)}

∥x+ y∥2 + ∥x− y∥2

2(∥x∥2 + ∥y∥2) .

1. Montrer que 1 ⩽ µ(E) ⩽ 2.
2. Montrer que E est euclidien si et seulement si µ(E) = 1.

2201 X-ENS Cachan PSI 2016

On considère une matrice A ∈ Sn(R). On note :

p(A) = max
λ∈Sp(A)

|λ|.

1. Prouver que, pour tout k ∈ N∗, p(Ak) = p(A)k.
2. Montrer que l’application A 7→ p(A) définit une norme sur Sn(R).
3. Soit A,B ∈ Sn(R) telles que AB = BA.

(a) Montrer que AB ∈ Sn(R).
(b) Montrer que p(AB) ⩽ p(A)p(B).

4. Soit ∥·∥ une norme vérifiant :

∀A,B ∈ Sn(R), AB = BA =⇒ ∥AB∥ ⩽ ∥A∥∥B∥ (1)

Montrer que, pour tout A ∈ Sn(R), ∥A∥ ⩾ p(A).
(Autrement dit, p est la plus petite norme vérifiant la propriété (1).)
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2202 Centrale-Supélec MP 2014

Soit E un espace euclidien de dimension n. Trouver tous les vecteurs x ∈ E tels qu’il
existe une base orthonormée (e1; . . . ; en) de E telle que x =

n∑
i=1

ei.

2203 Mines-Ponts PSI 2015

On se donne deux matrices A et B de Mn(C) et on considère l’endomorphisme de
Mn(C) :

φ : M 7−→ AMB.

1. Montrer que :
φ = 0 ⇐⇒ A = 0 ou B = 0.

2. Montrer que :

φ est nilpotente ⇐⇒ A ou B est nilpotente.

3. Montrer que :

φ est diagonalisable =⇒ A et B sont diagonalisables.

4. Qu’en est-il de la réciproque ?

2204 Mines-Ponts PSI 2025

Soit φ0 : x 7→ e−x2 .
1. Montrer que pour tout n ∈ N, il existe un unique polynôme Hn ∈ Rn[X] tel

que :
∀x ∈ R, φ(n)

0 (x) = (−1)nHn(x)e−x2
.

2. Montrer que
(P ;Q) 7−→ ⟨P,Q⟩ =

∫ +∞

0
P (x)Q(x)e−x2 dx

définit un produit scalaire sur R[X].
3. (a) Montrer que :

∀n ∈ N∗, ∀P ∈ R[X], ⟨Hn, P ⟩ = ⟨Hn−1, P
′⟩.

(b) Montrer que la suite (Hn)n∈N forme une famille orthogonale.
(c) Calculer ∥Hn∥2.

4. On considère la série
∑
n⩾0

tn

n!Hn(x).

Étudier la nature de cette série et sa valeur éventuelle.

2205 Mines-Ponts MP 2016

Soit Mn(C) et p ∈ N∗. Montrer que M est diagonalisable si, et seulement si, Mp est
diagonalisable et Ker(M) = Ker(Mp).
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2206 Mines-Ponts MP 2016

Soit M ∈ M3n(K) telle que rang(M) = 2n et M3 = 0.

Montrer que M est semblable à


0n 0n 0
In 0n 0n

0n In 0n

.

2207 Mines-Ponts MP 2016

Soit A ∈ Mn(R). On pose S = ATA.
1. Quelle est la particularité de S ? Quelle(s) conséquence(s) ?
2. Montrer que les valeurs propres de S sont positives.
3. Quel est le lien entre les noyaux de A et S ? En déduire un lien sur d’autres

sous-espaces particuliers.
4. On suppose A2 = A. Montrer que les valeurs propres de S non nulles sont

supérieures à 1.

2208 Mines-Ponts MP 2025

Trouver l’ensemble des polynômes P ∈ R[X] tels que :

∀A ∈ On(R), P (A) ∈ On(R).

2209 CCINP PC 2016

Soit E un C-espace vectoriel de dimension finie n ⩾ 1 et f1, . . . , fk des endomorphismes
non nuls de E vérifiant :

Pour tous i et j distincts dans [[1 ; k]],
fi ◦ fj = 0 et f1 + · · · + fk = IdE.

1. Pour tout i ∈ [[1 ; k]], calculer fi ◦ (f1 + · · · + fk).
En déduire que fi est un projecteur.

2. (a) Justifier que le somme Im(f1) + · · · + Im(fk) est directe.
(b) Montrer que E = Im(f1) ⊕ · · · ⊕ Im(fk).
Dans toute la suite, B désigne une base de E adaptée à cette décomposition.

3. Soit α1, . . . , αk des complexes deux à deux distincts et soit f = α1f1 + · · ·+αkfk.
(a) Montrer que la matrice de f dans B est une matrice diagonale D que l’on

précisera.
(b) Pour tout p ∈ N, donner une expression de fp en fonctions de p, des fi et

des αi.
4. (a) Montrer que la famille {f1; . . . ; fk} est libre.

(b) Montrer que pour tout i ∈ [[1 ; k]], la famille {fi; IdE; f ; . . . ; fk−1} est liée.
(c) Montrer que la famille {IdE; f ; . . . ; fk−1} est libre.
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2210 Centrale-Supélec MP 2015

1. Soit f et g deux formes linéaires non nulles d’un espace vectoriel E. Montrer
que f et g sont colinéaires si et seulement si elles ont le même noyau.
Soit f1, . . . , fn, f des formes linaires d’un espace vectoriel réel E. On suppose
que, pour tout x ∈ E, f1(x) ⩾ 0, . . . , fn(x) ⩾ 0 implique f(x) ⩾ 0. On veut
montrer qu’il existe des réels a1, . . . , an tels que f = a1f1 + · · · + anfn.

2. Montrer cette propriété pour n = 1.
3. Établir le cas général. (On pourra restreindre f1, . . . , fn à Ker(fn)).

2211 Mines-Ponts MP 2017

On considère un espace euclidien E, ainsi qu’une base (e1; . . . ; en) de E orthonormale.
1. Soit f un endomorphisme de E. Vérifier que :

Tr(f) =
n∑

k=1
⟨f(ek), ek⟩.

2. Soit f et g deux endomorphismes symétriques de E ayant leurs valeurs propres
positives. Montrer que :

0 ⩽ Tr(f ◦ g) ⩽ Tr(f)Tr(g).

3. On suppose de plus que f est inversible.
Dans quel cas a-t-on Tr(f ◦ g) = 0 ? Et Tr(f ◦ g) = Tr(f)Tr(g) ?

2212 X MP 2017

Soit ρ une matrice symétrique positive. On dit que ρ est un état si Tr(ρ) = 1.
1. Soit A ∈ Mn(R) et V ∈ Rn de norme 1. On note ΠV la projection orthogonale

sur Vect({V }). Montrer que Tr(ΠVA) = ⟨V,AV ⟩.
2. Soit ρ un état. Montrer qu’il existe (λi)1⩽i⩽n ∈ (R+)n et (Vi)1⩽i⩽n une base

orthonormée de Rn tels que ρ =
n∑

i=1
λiΠVi

.

3. Soit ρ un état. On dit que ρ est un état pur si, et seulement si, tous les λi

sont nuls sauf un. Montrer qu’un état ρ est pur si, et seulement s’il existe P un
projecteur orthogonal de rang 1 de Rn tel que Tr(ρP ) = 1.

4. Montrer qu’un état ρ est pur si et seulement si Tr(ρ2) = 1.
5. Dans le cas n = 2, montrer que les états purs sont exactement les matrices

1
2

(
1 + cos(φ) sin(φ)

sin(φ) 1 − cos(φ)

)

avec φ ∈ R.
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2213 Mines-Ponts MP 2017

1. Soit n ∈ N∗. On pose ω = e 2iπ
n et

An =
(
ω(k−1)(j−1)

)
1⩽j,k⩽n

.

Calculer AnAn. En déduire |det(An)|, puis l’inversibilité de An et A−1
n .

2. Quels sont les θ ∈ C tels que

An(θ) =
(
θ(k−1)(j−1)

)
1⩽j,k⩽n

soit inversible ?

2214 X ESPCI 2017

Soit p1 et p2 deux projecteurs d’un espace vectoriel E de dimension finie.
1. Montrer que p1 + p2 est un projecteur si et seulement si p1 ◦ p2 = p2 ◦ p1 = 0.
2. Montrer que p1 + p2 est une symétrie si et seulement si p1 + p2 = IdE.

2215 TPE/EIVP MP 2017

Soit n ⩾ 2 entier et A ∈ Mn(R) telle que :

∀(i; j) ∈ [[1 ;n]]2, aij ∈ ]0 ; 1[ et
n∑

j=1
aij = 1.

1. Montrer que |det(A)| ⩽ 1.
2. Montrer que 1 ∈ Sp(A).
3. Montrer que

b ∈ Sp(A) =⇒ |b| ⩽ 1
puis que

|b| = 1 =⇒ b = 1.

2216 CCINP PSI 2017

Soit A,B ∈ Mn(R) non nulles. Pour tout M ∈ Mn(R), on définit :

Φ(M) = Tr(AM)

et Ψ(M) = M + Tr(AM)B.
1. Montrer que Φ est linéaire et donner la dimension de son noyau et de son image.
2. Montrer que si λ est valeur propre de Ψ différente de 1, alors toute matrice

propre associée M est colinéaire à B.
3. Trouver les autres valeurs propres de Ψ.
4. Donner une condition nécessaire et suffisante sur A et B pour que Ψ soit diago-

nalisable.
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2217 Mines-Ponts MP 2017

Soit A et B deux matrices symétriques réelles d’ordre n. On suppose que pour tout X
dans Mn×1(R) \ {0}, XTBX > 0. Montrer que A+ iB est inversible.

2218 Mines-Ponts MP 2018

On considère un espace euclidien (E, ⟨·, ·⟩). Soit f et g deux endomorphismes symé-
triques tels que :

∀x ∈ E, |⟨x, f(x)⟩| ⩽ ⟨x, g(x)⟩.
Montrer que |det(f)| ⩽ det(g).

2219 Mines-Ponts MP 2018

Soit A ∈ Mn(R) et fA ∈ L(Mn(R)) définie par fA(M) = AM .
Montrer que Sp(A) = Sp(fA).

2220 CCINP PC 2018

Soit E = {(xn)n∈N ∈ RN | ∑x2
n converge} et

f : RN −→ R
(xn)n∈N 7−→ x0

1. Calculer (|a| − |b|)2 et montrer que a
2 + b2

2 ⩾ |ab|.

2. (a) Montrer que E est un sous-espace vectoriel de RN.
(b) Montrer que f est une application linéaire de E dans R.

3. Soit
φ : E × E −→ R

((xn)n∈N; (yn)n∈N) 7−→
+∞∑
n=0

xnyn

Montrer que φ est bien définie sur E × E et que φ est un produit scalaire sur
E. En déduire que

(xn)n∈N 7−→

√√√√+∞∑
n=0

x2
n

est une norme sur E.
4. On suppose que E est muni de cette norme. Montrer que si (xn)n∈N est dans E,

alors la suite (xn + xn+1)n∈N est aussi dans E.
5. Soit g : (xn)n∈N ∈ E 7→ (xn + xn+1)n∈N. Montrer qu’il existe k ∈ R tel que pour

tout ((xn)n∈N; ((yn)n∈N) ∈ E × E :

∥g((xn)n∈N) − g((yn)n∈N)∥ ⩽ k∥(xn)n∈N − (yn)n∈N∥.

2221 Mines-Ponts MP 2018

Soit A ∈ S++
n (R). Montrer qu’il existe une unique matrice H dans S++

n (R) telle que
A = H3 +H.
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2222 Mines-Ponts PC 2015

Soit
H = {(x; y; z; t) ∈ R4 | ax+ by + cz + dt = 0}

et H ′ = {(x; y; z; t) ∈ R4 | a′x+ b′y + c′z + d′t = 0}.

1. Montrer que H ∩H ′ est un espace vectoriel.
2. Déterminer la dimension de l’intersection.

2223 CCINP PC 2018

Soit M ∈ M2n+1(R) telle que tous les coefficients sont nuls sauf ceux de la ligne n+ 1
et de la colonne n+1 qui valent tous 1. Montrer que M est diagonalisable, puis trouver
ses valeurs propres et vecteurs propres associés.

2224 Mines-Télécom PSI 2018

Soit n ∈ N∗ et M ∈ Mn(R).
1. Rappeler les propriétés du déterminant, en particulier det(MT ) et det(λM),

avec λ ∈ R.
2. On suppose que M est antisymétrique.

(a) Montrer que, si n est impair, M n’est pas inversible.
(b) Montrer que, si n = 2 et M ̸= 0, alors M est inversible.
(c) Peut-on affirmer que M est inversible ou non inversible si n = 4 et M ̸= 0 ?

2225 ENS MP 2018

Soit A et B dans Sn(R) de valeurs propres respectives a1, . . . , an et b1, . . . , bn. Montrer
que :

n∑
i=1

(bi − ai)2 ⩽ Tr((B − A)2).

2226 Centrale-Supélec MP 2018

Soit E un espace vectoriel de dimension finie n et B = (e1; . . . ; en) une base de E. On

pose sk =
k∑

i=1
ek et s0 = 0. Soit u ∈ L(E) telle que :

∀k ∈ [[1 ;n]], u(ek) = 2sn − sk − ek.

1. Justifier que l’on définit une unique application linéaire et donner la matrice
A = (u)B

B.
2. Déterminer le polynôme caractéristique de A.
3. Déterminer le spectre complexe de A et montrer qu’il est contenu dans un cercle.

2227 X MP 2018

Soit E un espace vectoriel réel de dimension finie. Caractériser les formes bilinéaires B
sur E vérifiant :

∀(x; y) ∈ E2, B(x; y) = 0 =⇒ B(y; x) = 0.
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2228 Mines-Ponts MP 2018

Soit n ⩾ 2 un entier et φ un automorphisme de Mn(C) tel que :

∀(A;B) ∈ (Mn(C))2, φ(AB) = φ(A)φ(B).

1. Déterminer φ(In).
2. Soit 1 ⩽ i ⩽ n. Montrer que φ(Eii) est un projecteur de rang 1.
3. Pour 1 ⩽ i ⩽ n, soit Ai un élément non nul de Im(φ(Eii)).

Montrer que {A1; . . . ;An} est une base de Cn.

2229 Mines-Ponts MP 2018

Soit n ∈ N∗, A ∈ Mn(R) et I un intervalle non vide et non réduit à un singleton.
Montrer l’équivalence suivante :

∀t ∈ I, etA ∈ On(R) ⇐⇒ A ∈ An(R).

2230 CCINP MP 2021

Soit M ∈ Mp(C) et λ, µ deux nombres complexes distincts non nuls. On suppose
trouvées deux matrices non nulles A,B ∈ Mp(C) vérifiant Ip = A+B, M = λA+ µB
et M2 = λ2A+ µ2B.

1. Montrer que M est inversible et déterminer son inverse. (On pourra utiliser
M2 − (λ+ µ)M + λµIp).)

2. (a) Exprimer A en fonction de Ip et M .
(b) Montrer que A et B sont des projecteurs.

3. La matrice M est-elle diagonalisable ? Déterminer ses valeurs propres.

2231 CCINP MP 2021

Soit E un espace vectoriel réel euclidien de dimension n, u un endomorphisme symé-
trique de E.

1. Soit p un entier naturel impair.
(a) Montrer l’existence d’un endomorphisme de symétrique v tel que vp = u.

(On pensera à la matrice représentative de u.)
(b) Montrer que v possède les mêmes sous-espaces propres et le même nombre

de valeurs propres distinctes que u.
(c) Montrer que v est l’unique endomorphisme symétrique tel que vp = u.

2. Soit p un entier naturel pair et non nul.
(a) A-t-on les mêmes résultats ?
(b) Que peut-on dire si u est positif ? (C’est-à-dire Sp(u) ⊂ R+.)
(c) Que peut-on dire si u et v sont positifs ?
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2232 CCINP MP 2021

Soit f un endomorphisme de Cn.
1. On suppose que det(f 2) ̸= 0 et que f 2 est diagonalisable. Trouver un polynôme

annulateur de f et montrer que f est diagonalisable.
2. On suppose que det(f 2) = 0 et que f 2 est diagonalisable. On suppose de plus

que Ker(f) = Ker(f 2). Montrer que f est diagonalisable.

2233 Mines-Ponts PSI 2021

Soit A ∈ Sn(R) à valeurs propres dans R+, et α ⩾ 0.
1. Le produit de matrices carrées symétriques est-il symétrique ?
2. Montrer que In + αA est inversible.
3. Montrer que M = (In − αA)(In + αA)−1 est symétrique.

2234 Mines-Ponts MP 2019

Soit A = GLn(C) ∪ {0n}.
1. L’ensemble A est-il un sous-espace vectoriel de Mn(C) ?
2. Quelle est la dimension maximale d’un sous-espace vectoriel de Mn(C), contenu

dans A ?
3. Qu’en est-il dans R ? On s’intéressera surtout au cas n = 2.

2235 Mines-Ponts MP 2022

Soit E un espace préhilbertien et ϕ une forme bilinéaire symétrique positive, non né-
cessairement définie positive, et telle que :

∃C > 0, ∀(x; y) ∈ E2, |ϕ(x; y)| ⩽ ∥x∥∥y∥.

On note (∗) la proposition :

∃α > 0, ∀x ∈ E, |ϕ(x;x)| ⩾ ∥α∥2.

1. Montrer que si E est de dimension finie, alors :

(∗) ⇐⇒ ϕ est définie positive.

2. On suppose que E est de dimension infinie et qu’il existe une suite (en)n∈N
orthonormale totale de E.
(a) Construire ϕ bilinéaire symétrique définie positive telle que :

∃C > 0, ∀(x; y) ∈ E2, |ϕ(x; y)| ⩽ C∥x∥∥y∥

mais qui ne vérifie pas (∗).
(b) Conclure que la boule unité fermée n’est pas compacte.
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2236 CCINP MP 2022

Soit E un espace euclidien. On note A(E) l’ensemble des endomorphismes antisymé-
triques, c’est-à-dire :

u ∈ A(E) ⇐⇒ ∀(x; y) ∈ E2, ⟨u(x), y⟩ = −⟨u(y), x⟩.

1. Montrer que :
∀x ∈ E, ⟨u(x), x⟩ = 0 ⇐⇒ u ∈ A(E).

Pour u ∈ A(E), quelles sont les valeurs propres possibles de u ?
2. Caractériser les endomorphismes de A(E) à l’aide de leur matrice dans une base

orthonormée.
3. Soit F un sous-espace vectoriel stable par u. Montrer que F⊥ est stable par u.

On suppose maintenant que Ker(u) = {0}.
4. (a) Montrer que u2 est un endomorphisme symétrique.

Soit x un vecteur propre de u2. Montrer que F = Vect({x;u(x)}) est un
sous-espace vectoriel stable par u.

(b) Montrer qu’il existe une base orthonormée B de E telle que :

(u)B
B =



0 −λ1
λ1 0

0 −λ2 0
λ2 0

. . .
0 . . .

0 −λp

λp 0


,

avec λ1, . . . , λp réels non nuls.

2237 Centrale-Supélec MP 2015

Soit E un espace vectoriel de dimension finie n. On considère u un endomorphisme de
E. On note χ le polynôme caractéristique de u.

1. Soit V et W deux sous-espaces de E stables par u et tels que E = V ⊕ W . En
notant χ′ (respectivement χ′′) le polynôme caractéristique de u|V (respective-
ment u|W ), montrer que χ = χ′χ′′.

2. On note χ =
∏

i

Pαi
i la décomposition en facteurs irréductibles de χ. Montrer

que pour tout i, dim(Ker(Pαi
i )(u)) = αi deg(Pi).

3. Si le polynôme minimal de u est χ, montrer que :

∀k ⩽ αi, dim(Ker(P k
i (u))) = k deg(Pi).

2238 Mines-Ponts PC 2019

Soit n ∈ N∗ et D la matrice diagonale de Mn(R) de coefficients diagonaux 1, . . . , n.
Déterminer toutes les matrices M ∈ Mn(R) telles que DM = MD.
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2239 Mines-Ponts MP 2018

Soit A ∈ Mn(C).
1. On suppose que A est inversible et qu’il existeN ∈ N∗ tel que AN soit symétrique

réelle. Montrer que A est diagonalisable sur C.
2. On suppose que dim(Ker(A)) = 1 et qu’il existe N ∈ N∗ tel que AN soit symé-

trique réelle. Montrer que A est diagonalisable sur C.
3. Que se passe-t-il si dim(Ker(A)) > 1 ?

2240 Mines-Télécom PSI 2018

Soit a, b, c ∈ R∗ et M = −2
3


−1

2
a
b

a
c

b
a

−1
2

b
c

c
a

c
b

−1
2

.

On note f l’endomorphisme de R3 canoniquement associé à M . On munit R3 du produit
scalaire canonique.

1. La fonction f est-elle une symétrie vectorielle ?
2. La fonction f est-elle une isométrie vectorielle ?

2241 Mines-Ponts MP 2019

Soit A une matrice complexe carrée de taille n à coefficients complexes. Montrer l’équi-
valence entre :

i) AA = In ;
ii) il existe une matrice S complexe inversible telle que A = SS

−1.

2242 Mines-Ponts MP 2018

Soit E un espace euclidien.
Soit u un endomorphisme symétrique de E tel que Tr(u) = 0.

1. Montrer qu’il existe x ∈ E \ {0} tel que ⟨u(x), x⟩ = 0.
2. Soit n ∈ N∗ et A ∈ Mn(R).

Montrer qu’il existe P ∈ On(R) telle que tous les coefficients diagonaux de
P−1AP soient égaux.

2243 Mines 2015

On considère deux espaces vectoriels E et F sur le même corps K, deux applications
linéaires, u ∈ L(E,F ), v ∈ L(F,E) telles que v ◦ u ∈ GL(E).
Montrer que Im(u) ⊕ Ker(v) = F .

2244 Mines 2012

Soit A ∈ GL6(R) telle que A(A− In)(A− 2In) = 0 et Tr(A) = 11.
Calculer le polynôme caractéristique de A.
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2245 CCINP 2016

Soit (E, ⟨·, ·⟩) un espace euclidien de dimension n et pour tout i ⩽ p, Ui un endomor-

phisme symétrique de E tel que
p∑

i=1
rang(Ui) = dim(E) et tel que

p∑
i=1

⟨Ui(x), x⟩ = ∥x∥2.

1. Montrer que
p∑

i=1
Ui = IdE.

2. Montrer que Ui est la projection orthogonale sur Im(Ui).

2246 CCP 2017

Soit E un espace vectoriel réel de dimension 3 muni d’une base B et f l’endomorphisme

dont la matrice dans la base B est A =

 1 1 −1
−1 3 −3
−2 2 −2

.

1. Montrer que E = Ker(f 2) ⊕ Ker(f − 2IdE).
2. Donner un élément de Ker(f 2) \ Ker(f).

3. Montrer qu’il existe une base B′ de E telle que (f)B′
B′ =

0 1 0
0 0 0
0 0 2

.

4. Soit g ∈ L(E) tel que g2 = f . Montrer que Ker(f 2) est stable par g.
Que peut-on en déduire ?

2247 CCP 2017

On considère la matrice A =

 1 a a
−1 1 −1
−1 0 2

.

1. Calculer le polynôme caractéristique de A.
2. On suppose que a > 0. La matrice A est-elle diagonalisable ?
3. On suppose que a = 0. La matrice A est-elle diagonalisable ?
4. On suppose que a < 0. La matrice A est-elle diagonalisable ?

Il sera essentiel au cours de la discussion de préciser le corps de référence, R ou C.

2248 Mines-Ponts MP 2022

On suppose ici K = R ou K = C. Soit n ∈ N∗ et u l’application de Mn(K) dans Mn(K)
qui à la matrice de terme (ai,j)1⩽i,j⩽n associe la matrice de terme (an+1−j,i)1⩽i,j⩽n.

1. Vérifier que u est linéaire.
2. Déterminer son spectre et les dimensions des sous-espaces propres.
3. L’application u est-elle diagonalisable ?
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2249 CCINP MP 2022

Soit E un C-espace vectoriel de dimension finie et f un endomorphisme de E.
1. On suppose que f est diagonalisable. Montrer que f 2 est diagonalisable et que

Ker(f) = Ker(f 2).
2. On suppose que f 2 est diagonalisable et que f est inversible.

(a) On note λ1, . . . , λp les valeurs propres distinctes de f 2. Montrer que le poly-
nôme

p∏
i=1

(X2 − λp)

est un polynôme annulateur de f .
(b) En déduire que f est diagonalisable.

3. On suppose que f 2 est diagonalisable et que Ker(f) = Ker(f 2). Montrer que f
est diagonalisable.

2250 Centrale-Supélec MP 2018

Pour tout j entier compris entre 0 et 2n, on note :

fj : t 7−→ (sinh(t))j(cosh(t))2n−j.

On pose :
F = {f0; . . . ; f2n} et F = Vect(F).

1. Montrer que F est une base de F .
2. Soit d l’application de F dans C∞(R,R) qui à f associe f ′.

(a) Montrer que d définit un endomorphisme de F .
(b) Déterminer ses espaces propres.

2251 Mines 2016

Soit A une matrice symétrique de Mn(R). On suppose qu’il existe un nombre réel α
racine à la fois de χA et de son dérivé χ′

A. Montrer que pour tout v ∈ Mn×1(R), la
famille {v;Av;A2v; . . . ;An−1v} est liée.

2252 CCINP MP 2023

Soit E un espace vectoriel et p, q deux projecteurs de E tels que Im(p) ⊂ Ker(p).
1. Montrer que Im(p) ∩ Im(q) = {0E}.
2. Soit r = p + q − p ◦ q. Montrer que r est un projecteur sur Im(p) + Im(q)

parallèlement à Ker(p) ∩ Ker(q).

2253 Mines-Ponts PC 2024

Soit A,B ∈ Mn(C) telles que leur spectre soient disjoints.
1. Montrer que le polynôme caractéristique de A évalué en B est inversible.
2. Soit X ∈ Mn(C). Montrer que AX = XB si et seulement si X = 0.
3. Montrer que pour tout M ∈ Mn(C), il existe une unique matrice X ∈ Mn(C)

telle que AX −XB = M .
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2254 Mines-Ponts MP 202

Soit E l’espace vectoriel des applications de classe C∞ sur [0 ; 1] que l’on munit du
produit scalaire :

f : E2 −→ R

(f ; g) 7−→
∫ 1

0
f(t)g(t) dt

Soit v l’application de E dans lui-même qui à toute fonction f ∈ E associe sa primitive
nulle en 0.

1. Montrer que v est un endomorphisme.
2. Montrer qu’il existe un endomorphisme w tel que pour tout couple (f ; g) d’élé-

ments de E, ⟨v(f), g⟩ = ⟨f, w(g)⟩.
3. Quels sont les valeurs propres et les vecteurs propres de v ◦ w ?

2255 Mines-Télécom MP 2021

Soit E = {f ∈ C1(R,R) | f(0) = 0}.
Soit T défini pour tout f ∈ E et tout x ∈ R par :

T (f)(x) =
∫ x

0

f(t)
t

dt.

Montrer que T est un endomorphisme de E et déterminer ses valeurs propres.

2256 Mines-Ponts MP 2023

Soit (a1; a2; . . . ; an) ∈ Cn.

On pose M =



0 a1 a2 · · · an

a1 0 a2 · · · an

a1 a2 0 · · · an
... ... ... ... ...
a1 a2 · · · an 0

.

Déterminer le polynôme caractéristique et le déterminant de la matrice M .

2257 Mines-Ponts PSI 2019

Soit E un espace vectoriel de dimension n et f un endomorphisme de E. Soit x0 un
vecteur de E tel que B = {x0; f(x0); f 2(x0); . . . ; fn−1(x0)} soit une famille libre de E.

1. Minorer le rang de f .
2. Déterminer C(f) = {g ∈ L(E) | f ◦ g = g ◦ f}.

2258 CCINP MP 2022

Soit E un espace euclidien de dimension non nulle.
1. Montrer que si p est un projecteur orthogonal, alos p est un endomorphisme

symétrique.
2. Soit p et q deux projecteurs orthogonaux.

(a) Montrer que p ◦ q ◦ p est un endomorphisme symétrique.
(b) Montrer que (Ker(q) + Im(p))⊥ = Im(q) ∩ Ker(p).
(c) Montrer que p ◦ q est diagonalisable.
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2259 Mines-Ponts MP 2022

Soit E l’ensemble des fonctions continues de R dans R. On définit :

∀f ∈ E, ∀x ∈ R∗, ϕ(f)(x) = 1
2x

∫ x

−x
f(u) du et ϕ(f)(0) = f(0).

1. Démontrer que la fonction ϕ ainsi définie est un endomorphisme de E.
2. Déterminer les valeurs propres de ϕ et les sous-espaces propres associés.
3. Démontrer que si n ∈ N, Rn[X] est stable par ϕ et déterminer les sous-espaces

propres induits. (On confondra ici fonctions polynomiales et polynômes.)

2260 CCINP PC 2022

Dans l’espace vectoriel R4 euclidien canonique, on considère le sous-espace vectoriel F
d’équations :

x+ y + t = 0 et z = 0 où (x; y; z; t) ∈ R4.

Déterminer une base orthonormée de F .

2261 TPE/EIVP MP 2016

Soit A et B deux matrices carrées de dimension n telles que AB admette n valeurs
propres deux à deux distinctes. La matrice BA est-elle diagonalisable ?

2262 Centrale-Supélec MP 2025

1. Donner une caractérisation des applications linéaires injectives et la démontrer.
2. Soit x ∈ [0 ; 1[. On note :

Kn(x) =
n−1∑
i=1

xi.

Soit E l’espace vectoriel des fonctions continues et intégrables de [0 ; 1[ à valeurs
réelles. Pour x ∈ [0 ; 1[ et f ∈ E, on note :

ϕ(x) =
∫ 1

0
Kn(xt)f(t) dt.

(a) Montrer que ϕ est un endomorphisme de E.
(b) Montrer que 0 est une valeur propre de ϕ.

2263 X MP 2017

Soit S l’ensemble des fonctions f ∈ C∞(R,R) telles que :

∀(α; β) ∈ N2, sup
x∈R

|xαf (β)(x)| < +∞.

Soit ℓ : S → S une application linéaire telle que :

∀f ∈ S, ℓ(f ′) = (ℓ(f))′

et en notant h : x → x :
ℓ(hf) = hℓ(f).

Montrer que ℓ = λIdS pour un λ réel.
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2264 ENS MP 2013

Soit σ ∈ Sn. On considère l’endomorphisme de Cn qui à x = (x1; . . . ;xn) ∈ Cn associe
aσ(x) = (xσ(1); . . . ;xσ(n)).

1. Quel est le spectre de aσ ?
2. Quels sont les sous-espaces vectoriels de Cn stables par tous les aσ ?

2265 Mines-Ponts MP 2017

Soit A un polynôme de degré au plus n. On considère l’application :

ϕ : P 7−→ (AP )(n)

pour tout polynôme P de degré inférieur à n.
1. Donner une condition nécessaire et suffisante pour que ϕ soit bijective.
2. Donner une condition nécessaire et suffisante pour que ϕ soit diagonalisable.

2266 X MP 2019

Soit f ∈ L(R2). Quelle est l’image par f d’un cercle de centre 0 et de rayon 1 ?

2267 CCINP PC 2013

Soit (Mj)1⩽j⩽p une famille de Mn(C) telle que, pour tout j, M2
j = −In et pour j ̸= k,

MjMk = −MkMj.
1. Trouver un polynôme annulateur de Mj. En déduire que la matrice est diago-

nalisable.
2. (a) Montrer que Sp(Mj) est inclus dans {−i; i}.

(b) Montrer que Mj est inversible et que n est pair.
(c) Montrer que i et −i sont effectivement valeurs propres.

3. Montrer que les dimensions des sous-espaces propres de Mj sont égales et donner
det(Mj).

4. Trouver un tel couple de matrices pour n = 2, puis pour n = 4.

2268 Mines-Télécom MP 2022

Soit M,N ∈ Mn(R) telles que Nn = NM = 0. On suppose de plus que M est trigona-
lisable sur Mn(R). Montrer que M +N est trigonalisable sur Mn(R).

2269 CCINP MP 2024

Soit la matrice A =

0 0 1
2 1 0
0 0 1

 ∈ M3(R).

1. Justifier que A est trigonalisable mais non diagonalisable.
2. Soit M ∈ M3(R) telle que M2 = A.

(a) Justifier que M n’est pas inversible.
(b) Montrer que les seules valeurs propres possibles pour M sont −1, 0 et 1.
(c) Montrer que la dimension des sous-espaces propres de M est égale à 1.

3. Déterminer l’ensemble des matrices M ∈ M3(R) telles que M2 = A.
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2270 Centrale-Supélec PSI 2021

Soit A ∈ Mn(C) possédant p ⩾ 2 valeurs propres distinctes λ1, . . . , λp. On suppose
que :

∀i ∈ [[2 ; p]], |λi| < |λ1| (∗)

1. On note, pour tout k ∈ N tel que Tr(Ak) ̸= 0, tk =
Tr(Ak+1)
Tr(Ak) .

Montrer que la suite (tk)k∈N est définie à partir d’un certain rang, qu’elle
converge et déterminer sa limite.

2. Justifier que si l’hypothèse (∗) n’est pas vérifiée, le résultat précédent peut-être
faux.

3. Soit A =

 1 0 0
−2 3 1
4 −4 −1

.

(a) Montrer que A est semblable à B =

1 0 0
0 1 1
0 0 1

.

(b) Déterminer la limite de Ak

k
quand k tend vers +∞.

2271 Centrale-Supélec PC 2023

1. Soit P ∈ Mn(R). On considère l’endomorphisme :

dP : Mn(R) −→ Mn(R)
A 7−→ AP

Déterminer la matrice de dP en fonction de P T dans une base bien choisie.
2. Soit Q ∈ Mn(R). On considère l’endomorphisme :

gQ : Mn(R) −→ Mn(R)
A 7−→ QA

Déterminer la matrice de gQ en fonction de Q dans une base bien choisie.
3. Soit P ∈ GLn(R). On considère l’endomorphisme :

φ : Mn(R) −→ Mn(R)
A 7−→ P−1AP

Déterminer det(φ) et Tr(φ).

2272 Mines-Ponts PSI 2024

Soit n ⩾ 2 entier.
1. Montrer que pour tout A ∈ GLn(R) on a Tr(ATA) > 0. Pourquoi a-t-on

Tr(ATA) ̸= 0 ?
2. Soit S ∈ S++

n (R). Montrer qu’il existe A inversible telle que S = ATA.
3. Montrer que :

∀(S;S ′) ∈ (S++
n (R))2, Tr(SS ′) > 0.
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2273 Centrale-Supélec PSI 2023

On définit G = {M ∈ M2(C) | det(M) = 1}.
Soit A et B dans G, de même trace α.

1. (a) Donner une condition suffisante sur α pour que A soit diagonalisable. Cette
condition est-elle nécessaire ?

(b) Donner une condition suffisante sur α pour que A et B soient semblables.
Cette condition est-elle nécessaire ?

Soit
ϕ : R −→ M2(C)

t 7−→
(
a(t) b(t)
c(t) d(t)

)

On a donc, pour tout t réel, ϕ′(t) =
(
a′(t) b′(t)
c′(t) d′(t)

)
.

2. Soit M ∈ M2(C). Montrer que l’application t 7→ Mϕ(t) est de classe C1 sur R
et préciser sa dérivée.

3. Soit A ∈ G de trace nulle. Montrer l’existence de ϕ de classe C1 de R dans G
vérifiant : ∀(s; t) ∈ R2, ϕ(s+ t) = ϕ(s)ϕ(t)

ϕ(0) = I2 et ϕ′(0) = A

2274 Mines-Ponts PSI 2023

Soit A ∈ Mn(R) une matrice réelle symétrique de valeurs propres λ1(A) ⩽ · · · ⩽ λn(A).
On note ⟨·, ·⟩ le produit scalaire canonique de Mn×1(R). On pose :

∀X ∈ Mn×1(R) \ {0}, RA(X) = ⟨AX,X⟩
⟨X,X⟩

.

Soit k ∈ [[1 ;n]] et Gk l’ensemble des sous-espaces vectoriels de dimension k.
On note (e1; . . . ; en) une base orthonormée telle que :

∀i ∈ [[1 ;n]], Aei = λi(A)ei.

1. Montrer que :

∀X ∈ Vect({e1; . . . ; ek}) \ {0}, RA(X) ∈ [λ1(A);λk(A)].

2. Montrer que :

λk(A) = min
V ∈Gk

(
max

X∈V \{0}
RA(X)

)
.

3. Soit A et B deux matrices symétriques réelles.
En déduire que :

λ1(A) + λk(B) ⩽ λk(A+B) ⩽ λn(A) + λk(B).
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2275 Centrale-Supélec MP 2024

Soit E un espace euclidien de dimension n ∈ N∗, muni de sa norme euclidienne ∥·∥.
1. Soit H un hyperplan de E.

Montrer qu’il existe a ∈ E tel que H = (Vect({a}))⊥.
2. Soit (x1; . . . ;xn+1) ∈ En+1 une famille de vecteurs unitaires tels que :

∃α < 0, tel que ∀i, j ∈ {1; . . . ;n+ 1}, i ̸= j =⇒ ⟨xi, xj⟩ = α.

Déterminer α.
3. Montrer qu’une telle famille existe.

2276 X MP 2021

Soit f un endomorphisme de R10 qui stabilise tous les sous-espaces de dimension 5.
Que dire de f ?

2277 Mines-Ponts MP 2021

Soit (a; b; c) ∈ R3 et A =

 0 a −c
−a 0 b
c −b 0

.

1. Justifier l’existence d’un réel d tel que A3 + dA = 0.
2. Déterminer d.
3. Pour tout n ∈ N, exprimer A2n en fonction de n, d et A2.
4. Montrer que exp(A) = I3 + αA+ βA2, où α et β sont deux réels à expliciter.

2278 CCINP PC 2021

Soit E un espace vectoriel euclidien de dimension n, ⟨·, ·⟩ son produit scalaire et ∥·∥ la
norme associée. Pour a ∈ E unitaire et α ∈ R, on considère l’endomorphisme fα défini
par :

fα : E −→ E
x 7−→ x+ α⟨a, x⟩a

1. Soit (e2; . . . ; en) une base orthonormée de (Vect({a}))⊥.
Montrer que B = (a; e2; . . . ; en) est une base orthonormée de E et trouver la
matrice associée à fα dans B.

2. (a) Calculer (fβ ◦ fα)(x) et déterminer γ tel que fγ = fβ ◦ fα en fonction de α
et β.

(b) Donner une condition nécessaire et suffisante sur α pour que fα soit bijectif.
(c) Préciser alors f−1

α .
3. Soit V un sous-espace vectoriel de E tel que sa(V ) = V , où sa est l’endomor-

phisme défini par sa(x) = x− 2⟨a, x⟩a.
(a) Montrer que sa ∈ O(E).
(b) Montrer que sa(V ⊥) ⊂ V ⊥, puis que sa(V ⊥) = V ⊥.

4. Soit g ∈ O(E). Montrer que g ◦ sa ◦ g−1 = sg(a).
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2279 Mines-Télécom MP 2025

Soit E un K-espace vectoriel de dimension finie, α ∈ K∗, f et g dans L(E) tels que :

f ◦ g − g ◦ f = αf.

1. Calculer fn ◦ g − g ◦ fn pour tout n ∈ N.
2. En déduire que f est nilpotent.

Indication : on pourra considérer l’application φ : h 7→ h ◦ g − g ◦ h.

2280 CCINP PC 2018

Soit E un espace euclidien et a, b deux vecteurs de E orthogonaux entre eux.
1. Soit φ : x 7→ x + ⟨a, x⟩a + ⟨b, x⟩b. Montrer que φ est un endomorphisme symé-

trique de E.
2. On se place dans un espace euclidien de dimension 3 et on se donne une base

orthonormée B = (e1; e2; e3) avec a ∈ Vect({e1}) et b ∈ Vect({e2}). Préciser la
matrice M de φ dans cette base.

3. Préciser les éléments propres de φ et déterminer P ∈ O3(R) et D matrice
diagonale de M3(R) telles que M = PDP−1.

4. Généraliser l’étude à un espace vectoriel de dimension n.

2281 CCINP PSI 2018

Soit A et B deux matrices de Mn(C) telles que AB = BA. On note M =
(
A B
0 A

)
.

1. Soit U et V deux matrices semblables et R un polynôme. Montrer que R(U) est
semblable à R(V ).

2. Soit P un polynôme à coefficients complexes. Exprimer P (M) en fonction de
P (A), P (A′) et B.

3. Supposons que B = 0 et que A est diagonalisable. Montrer que M est diagona-
lisable.

4. Supposons que M est diagonalisable. Montrer que A est diagonalisable et que
B = 0.

2282 ENS Lyon PC 2018

Soit A = (aij)1⩽i,j⩽n ∈ Sn(R) vérifiant :
• ∀(i; j) ∈ [[1 ;n]]2, aij ∈ {0; 1} ;
• ∀i ∈ [[1 ;n]], aii = 0 ;
• il existe un entier k strictement positif tel que chaque colonne de A contienne

exactement k termes non nuls ;
• ∀(i; j) ∈ [[1 ;n]]2, i ̸= j =⇒ ∃! l ∈ [[1 ;n]], ail = ajl = 1.
1. Déterminer le spectre de la matrice A2.
2. Montrer que n = k2 − k + 1.
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2283 Mines-Ponts MP 2018

Soit n ∈ N∗ et K un corps.
Soit D = {M ∈ M2n(K) | ∀(i; j) ∈ [[1 ; 2n]]2, i ̸≡ j mod n =⇒ Mij = 0}.

1. Montrer que D est une sous-algèbre de M2n(K).
2. Montrer que, pour M ∈ D ∩GL2n(K), on a M−1 ∈ D.

2284 Centrale-Supélec MP 2013

Soit f une fonction continue de C∗ dans R+ vérifiant :

∀(z; z′) ∈ (C∗)2, f(zz′) = f(z)f(z′).

1. (a) Calculer f(1). Pour n ∈ N∗ et ω un racine nème de l’unité, calculer f(ω).
Pour θ ∈ R, calculer f(eiθ).

(b) On note f̃ la restriction de f à R∗
+. Montrer qu’il existe α ∈ R tel que, pour

tout x ∈ R∗
+, f(x) = xα.

Indication : on pourra étudier la fonction ln(f̃).
(c) Calculer f(z) pour tout z ∈ C∗.

2. Soit n ∈ N∗. Soit φ une application de GLn(C) dans R+ vérifiant :

∀(A;B) ∈ (GLn(C))2, φ(AB) = φ(A)φ(B).

(a) Montrer qu’il existe α ∈ R tel que :

∀z ∈ C∗, φ(zIn) = |z|nα.

(b) Montrer que deux matrices semblables ont la même image par φ.
(c) Montrer par récurrence que :

∀A ∈ GLn(C), φ(A) = |det(A)|α.

Indication : on pourra commencer par s’intéresser aux matrices diagonali-
sables.

3. Soit ψ une fonction continue de Mn(C) dans C, et vérifiant :

∀(A;B) ∈ (GLn(C))2, ψ(AB) = ψ(A)ψ(B).

(a) Montrer qu’il existe β ∈ R+ tel que :

∀A ∈ Mn(C), |ψ(A)| = |det(A)|β.

(b) Montrer que si l’image de Mn(R) par ψ est réelle, alors ψ vérifie l’une des
deux propriétés suivantes :
• ∀A ∈ Mn(R), ψ(A) = |det(A)|β ;
• ∀A ∈ Mn(R), ψ(A) = sgn(det(A))|det(A)|β.
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2285 TPE/EIVP MP 2015

On considère la matrice A =

 3 −1 −2
−1 0 0
1 1 0

 ∈ M3(R).

Calculer exp(A).

2286 X ESPCI PC 2016

Soit E un K-espace vectoriel et p, q deux projecteurs de E qui commutent.
1. Montrer que p ◦ q et p+ q − p ◦ q sont des projecteurs.
2. Déterminer leur noyau et image en fonction de Ker(p), Ker(q), Im(p) et Im(q).

2287 Centrale-Supélec MP 2013

Soit E un C-espace vectoriel de dimension n, a ∈ L(E) tel que pour tout λ ∈ Sp(A),
dim(Ker(A− λIdE)) = 1.

1. Traiter le cas où a est nilpotente.
2. On note λ1, . . . , λq les valeurs propres de a de multiplicités respectives n1, . . . , nq.

Montrer que pour tout j ∈ {1, . . . , q} et tout m ∈ {1, . . . , nj}, on a :

dim(Ker(a− λjId)m) = m.

3. Soit F un sous-espace vectoriel de E stable par a. Montrer que F = Ker(Q(a)),
où Q est le polynôme caractéristique de l’endomorphisme induit par a sur F .

4. Soit D l’ensemble des diviseurs unitaires du polynôme caractéristique de a et
F l’ensemble des sous-espaces stables par a. Déduire de la question précédente
que l’application Q ∈ D 7→ Ker(Q(A)) ∈ F est une bijection.

5. Conclure quant aux espaces propres de a.

2288 Centrale-Supélec MP 2019

Soit A ∈ Mn(R) symétrique qui s’écrit :

A =
(
Bp Cp

CT
p Dp

)

avec Bp ∈ Mp(R).
1. Montrer que A est définie positive (i.e. ∀x ∈ Mn×1(R) \ {0}, XTAX > 0) si et

seulement si toutes les valeurs propres de A sont strictement positives.
On suppose dans la suite que A est définie positive.

2. Montrer que det(Bp) > 0.
3. Montrer que det(A) ⩽ det(Bp) det(Dp), puis que det(A) ⩽ a11a22 · · · ann.
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2289 CCINP PC 2024

Soit A ∈ Mn(R) de trace non nulle et

f : Mn(R) −→ Mn(R)
B 7−→ Tr(A)B − Tr(B)A

1. Montrer que Ker(f) = Vect({A}).
2. L’application f est-elle diagonalisable ?

2290 Mines-Ponts MP 2015

Soit E un espace euclidien de dimension n, v un endomorphisme de E.

1. Montrer que
n∑

i=1
⟨v(ei), ei⟩ ne dépend pas de la base orthonormée (e1; . . . ; en) de

E choisie.

2. Montrer que la somme
n∑

i=1

n∑
j=1

⟨v(ei), fj⟩2 ne dépend pas des bases orthonormées

(e1; . . . ; en) et (f1; . . . ; fn) choisies. Calculer sa valeur lorsque v est un projecteur
orthogonal de rang r.

2291 Mines-Ponts PSI 2021

Soit M =

1 1 1
0 1 1
0 0 1

 ∈ M3(R).

1. Pour tout n ∈ N∗, calculer Mn.
2. Déterminer une base de F = Vect({Mn | n ⩾ 1}).
3. Montrer que le commutant de M est exactement F .

2292 Centrale-Supélec MPI

On considèreMn(C), l’ensemble des matrices carrées de taille n à coefficients complexes.
1. Donner une caractérisation des matrices de rang inférieur ou égal à k avec les

mineurs.
2. Montrer que l’ensemble des matrices de rang inférieur ou égal à k est un fermé.

On considère pour A ∈ Mn(C) l’endomorphisme de Mn(C) :

TA : M 7−→ AM −MA.

3. On suppose pour cette question que A est diagonalisable. Donner le spectre de
TA.

4. La matrice A n’est plus nécessairement diagonalisable. Donner le rang maximal
de TA.

5. Montrer que TA possède une unique valeur propre si et seulement si A possède
une unique valeur propre.
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2293 Mines-Télécom MP 2022

Dans tout l’exercice, on considère A une matrice antisymétrique de Mn(R).
1. Montrer que :

∀X ∈ Mn×1(R), XTAX = 0.

2. Qu’en déduire des valeurs propres réelles de A ? À quelle condition A est-elle
diagonalisable ?

3. On pose M = A+ In.
(a) Montrer que M est inversible.
(b) La matrice M st-elle diagonalisable ?

4. Montrer que K = M−1MT est orthogonale.
5. Soit B une matrice symétrique réelle dont les valeurs propres sont strictement

positives. Montrer que A+B est inversible.

2294 Mines-Télécom PSI 2023

Soit A = (aij) ∈ Mn(R) telle que :

∀(i; j) ∈ [[1 ;n]]2, aij = ij2.

1. Déterminer le rang de A et déterminer ses valeurs propres sans calculer le poly-
nôme caractéristique.

2. En déduire que A est diagonalisable.
3. Déterminer une base de vecteurs propres de A.

2295 X MP 2016

Soit E et F des espaces vectoriels réels de dimensions finies (a priori différentes). Soit
p ⩾ 2 et f une application p-linéaire de Ep dans F . On dira que f est antisymétrique
si

∀σ ∈ Sp, ∀(x1; x2; . . . ;xp) ∈ Ep, f(xσ(1); xσ(2); . . . ;xσ(p)) = ε(σ)f(x1; x2; . . . ;xp).

1. Montrer qu’il existe un espace vectoriel Λp(E) et une application p-linéaire al-
ternée Λ de Ep dans Λp(E) telle que, pour toute application f p-linéaire anti-
symétrique de Ep dans F :

∃!φ : Λp −→ F, f = φ ◦ Λ.

2. Montrer que Λp(E) est défini à isomorphisme près.
3. Montrer que (x1; . . . ;xp) ∈ Ep est lié si, et seulement si, Λ(x1; . . . ;xp) = 0.

2296 X MP 2019

Soit f : R → R continue et bornée. On suppose que Vect({x 7→ f(x+ k) | k ∈ Z}) est
de dimension finie. Que dire de f ?
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2297 Centrale-Supélec PSI 2026

1. Soit E et F deux C-espaces vectoriels de dimension finie. Quelle est la dimension
de L(E,F ) ?

2. Soit p formes linéaires f1, . . . , fp sur un C-espace vectoriel E de dimension finie
n ∈ N∗. Montrer que les propositions suivantes sont équivalentes :
i) La famille {f1; . . . ; fp} est libre.
ii) L’application

φ : E −→ Cp

x 7−→ (f1(x); . . . ; fp(x))
est surjective.

iii) Il existe une famille {x1; . . . ;xp} d’éléments de E telle que :

det((fj(xi))i,j) =

∣∣∣∣∣∣∣∣
f1(x1) · · · fp(x1)

... ...
f1(xp) · · · fp(xp)

∣∣∣∣∣∣∣∣ ̸= 0.

3. Montrer que :
n⋂

i=1
Ker(fi) ⊂ Ker(f) ⇐⇒ f ∈ Vect({f1; . . . ; fp}).

2298 X MP 2017

Donner toutes les formes linéaires de M2n+1(R) invariantes par conjugaison par le
groupe orthogonal, i.e. toutes les formes linéaires ℓ telles que, pour toute matrice A et
toute matrice orthogonale P , on ait ℓ(P−1AP ) = ℓ(A).

2299 Centrale-Supélec MP 2022

Soit E un C-espace vectoriel de dimension n ∈ N∗. On note L(E) l’ensemble des
endomorphismes de E et on note E∗ son dual, i.e. l’espace des formes linéaires sur
E. On se donne A ⊆ L(E). On dit que A est trigonalisable s’il existe une base de
trigonalisation commune à tous ses éléments. On suppose dans tout l’exercice que les
éléments de A commutent deux à deux.

1. On définit, pour u ∈ L(E), l’application suivante :

Tu : E∗ −→ E∗

φ 7−→ φ ◦ u

Montrer que Tu ∈ L(E∗).
2. Donner un condition sur u et v de L(E) pour que Tu et Tv commutent.
3. Montrer que les endomorphismes de A admettent un vecteur propre commun.
4. En déduire que A est trigonalisable.
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2300 CCINP MP 2021

Soit M =

−1 3 −8
1 −2 7
1 −2 6

 ∈ M3(R).

1. Déterminer le polynôme caractéristique de M .
2. La matrice M est-elle diagonalisable ?
3. Calculer (M − I3)3 et en déduire le calcul de Mn pour tout n ∈ N.
4. Montrer que la suite

(
1

n2M
n
)

n⩾1
converge. On note A sa limite.

5. Soit X0 ∈ M3×1(R). On définit la suite (Xn)n⩾1 par Xn = MnX0.

On notera Xn =

xn

yn

zn

.

(a) Montrer que si X0 ̸= 0, alors Xn ̸= 0 pour tout n ∈ N.
(b) Montrer que si x0 − y0 + 3z0 ̸= 0, alors la série de terme général

n√
x2

n + y2
n + z2

n

diverge.

2301 Centrale-Supélec PC 2015

Soit E et F deux espaces vectoriels de dimensions respectives n et p, avec n > p. Soit
u ∈ L(E,F ) et v ∈ L(F,E), tels que u ◦ v = IdF . Montrer que v ◦ u est un projecteur,
puis déterminer son noyau, son image et son rang.

2302 X MP 2017

On considère l’application φ : Mn(C) → C[X] qui à une matrice M associe φ(M) le
polynôme minimal (en degré) tel que φ(M)(M) = eM .

1. Montrer que φ est bien définie.
2. Quels sont les points de continuité de φ ?

2303 CCINP MP 2017

Soit A une matrice complexe d’ordre n telle qu’il existe p ∈ N∗ vérifiant Ap = 0.
1. Déterminer le polynôme caractéristique de A.
2. Montrer que An = 0.
3. Prouver que det(A+ In) = 1.
4. Soit M une matrice complexe inversible d’ordre n qui commute avec A.

(a) Que peut-on dire de AM−1 ?
(b) Démontrer que det(A+ In) = det(M).
(c) L’égalité reste-t-elle valable si M est seulement inversible ?
(d) L’égalité reste-t-elle valable si seulement M commute avec A ?
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2304 Mines-Ponts MP 2017

Soit A ∈ Mn(R) telle que Tr(A) = 0 et A3 − A2 − A− 2In = 0.
1. Montrer que n est un multiple de 5.
2. Cas particulier : n = 5.

Montrer que A est semblable à diag(2,m,m), où m =
(

0 −1
1 −1

)
.

3. Cas général : réduire A.

2305 X MP 2015

Soit A ∈ Mn(C) et λ < 0 une valeur propre de AA. Montrer que λ est de multiplicité
paire. En déduire que det(In + AA) ⩾ 0.

2306 CCINP PSI 2019

Soit
φ : R3[X]2 −→ R

(P ;Q) 7−→
∫ 1

−1
P (t)Q(t) dt

1. Montrer que φ est un produit scalaire.
2. À l’aide de la méthode de Schmidt, trouver une base orthonormale de R3[X],

notée (Q0;Q1;Q2;Q3).
3. Soit P dans R3[X] tel que ∥P∥ = 1. Montrer que :

sup{|P (x)| | x ∈ [−1 ; 1]} ⩽ 2
√

2.

Indication : calculer, pour i ∈ [[0 ; 3]], Mi = sup{|Qi(x)| | x ∈ [−1 ; 1]}.
4. Peut-il y avoir égalité ?

2307 TPE/EIVP PSI 2015

Soit A une matrice telle que A ∈ Sn(R). Soit l’endomorphisme :

φ : Mn(R) −→ Mn(R)
M 7−→ AM −MA

On définit le produit scalaire classique sur les matrices.
1. Montrer qu’il existe une famille (X1; . . . ;Xn) de vecteurs de Mn×1(R) propres

pour A telle que :

∀(i; j) ∈ [[1 ;n]]2, XT
i Xj = 0 si i ̸= j et XT

i Xj = 1 si i = j.

2. Soit (Mij) telle que :

∀(i; j) ∈ [[1 ;n]]2, Mij = XiX
T
j .

Montrer que la famille des Mij est une base orthonormale de vecteurs propres
pour φ.

3. Quel est le rang de φ ?

469



2308 CCINP PC 2022

Soit a ∈ C∗ et

A =


1 a a2 a3

a−1 1 a a2

a−2 a−1 1 a
a−3 a−2 a−1 1

 .
1. Montrer que Sp(A) = {0; 4}.
2. Montrer que A est diagonalisable.

2309 X MP 2013

Soit K un corps, E un K-espace vectoriel de dimension finie et f un endomorphisme
de E vérifiant f ◦ f = 0. Montrer qu’il existe h et g des endomorphismes de E tels que
f = g ◦ h et h ◦ g = 0.

2310 Centrale-Supélec MP 2015

Soit m,n deux entiers naturels non nuls.
Pour une matrice A ∈ Mn(C), on pose A∗ = A

T .
On dit que A vérifie la propriété (P ) si, et seulement si,

m∑
k=0

(
m

k

)
(A∗)kAm−k = 0.

1. Montrer que, si A est nilpotente d’indice p tel que 2p ⩽ m + 1, alors A vérifie
la propriété (P ).

2. Déterminer les matrices réelles vérifiant (P ) telles que AA∗ = A∗A.
3. Pour X, Y appartenant à Cn, on pose ⟨X,Y ⟩ = X

T
Y . Soit X,Y appartenant

à Cn. En s’aidant de la fonction définie par ϕ(t) = ⟨etAX, etAY ⟩ pour tout t
appartenant à R, montrer que l’application t 7→ etA∗etA est à coefficients poly-
nomiaux.

2311 Centrale-Supélec MP 2017

On pose E = C([0 ; 1],R) et T de E dans E tel que :

∀f ∈ E, ∀x ∈ [0 ; 1], T (f)(x) = 1
2

(
f
(
x

2

)
+ f

(
x+ 1

2

))
.

1. Montrer que T est un endomorphisme de E et que pour tout f dans E, on a :∫ 1

0
T (f)(x) dx =

∫ 1

0
f(x) dx.

2. Pour tout entier naturel d, on pose Ed = Rd[X]. On note Td la bi-restriction de
T à Ed. Montrer que Td est diagonalisable, en donner les valeurs propres et les
sous-espaces propres associés.

3. Montrer que pour tout élément f de E, la suite de fonctions (T n(f))n∈N converge
uniformément vers la fonction constante égale à

∫ 1

0
f(x) dx.
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2312 ENSEA/ENSIIE MP 2019

Soit A =

 4 −4 2
4 −6 4

−2 4 0

 ∈ M3(R).

1. (a) Calculer A2 + 4A− 12I3.
(b) En déduire le polynôme minimal et le polynôme caractéristique de A.
(c) La matrice A est-elle diagonalisable ? Le cas échéant, la diagonaliser.

2. Calculer An pour tout n ∈ N.

2313 Mines-Ponts MP 2019

Soit A ∈ Mn(R) telle que Tr(A) > 0, et x : R → Rn, telle que :

∀t ∈ R, x′(t) = Ax(t) et lim
t→+∞

x(t) = 0Rn .

Montrer qu’il existe une forme linéaire non nulle ℓ, telle que, pour tout t ∈ R, l’on ait
ℓ(x(t)) = 0.

2314 Centrale-Supélec MP 2022

1. Soit A = (aij)1⩽i,j⩽n une matrice de Mn(R) symétrique, à valeurs propres λk

strictement positives. Soit φ : R∗
+ → R une fonction convexe.

(a) Montrer que
n∑

i=1
φ(aii) ⩽

n∑
i=1

φ(λi).

(b) Montrer que det(A) ⩽
n∏

i=1
aii.

2. Soit A une matrice quelconque de Mn(R). Montrer que :

|det(A)| ⩽
n∏

i=1

√√√√ n∑
i=1

|aij|2.

On supposera par la suite que ce résultat est aussi valable dans Mn(C).
3. On note D la boule fermée de C, de rayon 1. Déterminer :

sup
(z1;...;zn)∈Dn

∏
1⩽i<j⩽n

|zj − zi|.

2315 Mines-Télécom PSI 2022

Soit A = (aij) ∈ GLn(R). On pose A−1 = (bij). Soit encore J ∈ Mn(R) la matrice dont
tous les coefficients valent 1.

1. Donner les coefficients de M = JA−1. Déterminer le rang de M .
2. Montrer que :

det(A− J) =
1 −

n∑
i=1

n∑
j=1

bij

 det(A).
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2316 CCINP PC 2023

Soit E un C-espace vectoriel de dimension finie, f et g deux endomorphismes non nuls
de E, a et b deux complexes (a non nul) tels que :

f ◦ g − g ◦ f = af + bg.

On note ϕg l’endomorphisme de L(E) qui à u associe :

ϕg(u) = u ◦ g − g ◦ u.

Pour les quatre premières questions, on suppose que b = 0.
1. Montrer que Ker(f) est stable par g.
2. Montrer que pour tout n ∈ N∗, on a ϕg(fn) = anfn.
3. Montrer qu’il existe un entier k ⩾ 2 tel que fk = 0.
4. Soit u l’endomorphisme induit de g sur Ker(f). Montrer que u admet un vecteur

propre et que f et g ont un vecteur propre commun.
5. On suppose que b ̸= 0. Montrer que f et g ont un vecteur propre commun.

2317 Mines-Ponts MP 2024

Soit E un K-espace vectoriel de dimension finie n ⩾ 2 et u ∈ L(E) nilpotente d’indice
r ⩾ 2.

1. Montrer qu’il existe x0 ∈ E tel que F = {x0;u(x0); . . . ;ur−1(x0)} soit libre.
2. Montrer qu’il existe φ ∈ E∗ tel que φ(ur−1(x0)) = 1 et φ(uk(x0)) = 0 pour tout
k ∈ [[0 ; r − 2]].

On pose, pour tout y ∈ E, v(y) = φ(y)x0 et p =
r−1∑
k=0

uk ◦ v ◦ ur−1−k.

3. Calculer p(x) pour x ∈ V = Vect(F), puis montrer que Ker(p) est un supplé-
mentaire de V stable par p.

4. En déduire l’existence d’une base B de E telle que :

(f)B
B =



0 · · · 0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
... 0 . . . 1
... 0
... ...
0 · · · · · · · · · · · · · · · 0


.

2318 Mines-Ponts PSI 2024

Si A ∈ Mn(C), le commutant de A est défini par :

C(A) = {M ∈ Mn(C) | AM = MA}.

Montrer que pour tout M ∈ Mn(C) on a dim(C(A)) ⩾ n, et chercher les cas d’égalité.
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2319 X MP 2013

Soit t ∈ R∗
− et M = (exp(t|j − i|))1⩽i,j⩽n. Montrer que M ∈ S++

n (R).

2320 Mines-Télécom MP 2024

Soit E =
(
1 0 · · · 0

)T
∈ Mn×1(R).

1. Montrer que

{M ∈ Mn(R) | E est un vecteur propre de M}

est un sous-espace vectoriel de Mn(R) et donner sa dimension.
2. Même question avec une autre colonne X ∈ Mn×1(R) non nulle.

2321 Mines-Ponts MP 2024

Soit u ∈ L(R4) tel que son polynôme caractéristique vérifie :

χu(X2) = χu(X) · χu(X − 1).

Déterminer les sous-espaces vectoriels de R4 stables par u.

2322 Mines-Ponts MP 2019

1. Pour A,B dans Mn×p(R), montrer que rang(A+B) ⩽ rang(A) + rang(B).

2. Soit V1, . . . , Vk des matrices colonnes telles que
k∑

i=1
ViV

T
i = In.

Montrer que k ⩾ n.

2323 Mines-Ponts MP 2025

Trouver les matrices M ∈ M2(R) telles que :

M3 + 2M =
(

3 5
0 −12

)
.

2324 Mines-Ponts MP 2025

Soit n > 1 et A,B deux matrices de Mn(R) qui vérifient :

rang(AB −BA+ In) = 1.

1. On pose X = AB −BA. Montrer que :

Tr(X2) = 2Tr(ABAB) − 2Tr(A2B2).

2. En déduire que :
Tr(ABAB) − Tr(A2B2) = n(n− 1)

2 .

On pourra déterminer les valeurs propres de X.
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2325 Mines-Ponts MP 2025

Soit n ∈ N∗ et A ∈ An(R).
1. Montrer que Sp(A) ⊂ iR.
2. Montrer que si A est inversible, alors rang(A) est pair.
3. Montrer que pour tout A ∈ An(R), P = (In + A)(In − A)−1 ∈ On(R).
4. On considère l’application :

f : An(R) −→ On(R)
A 7−→ (In + A)(In − A)−1

Montrer que f est une application bijective.
5. Dans cette question on considère n = 2.

Pour A ∈ SO2(R), trouver B ∈ A2(R) telle que (In +B)(In −B)−1 = A.

2326 Mines-Ponts MP 2016

On considère deux matrices A,B ∈ Mn(Z) telles que :

∀k ∈ [[0 ; 2n]], det(A+ kB) ∈ {−1; 1}.

1. Calculer det(A) et det(B).
2. Montrer que A−1 est à coefficients entiers.

2327 CCINP MP 2018

Soit H la matrice dont tous les coefficients valent 1, A la matrice avec que des 1 sauf
sur la diagonale où il n’y a que des b, où b ∈ R.

1. Les matrices H et A sont-elles diagonalisables ?
2. Déterminer les valeurs propres et les vecteurs propres de H.
3. Calculer det(A).

2328 ENS MP 2019

Soit n ∈ N, n ⩾ 2 et A,B ∈ Mn(R). Prenons aussi une famille (ti)1⩽i⩽n+1 de réels
distincts. Montrer que les deux propositions suivantes sont équivalentes :

i) ∀i ∈ [[1 ;n+ 1]], det(A+ tiB) = 0 ;
ii) il existe W et V , deux sous-espaces vectoriels de Rn, tels que A(V ) ⊂ W et

B(V ) ⊂ W , avec dim(W ) < dim(V ).

2329 Mines-Ponts MP 2019

Soit n ∈ N∗ et (x1; . . . ;xn) ∈ [0 ; π]n.
On définit Mn = (mij) ∈ Mn(R) par mij = cos ((j − 1)xi) pour tout (i; j) ∈ [[1 ;n]]2.
On pose :

pn =
∏

1⩽i<j⩽n

(cos(xi) − cos(xj)) .

1. Montrer que, pour tout (i; j) ∈ [[1 ;n]]2, cos ((j − 1)xi) est un polynôme en
cos(xi) dont on précisera le terme dominant.

2. Calculer det(Mn) en fonction de pn.
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2330 Centrale-Supélec PC 2019

On considère une matrice A = (aij)0⩽i,j⩽n de Mn+1(R) ainsi q’un vecteur colonne
B = (bi)0⩽i⩽n de M(n+1)×1(R).

1. Trouver une condition nécessaire et suffisante pour que l’équation AX = B,
d’inconnue X ∈ M(n+1)×1(R), admette une unique solution.

2. On suppose que cette condition est vérifiée et on note X = (xi)0⩽i⩽n l’unique
solution de cette équation. Montrer alors l’égalité

x0 = det(A0)
det(A) ,

où A0 est la matrice obtenue en remplaçant la première colonne de A par B.
3. On pose a0 = 1 et b0 = 0. On considère un élément (a1; . . . ; an) de Rn. On se

donne des entiers b1, . . . , bn strictement positifs et tous distincts. On suppose
qu’il existe un polynôme P tel que :

(1 −X)nP (X) =
n∑

k=0
akX

bk .

Exprimer P (1) en fonction des bk seulement.

2331 Mines-Télécom MP 2021

1. Soit K le corps réels ou des complexes, et A ∈ Mn(K). Donner la définition
d’une valeur propre de A et du polynôme caractéristique de A. Quel est le lien
entre ces deux notions ? La matrice A admet-elle toujours une valeur propre ?

2. Soit λ une valeur propre de A. Soit P un polynôme annulateur de A. Que peut-
on dire de P (λ) ? Justifier.

3. Soit A ∈ Mn(R) telle que A2 +A+ In = 0. Que peut-on dire des valeurs propres
réelles de A ? Et des valeurs propres complexes ?

2332 Mines-Télécom MPI 2023

Soit E un espace vectoriel réel et u ∈ L(E) tel que Sp(u) = {λ1; . . . ;λp} avec les λk

deux à deux distincts, et

P =
p∏

k=1
(X − λk).

1. Donner une condition nécessaire et suffisante sur P pour que u soit diagonali-
sable. Prouver-le.

2. Existe-t-il dans R7 un endomorphisme u tel que (X − 1)(X2 + 1) annule u et
Tr(u) = 0 ?

3. Soit u un endomorphisme de R7 tel que (X − 1)(X2 + 1) annule u. Déterminer
det(u).
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2333 Mines-Télécom MP 2022

Soit n ∈ N∗ et X ∈ Mn(R) telle que XXTX = −In.
1. Montrer que X est symétrique.
2. Déterminer X.

2334 CCINP MP 2024

Soit A ∈ Mn(C) inversible.
1. Soit P ∈ C[X] annulateur de A2 (de degré p ∈ N∗) et λ1, . . . , λp les racines de
P comptées avec leur multiplicité. On pose Q(X) = P (X2). Que peut-on dire
de Q ? Exprimer Q sous forme d’un produit d’irréductibles.

2. Montrer que A est diagonalisable si et seulement si A2 est diagonalisable.

3. Soit M =
(

0 A
A 0

)
. Montrer que M est diagonalisable si et seulement si A est

diagonalisable.

2335 CCINP MP 2016

Soit a ∈ R∗
+, E = C([0 ; a],R) et F = {f ∈ E | f de classe C2, f(0) = f(a) = 0}.

1. Démontrer que F est un sous-espace vectoriel de E.
2. Soit

D : F −→ E
f 7−→ f ′′

Déterminer Ker(D) et Im(D).

2336 X MP 2015

Soit A ∈ Mn(C). Montrer que son polynôme caractéristique est égal à son polynôme
minimal si et seulement s’il existe un vecteur x ∈ Cn tel que {x;Ax;A2x; . . . ;An−1x}
soit une base de Cn.

2337 X MP 2015

Soit k ∈ N∗ et pk le nombre de partitions de {1; 2; . . . ; k}. Exprimer, en fonction des pk,
le nombre de classes de similitude d’endomorphismes de Cn de polynôme caractéristique
P fixé.

2338 CCINP PSI 2019

1. Soit M ∈ Mn(C). On note λ1, . . . , λn ses valeurs propres complexes. Montrer
que Tr(M2) = ∑n

k=1 λ
2
k.

2. On suppose n ⩾ 3. Soit

A =



1 1 · · · 1 1
1 0 · · · 0 1
... ... ... ...
1 0 · · · 0 1
1 1 · · · 1 1

 ∈ Mn(C).

Déterminer les valeurs propres et le noyau de A.
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2339 Mines-Télécom PSI 2019

Soit u un endomorphisme d’un espace vectoriel réel de dimension finie impaire qui
vérifie u3 + u = 0. L’endomorphisme u est-il bijectif ?

2340 Mines-Ponts MP 2016

Soit A ∈ On(R), telle que 1 n’est pas valeur propre de A.

1. Étudier la convergence de la suite
(

1
m+ 1

m∑
k=0

Ak

)
m∈N

.

2. Étudier la convergence de la suite (Am)m∈N.

2341 Mines-Télécom MP 2017

Soit E un espace vectoriel quelconque et p un endomorphisme de E tel que p ◦ p = p.
Démontrer que Ker(p) ⊕ Im(p) = E. Qu’en déduit-on pour p ?

2342 Mines-Ponts MP 2018

1. Soit A,B,C,D ∈ Mn(R). On suppose que A et C commutent. Montrer que :

det
((

A B
C D

))
= det(AD −BC).

2. Soit M,N ∈ Mn(R) deux matrices qui commutent. Montrer l’équivalence sui-
vante :

Ker(M) ∩ Ker(N) = {0} ⇐⇒ Im(M) + Im(N) = Rn.

2343 Mines-Télécom PSI 2019

Soit A ∈ Mn(R) telle que :

∀(i; j) ∈ [[1 ;n]]2, aij =
1 si i ̸= j

0 si i = j

Montrer que A est inversible et calculer son inverse.

2344 X ESPCI PC 2013

Soit A ∈ Mn(R) telle que, pour tout X ∈ Mn×1(R), XTAX = 0.
Montrer que Tr(A) = 0, que det(A) ⩾ 0, et que det(A) = 0 si n est impair.

2345 Mines-Ponts PSI 2014

Soit a, b ∈ R et M(a; b) ∈ Mn(R) tridiagonale définie comme suit :
• mi,i = a+ b

• mi,i+1 = ab

• mi+1,i = 1
Calculer det(M(a; b)).
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2346 CCINP MP 2016

On considère un C-espace vectoriel E. Un endomorphisme u de E est nilpotent s’il
existe k ∈ N∗ tel que uk−1 ̸= 0 et uk = 0. Soit u un endomorphisme nilpotent de E.

1. Montrer que χu(X) = Xn.
2. Soit v un automorphisme de E commutant avec u. On définit f = u+v. Montrer

que Sp(f) = Sp(v).
3. Montrer que w = v−1 ◦ u est nilpotent.
4. En déduire que det(f) = det(v).

2347 Mines-Télécom MP 2017

Soit M ∈ Mn(R) tridiagonale définie comme suit :
• tous les éléments au-dessus de la diagonale sont égaux à un réel a ;
• ceux au-dessous de la diagonale sont égaux à un réel b ;
• sur la diagonale on trouve les réels r1, . . . , rn.

Calculer det(M).

2348 Mines-Ponts PC 2019

Soit a et b deux réels. Pour tout n ∈ N∗, on note M(a; b) la matrice de Mn(R) dont les
coefficients diagonaux valent a et les autres b. Calculer det(M(a; b)).

2349 X MP 2022

Soit X un ensemble, soit f1, . . . , fn et g1, . . . , gn des fonctions de X dans R, telles que :

∀x1, . . . , xn ∈ X, det ((fi(xj))1⩽i,j⩽n) = det ((gi(xj))1⩽i,j⩽n) .

Que peut-on dire sur f et g ?

2350 CCINP MP 2025

Soit E = Rn[X] muni du produit scalaire suivant :

⟨P,Q⟩ =
∫ 1

0
P (t)Q(t) dt.

1. Soit Q tel que :
∀x ∈ R, Q(x) =

∫ 1

0
(x+ t)nP (t) dt.

Montrer que Q ∈ E.
On note u l’application définie par u(P ) = Q.

2. Montrer que u ∈ L(E), puis que u est bijective.
3. Pour tous i, j ∈ {0; . . . ;n}, i ̸= j, calculer ⟨X i, u(Xj)⟩. Que peut-on en déduire

concernant u ?
4. Montrer qu’il existe une base orthonormale (P0;P1; . . . ;Pn) de E dans laquelle

on exprimera u(Pk).
5. Exprimer la trace de u en utilisant les Pk.
6. En déduire la trace de u.
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2351 CCINP MP 2015

Soit A ∈ M2n+1(R) dont l’endomorphisme canonique a vérifie :

a(e1) = e1 + e2n+1 et ∀i ∈ [[2 ; 2n+ 1]], a(ei) = ei−1 + ei.

1. Déterminer le polynôme caractéristique de A.
2. Montrer que A est inversible.
3. Écrire A−1 sous la forme d’un polynôme en A.
4. Déterminer les valeurs propres complexes de A.

Calculer
2n∏
i=0

cos
(

kπ

2n+ 1

)
.

2352 ENSAM PSI 2015

Soit A =

a b b
b a b
b b a

 avec a et b complexes.

1. Étudier la diagonalisabilité de A.
2. Déterminer ses sous-espaces propres.

2353 Mines-Ponts MP 2013

Pour a1, . . . , ap dans Rn muni du produit scalaire ⟨·, ·⟩ et de sa norme associée ∥·∥, on
définit :

G(a1; . . . ; ap) = det
(
(⟨ai, aj⟩)1⩽i,j⩽p

)
.

Montrer que cette quantité est positive, qu’elle est nulle si et seulement si la famille
{ai}1⩽i⩽p est liée, et enfin montrer que l’on a :

G(a1; . . . ; ap) ⩽ ∥a1∥2 · · · ∥ap∥2.

2354 Mines-Ponts MP 2013

Soit A,B ∈ Mn(C).
1. On suppose que pour toute matrice M ∈ Mn(C), on a l’égalité polynomiale :

det(AM +B −XIn) = det(AM −XIn).

(a) Montrer que B est nilpotente.
(b) Montrer que, pour tout M ∈ Mn(C), Tr(AMB) = 0 et en déduire que

BA = 0.
2. Réciproquement, on suppose que B est nilpotente et que BA = 0. Montrer que

pour toute matrice M ∈ Mn(C), les polynômes caractéristiques de AM + B et
de AM sont égaux.

2355 Mines-Télécom MP 2016

Énoncer et démontrer le théorème du rang.
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2356 X MP 2013

Soit A ∈ Mn(C) non inversible.
1. Montrer que dim(Ker(A2)) ⩽ 2 dim(Ker(A)).
2. Montrer que les propositions suivantes sont équivalentes :

i) dim(Ker(A2)) = 2 dim(Ker(A)) ;
ii) Ker(A) ⊂ Im(A) ;
iii) A(Ker(A2)) = Ker(A) ;

iv) rang
((

A Id
0 A

))
= rang

((
A 0
0 A

))
.

2357 Mines-Télécom MP 2017

Soit E un espace vectoriel réel de dimension finie et soit u ∈ L(E) tel que u3 + u = 0.
1. Montrer que Im(u) est stable par u.
2. Soit v l’endomorphisme induit par u sur Im(u). Montrer que v est un isomor-

phisme et déterminer v−1.
3. En déduire que le rang de u est pair.

2358 X ESPCI PC 2015

Soit A ∈ M2(R) telle qu’il existe n > 0 tel que A2n soit égal à I2.
Montrer que A2 = I2 ou qu’il existe un entier naturel k tel que A2k = −I2.

2359 CCINP PC 2014

Soit f l’endomorphisme de R[X] défini par :

f(P ) = P (X + 1) − P (X).

1. On considère f3 l’endomorphisme de R3[X] défini par f3(P ) = f(P ). Écrire la
matrice de f3 dans la base canonique.

2. Soit P ∈ Ker(f).
(a) Montrer que pour tout n ∈ N, P (n) = P (0).
(b) En déduire que R(X) = P (X) − P (0) est constamment nul.
(c) En déduire le noyau de f .

3. On considère l’endomorphisme de Rn[X] défini par fn(P ) = f(P ).
(a) Calculer le noyau et l’image de fn.
(b) En déduire que fn est surjective.

4. Trouver l’ensemble des polynômes P tels que P (X + 1) − P (X) = X2.
5. Soit H = {P ∈ R[X] |

∫ 1
0 P (t) dt = 0}.

(a) Montrer que H est un hyperplan de R[X].
(b) Déterminer un supplémentaire de H dans R[X].
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2360 Mines-Ponts MP 2023

Soit A ∈ An(R).
1. Montrer qu’il existe O ∈ On(R) telle que

A = O−1
(

0 0
0 B

)
O,

où B est une matrice antisymétrique réelle inversible.
2. En déduire que le rang de A est pair.

2361 X PC 2025

Soit A ∈ S++
n (R) et B ∈ An(R).

Montrer que AB est diagonalisable dans Mn(C).

2362 Centrale-Supélec PC 2019

1. Montrer que toute matrice de Mp(C) est la limite d’une suite de matrices dia-
gonalisables.

2. Pour toute matrice A de Mp(C), prouver l’égalité χA(A) = 0.

2363 Mines-Télécom MP 2019

1. Soit n ∈ N∗, M ∈ Mn(C) et m le polynôme minimal de M , de degré d.
Montrer que pour tout k ∈ N, Mk ∈ Cd−1[M ], où

Cd−1[M ] = {P (M) | P ∈ C[X], deg(P ) ⩽ d− 1}.

2. En déduire exp(M).

2364 X ESPCI PC 2013

Soit t ∈ R∗ et A =


0 t t2

1
t

0 t
1
t2

1
t

0

.

Calculer An.

2365 X MP 2017

Soit (ai)1⩽i⩽n et (bj)1⩽j⩽n appartenant à Cn. Calculer, sous réserve d’existence et sans

utiliser de récurrence, le déterminant de la matrice M =
(

1
ai − bj

)
1⩽i,j⩽n

.

2366 ENSEA/ENSIIE PSI 2021

Soit m ∈ R et Am =

−1 m m
1 −1 0

−1 0 −1

 ∈ M3(R).

La matrice Am est-elle diagonalisable ?
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2367 CCINP MP 2016

Soit n ∈ N∗.
1. Soit A,B ∈ Mn(R). Que penser de l’information :

AB = 0 =⇒ A = 0 ou B = 0 ?

2. Soit A ∈ Mn(R) telle que A(A− In)2 = 0.
(a) Montrer que Tr(A) ∈ N.
(b) Déterminer A dans le cas où Tr(A) = 0.
(c) La matrice A est-elle forcément diagonalisable ?

2368 CCINP MP 2018

Soit E un K-espace vectoriel de dimension n et u ∈ L(E).
1. On suppose que F et G sont des sous-espaces vectoriels de E stables par u et

que E = F ⊕ G. On note v = u|F et w = u|G. Si f est un endomorphisme, πf

désigne son polynôme minimal.
(a) i. Justifier que χv et χw divisent χu.

ii. Justifier que πu et πw divisent πu.
(b) Montrer que πu = ppcm(πv, πw).

2. Soit P ∈ K[X]. Montrer que :

P (u) ∈ GL(E) ⇐⇒ P ∧ πu = 1.

2369 CCINP PSI 2025

Soit A ∈ Mn(R) telle que A commute avec A⊥.
1. Montrer que Ker(A) = Ker(A⊥).
2. Montrer que Ker(A) et Im(A) sont supplémentaires orthogonaux.

2370 X MP 2019

Résoudre dans M3(R) l’équation suivante :

X3 =

1 2 3
0 4 5
0 0 6

 .
2371 ENS MP 2018

Soit n > 1, A ∈ SLn(C) et Z(A) son centralisateur défini par :

Z(A) = {M ∈ SLn(C) | MA = AM}.

Montrer que Z(A) est infini.

2372 X MP 2019

Soit E un espace vectoriel de dimension finie et u un endomorphisme de E. On note
pour k ∈ N, dk = dim(Ker(uk)).
Montrer que la suite (dk)k∈N est concave, i.e. la suite (dk+1 − dk)k∈N est décroissante.
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2373 ENS MP 2019

Exhiber une famille libre d’éléments de Mn(R) commutative, et de cardinal
⌊
n2

4

⌋
+ 1.

2374 CCINP PC 2013

Soit E un espace vectoriel de dimension finie n. Soit u un endomorphisme de E de
rang 1. Montrer qu’il existe λ ∈ R tel que u2 = λu.

2375 X MP 2017

Soit S ∈ Sn(R). On appelle support de S et on note s(S) le sous-espace vectoriel
engendré par les vecteurs propres associés à des valeurs propres non nulles.

1. Montrer qu’il existe S+ et S− dans Sn(R) à supports orthogonaux telles que
S = S+ − S−.

2. Montrer l’existence et l’unicité de C ∈ S+
n (R) telle que C2 = STS = S2.

Montrer que C = S+ + S−.
On notera alors C = |S|.
Indication : pour l’unicité, on montrera que C et S2 commutent.

3. Soit E = {S ∈ S+
n (R) | Tr(S) = 1}.

(a) Dans le cas n = 2, montrer que S ∈ E si et seulement s’il existe a, b ∈ R tels

que a2 + b2 ⩽ 1 et S =
1
2

(
1 + a b
b 1 − a

)
.

(b) Dans ce cas, que devient dist(S;T ) pour T ∈ E ?
Donner une interprétation (en remarquant que E s’identifie au disque unité
dans R2).

4. Dans le cas général, montrer que :

dist(S;T ) = max
R projecteur
orthogonal

Tr(R(T − S)).

2376 CCINP MP 2018

Soit E un espace euclidien. On dit que f est un endomorphisme antisymétrique de E
si :

∀(x; y) ∈ E2, ⟨f(x), y⟩ = −⟨x, f(y)⟩.
1. Que dire de f 2 ? Montrer que ⟨f 2(x), x⟩ ⩽ 0 et que ⟨f(x), x⟩ = 0.
2. Que dire de A, matrice de f dans une base orthonormée ?
3. Calculer det(AT ) de deux manières différentes. En déduire que si f est inversible,

alors dim(E) est paire.
4. Montrer que les valeurs propres de f 2 sont réelles et négatives.

2377 Mines-Télécom MP 2024

Soit A ∈ Mn(R).
1. Donner la définition de exp(A).
2. Soit A ∈ An(R). Montrer que exp(A) ∈ SOn(R).
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2378 Centrale-Supélec MP 2024

Soit p ∈ N∗. On note E = Mp(K), où K = R ou K = C. On pose :

∀A ∈ E, ∥A∥ = max
1⩽i⩽p

p∑
j=1

|aij|.

1. (a) Montrer que ∥·∥ est une norme d’algèbre sur E.
(b) Donner la définition de eA ainsi que le type de convergence.
(c) Montrer qu’on a alors ∥eA∥ ⩽ e∥A∥.

2. Montrer que :

∀A,B ∈ E, ∀n ∈ N∗, ∥An −Bn∥ ⩽ nKn−1∥A−B∥,

où K = max(∥A∥; ∥B∥).
3. Étudier l’existence de :

lim
n→+∞

(
exp

(
A

n

)
exp

(
B

n

))n

.

Si cette limite existe, calculer-la.

2379 X MP 2013

Soit V un espace vectoriel et s ∈ L(V ) tel que rang(Id − s) = 1.
1. Donner une expression simple de s.
2. Soit G un sous-groupe de GL(V ) contenant s et tel que les seuls sous-espaces

vectoriels de V stables par tous les éléments de G sont {0} et V . Montrer que
l’ensemble des endomorphismes qui commutent avec tous les éléments de G est
constitué des homothéties de V .

2380 Mines-Ponts MP 2019

On note E = C∞((Rn,R) et E∗ son dual.
On définit D = {d ∈ E∗ | ∀(f ; g) ∈ E2, d(fg) = f(0)d(g) + g(0)d(f)}.

1. Montrer que D est un sous-espace vectoriel de E∗ non réduit à {0}.
2. Montrer que a ∈ Rn 7→ d0[·](a) est injective sachant que d0[·](a) : f 7→ d0f(a).
3. Donner une base de D.

Indication : on pourra utiliser la relation fondamentale de l’analyse pour l’ap-
plication t 7→ f(tx).

2381 CCINP MP 2022

Soit
u : Mn(R) −→ Mn(R)

X 7−→ −X + Tr(X)In

1. Déterminer un polynôme de degré 2 annulateur de u.
2. En déduire que u est diagonalisable et déterminer ses valeurs propres et ses

sous-espaces propres.
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2382 X-ENS Cachan PSI 2021

Soit E un espace euclidien de dimension n. Soit x1, . . . , xk ∈ E tels que pour tous i ̸= j,
⟨xi, xj⟩ < 0. Montrer que k ne peut pas être trop grand et déterminer cette limite.

2383 CCINP MP 2018

Soit A =
(

1 1
1 1

)
∈ M2(R).

1. La matrice A est-elle diagonalisable ?
2. (a) Donner les éléments propres de A et leur sous-espace propre associé.

(b) Déterminer l’ensemble des solutions de l’équation X2 +X = A.
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9 Dénombrement et probabilité

2384 X-ENS

1. Déterminer le nombre an de manières de recouvrir un damier de dimension 2×n
avec des pièces de dimension 1 × 2.

2. Montrer que si n est assez grand, an est la partie entière de

1
2 + 1√

5

(
1 +

√
5

2

)n+1

.

2385 Mines-Ponts MP 2021

Soit X et Y deux variables aléatoires indépendantes de même loi à valeurs dans R∗
+.

Montrer que E
(
X

Y

)
⩾ 1.

2386 X-ENS

Soit G un groupe fini non commutatif. Montrer que la probabilité que deux éléments
de G pris au hasard commutent est inférieure ou égale à 5

8 .

2387 Mines-Ponts

On suppose que la probabilité pn qu’une famille ait n enfants est donnée par :

Pour tout n ∈ N, pn = a · 2n

n! avec a ∈ R∗
+.

1. Trouver a.
2. Quelle est la probabilité que la famille ait au moins un garçon ?
3. La famille a exactement un garçon. Quelle est la probabilité qu’elle ait deux

enfants ?

2388 Mines-Ponts

Soit n ⩾ 2 un entier. On pose Ω = {1; . . . ;n}, ensemble qu’on munit de la probabilité
uniforme P. Soit d ∈ N∗ tel que d divise n. On note Dd l’ensemble des multiples de d
dans Ω.

1. Calculer P(Dd).

2. Soit n =
r∏

i=1
pαi

i la décomposition en nombres premiers de n. Les évènements

(Dpi
)i∈{1;...;r} sont-ils mutuellement indépendants ?

3. On note φ(n) le nombre d’éléments de Ω premiers avec n.

Montrer que φ(n)
n

=
r∏

i=1

(
1 − 1

pi

)
.
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2389 Mines-Ponts PC 2016

Une urne contient M pommes vertes et N pommes rouges. On les mange une par une et
on s’arrête quand on a mangé la dernière pomme rouge. Calculer la probabilité d’avoir
mangé toutes les pommes.

2390 X

On suppose que 80 hommes et 40 femmes défilent dans un ordre aléatoire. Montrer que
la probabilité de ne jamais avoir deux hommes et deux femmes successivement est de
l’ordre de 1 sur le nombre d’Avogadro.

2391 Mines-Ponts PC 2024

Soit Ω un univers au plus dénombrable.
1. Soit (Ω,A,P) un espace probabilisé.

Caractériser les évènements A indépendants de tout évènement B.
2. Existe-t-il une probabilité sur la tribu P (Ω) telle que tous les évènements de
P (Ω) sont mutuellement indépendants ? Le cas échéant, caractériser toutes ces
probabilités.

2392 ENS MP

Soit un tirage aléatoire indépendant avec probabilité uniforme de deux éléments de
Z/nZ. Quelle est la probabilité que le produit de ces deux nombres soit nul ?

2393 Mines-Ponts MP

Soit (Ω, T ,P) un espace probabilisé.
1. Soit (A1;A2) ∈ T 2. Calculer :

P(A1 ∪ A2) + P(A1 ∪ A2) + P(A1 ∪ A2) + P(A1 ∪ A2).

2. Soit n ∈ N∗ et (Ak)1⩽k⩽n ∈ T n. On pose Γn = {A1;A1} × · · · × {An;An}.
Calculer : ∑

(B1;...;Bn)∈Γn

P(B1 ∪ . . . ∪Bn).

2394 CCINP PSI 2021

Soit X1 et X2 des variables aléatoires indépendantes de même loi B(n, 1
2), où n ∈ N∗.

On pose A =
(
X1 1
0 X2

)
.

1. En développant de deux manières (1 +X)2n, montrer que

n∑
k=0

(
n

k

)2

=
(

2n
n

)
.

2. En déduire la probabilité que A soit diagonalisable.
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2395 Mines-Télécom MP 2024

Soit X1 et X2 des variables aléatoires indépendantes, de même loi G(p), où p ∈ ]0 ; 1[.

On pose A =
(
X1 1
0 X2

)
.

Calculer la probabilité que A soit diagonalisable.

2396 CCINP PC 2022

Soit X1 et X2 des variables aléatoires indépendantes telles que
X1 ∼ B(n, 1

4) et X2 ∼ B(n, 3
4).

On pose A =
(
X1 1
0 X2

)
.

1. Calculer la probabilité que A soit inversible.
2. Calculer la probabilité que A soit diagonalisable.

2397 Mines-Ponts PSI 2019

Soit Y une variable aléatoire à valeurs dans Z telle que :
• ∀n ∈ N, P (Y = n) = P (Y = −n)
• |Y | ∼ P(λ) (λ > 0)

On pose A =

 0 Y 1
Y 0 1
Y 1 0

 .
1. Donner la loi de rang(A).
2. Calculer la probabilité que A soit diagonalisable.

2398 Mines-Ponts PSI 2019

Soit X, Y, Z, T des variables aléatoires indépendantes identiquement distribuées de loi
de Bernoulli B(p).

On pose A =


X X X X
X Y Y Y
X Y Z Z
X Y Z T

 .
1. Donner la loi de Tr(A).
2. Calculer la probabilité que A soit inversible.
3. Calculer la probabilité que A soit diagonalisable.

2399 Centrale PC 2023

Soit X et Y des variables aléatoires indépendantes identiquement distribuées telles que
X ∼ Y ∼ P(λ) (λ > 0).

On pose A =
(

(−1)X 1
(−1)Y 1

)
.

1. Calculer la probabilité que A soit inversible.
2. Calculer la probabilité que A soit diagonalisable.
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2400 Mines-Télécom PC 2024

Soit X1, X2 et Y des variables aléatoires indépendantes telles que X1 ∼ X2,
P (Y = 1) = p, P (Y = −1) = 1 − p (p ∈ ]0 ; 1[).

On pose A =
(
X1 X2
Y X2 X1

)
.

1. On suppose que X1 + 1 ∼ G(1
3). Calculer la probabilité que A soit inversible.

2. On suppose que X1 ∼ P(λ) (λ > 0).
Calculer la probabilité que A soit diagonalisable.

2401 Mines-Ponts

Soit n ∈ N∗ et (Ai)1⩽i⩽n une famille d’évènements indépendants. Montrer que la pro-

babilité qu’aucun des Ai ne se réalise est majorée par exp
(

−
n∑

i=1
P(Ai)

)
.

2402 ENS PC 2019

On lance cinq dés à six faces. Chaque dé affichant un 6 est écarté. On recommence cela
jusqu’à ne plus avoir de dé et on note K la variable aléatoire égale au nombre d’étapes
de cette expérience. Pout tout n ∈ N, calculer P(K ⩽ n). En déduire la loi de K.

2403 X MP/PC PSI 2016

Soit n ∈ N∗. On munit Sn de la loi uniforme. On note Xn la variable aléatoire donnant
le nombre de points fixes d’un élément de Sn.

1. Calculer P(Xn = n).
2. Déterminer la loi de Xn.
3. Pour k ∈ N, déterminer lim

n→+∞
P(Xn = k).

4. Soit X une variable aléatoire suivant une loi de Poisson de paramètre 1. Montrer
que

lim
n→+∞

n∑
k=0

∣∣∣P(Xn = k) − P(X = k)
∣∣∣ = 0.

2404 CCP MP

Soit (Xi)i∈{1;...;n} une famille de variables aléatoires indépendantes suivant une loi de
Bernoulli de paramètre p. On pose, pour i ∈ {1; . . . ;n} :

Yi = 1 + (e − 1)Xi Sn =
n∑

i=1
ln(Yi) Mn =

(
n∏

i=1
Yi

) 1
n

.

1. Déterminer les lois de Yi et de ln(Yi).
(a) Montrer que E

(
tln(Xi

)
= GXi

(t) et que E
(
tln(Yi)

)
= Gln(Yi)(t).

(b) Calculer GSn(t).
(c) Donner E(Sn) et Var(Sn).

2. Trouver une relation entre Sn et Mn.
3. Calculer E(Mn) et E(M2

n) à l’aide de GSn , puis en déduire Var(Mn).
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2405 Mines-Ponts MP

Soit X une variable aléatoire discrète à valeurs strictement positives, avec X(Ω) fini.
Soit n ∈ N∗ et m ∈ [[1 ;n]]. Soit X1, . . . , Xn des variables aléatoires (mutuellement)
indépendantes suivant la loi de X. Calculer l’espérance de∑m

k=1 Xk∑n
k=1 Xk

.

2406 Mines-Ponts 2023

Soit α > 1 et ζ(α) =
+∞∑
k=1

1
kα

. (fonction zêta)

On définit la probabilité Pα sur N∗ par :

Pα ({n}) = 1
ζ(α)nα

.

Pour tout m ∈ N∗, soit Am = {qm | q ∈ N∗}.
1. Calculer Pα(Am).
2. Soit (pk)k⩾1 la suite croissante des nombres premiers. Montrer que les évène-

ments Apk
sont indépendants.

3. En déduire le produit eulérien :

ζ(α) =
+∞∏
k=1

(
1 − 1

pα
k

)−1

.

2407 CCP MP

On considère X1, . . . , Xn des variables aléatoires indépendantes suivant toutes des lois
de Bernoulli de paramètre pi non nécessairement tous égaux. Soit S =

n∑
i=1

Xi.

1. Calculer E(S) et Var(S).
2. Déterminer les valeurs de p1, . . . , pn pour que Var(S) soit maximale.
3. Déterminer la loi de S dans le cas où Var(S) est maximale, et calculer E(S) et

Var(S).

2408 Mines-Télécom MP 2023

On considère n tulipes qui ont chaque année une probabilité p ∈ ]0 ; 1[ de fleurir. Si une
tulipe fleurit une année, alors elle fleurira toutes les années suivantes. Soit les variables
aléatoires suivantes :

• Xi : année de la première floraison de la ième tulipe
• X : année à partir de laquelle toutes les tulipes ont fleuri
1. Exprimer X en fonction des Xi.
2. Donner la loi des Xi.
3. Si k ∈ N, calculer P(X > k).
4. En déduire que X est d’espérance finie et calculer E(X).
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2409 X MP 2023

SoitXn et Yn deux variables aléatoires indépendantes suivant la loi uniforme sur [[1 ;n]]2.
Pour tout r ∈ Q, soit un(r) = P(Xn ̸= Yn, (XnYn) de pente r). Trouver un équivalent
de un(r) pour n → +∞.

2410 CCINP MP 2025

Un homme peint un mur en étant placé sur un échafaudage, des passants passent
sous son échafaudage et ont chacun un probabilité p ∈ ]0 ; 1[ de se faire toucher par
une goutte de peinture. Soit X la variable aléatoire donnant le nombre de personnes
touchées en une journée et Y celui du nombre de personnes qui ne sont pas touchées.
On suppose que n personnes passent dans la journée.

1. Donner les lois de X et Y , puis dire si X etY sont indépendantes.
2. On suppose maintenant que N personnes passent dans la journée et que N suit

une loi de Poisson de paramètre λ > 0. Donner les lois de X et de Y , puis
l’espérance et la variance de X.

3. Montrer que X et Y sont indépendantes.
4. Calculer cov(X,N). Les variables X et N sont-elles indépendantes ?

2411 CCP

Soit N ∈ N∗ et p ∈ ]0 ; 1[. On pose q = 1 − p. On considère N variables aléatoires
X1, . . . , XN définies sur un même espace probabilisé (Ω,A,P) mutuellement indépen-
dantes et de même loi géométrique de paramètre p.

1. Soit i ∈ [[1 ;N ]] et n ∈ N∗. Déterminer P(Xi ⩽ n) puis P(Xi > n).
2. On considère la variable aléatoire Y définie par Y = min

1⩽i⩽N
(Xi).

(a) Soit n ∈ N∗. Calculer P(Y > n). En déduire P(Y ⩽ n) puis P(Y = n).
(b) Reconnaître la loi de Y . En déduire E(Y ).

2412 CCINP

On dispose de deux urnes U1 et U2. L’urne U1 contient deux boules blanches et trois
boules noires. L’urne U2 contient quatre boules blanches et trois boules noires. On
effectue des tirages successifs dans les conditions suivantes : on choisit une urne au
hasard et on tire une boule dans l’urne choisie. On note sa couleur et on la remet
dans l’urne d’où elle provient. Si la boule tirée était blanche, le tirage suivant se fait
dans l’urne U1. Sinon le tirage se fait dans l’urne U2. Pour tout n ∈ N∗, on note Bn

l’évènement « La boule tirée au nème tirage est blanche. » et on pose pn = P(Bn).
1. Calculer p1.
2. Prouver que, pour tout n ∈ N∗, pn+1 = − 6

35pn + 4
7 .

3. En déduire, pour tout entier naturel n non nul, la valeur de pn.
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2413 CCP MP

Soit n ∈ N∗. Une urne contient n boules blanches numérotées de 1 à n et deux boules
noires numérotées 1 et 2.
On effectuer le tirage une à une, sans remise, de toutes les boules de l’urne.
On note X la variable aléatoire égale au rang d’apparition de la première boule blanche.
On note Y la variable aléatoire égale au rang d’apparition de la première boule numé-
rotée 1.

1. Déterminer la loi de X.
2. Déterminer la loi de Y .

2414 CCP MP

Soit λ ∈ ]0 ; +∞[ et X une variable aléatoire discrète à valeurs dans N∗.
On suppose que pour tout n ∈ N∗,

P(X = n) =
λ

n(n+ 1)(n+ 2).

1. Décomposer en éléments simples la fraction rationnelle R définie par

R(x) =
1

x(x+ 1)(x+ 2).

2. Calculer λ.
3. Prouver que X admet une espérance, puis la calculer.
4. La variable aléatoire X admet-elle une variance ? Justifier.

2415 CCP MP

On admet, dans cet exercice, que :

∀q ∈ N,
+∞∑
k=q

(
k

q

)
xk−q converge et ∀x ∈ ]0 ; 1[,

+∞∑
k=q

xk−q = 1
(1 − x)q+1 .

Soit p ∈ ]0 ; 1[ et r ∈ N∗.
On dépose une bactérie dans une enceinte fermée à l’instant t = 0 (le temps est exprimé
en secondes).
On envoie un rayon laser par seconde dans cette enceinte.
Le premier rayon laser est envoyé à l’instant t = 1.
La bactérie a la probabilité p d’être touchée par le rayon laser.
Les tirs de laser sont indépendants.
La bactérie ne meurt que lorsqu’elle a été touchée r fois par le rayon laser.
Soit X la variable aléatoire égale à la durée de vie de la bactérie.

1. Déterminer la loi de X.
2. Prouver que X admet une espérance et la calculer.
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2416 CCP MP

Soit X et Y deux variables aléatoires définies sur un même espace probabilisé (Ω,A,P)
et à valeurs dans N. On suppose que la loi du couple (X;Y ) est donnée par :

∀(i; j) ∈ N2, P((X = i) ∩ (Y = j)) = 1
e 2i+1j! .

1. Déterminer les lois de X et de Y .
2. (a) Prouver que 1 + X suit une loi géométrique et en déduire l’espérance et la

variance de X.
(b) Déterminer l’espérance et la variance de Y .

3. Les variables X et Y sont-elles indépendantes ?
4. Calculer P(X = Y ).

2417 CCP MP

Dans une zone désertique, un animal erre entre trois points d’eau A,B et C.
À l’instant t = 0, il se trouve au point A.
Quand il a puisé l’eau du point où il se trouve, il part avec équiprobabilité rejoindre
l’un des deux autres points d’eau.
L’eau du point qu’il vient de quitter se régénère alors.
Soit n ∈ N.
On note An l’évènement « L’animal est en A après son nème trajet. ».
On note Bn l’évènement « L’animal est en B après son nème trajet. ».
On note Cn l’évènement « L’animal est en C après son nème trajet. ».
On pose P (An) = an, P (Bn) = bn et P (Cn) = cn.

1. (a) Exprimer, en le justifiant, an+1 en fonction de an, bn et cn.
(b) Exprimer, de même, bn+1 et cn+1 en fonction de an, bn et cn.

2. On considère la matrice A =


0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

 .
(a) Justifier, sans calcul, que la matrice A est diagonalisable.

(b) Prouver que −
1
2 est valeur propre de A et déterminer le sous-espace propre

associé.
(c) Déterminer une matrice P inversible et une matrice D diagonale de M3(R)

telles que D = P−1AP .
3. Montrer comment les résultats de la question 2 peuvent être utilisés pour calculer
an, bn et cn en fonction de n.

2418 Mines 2016

Soit X une variable aléatoire qui suit une loi géométrique de paramètre p ∈ ]0 ; 1[.

Montrer que
1
X

est bien définie et calculer son espérance.
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2419 CCP MP

Soit n ∈ N∗ et E un ensemble possédant n éléments. On désigne par P(E) l’ensemble
des parties de E.

1. Déterminer le nombre a de couples (A;B) ∈ (P(E))2 tels que A ⊂ B.
2. Déterminer le nombre b de couples (A;B) ∈ (P(E))2 tels que A ∩B = ∅.
3. Déterminer le nombre c de triplets (A;B;C) ∈ (P(E))3 tels que A,B et C soient

deux à deux disjoints et vérifient A ∪B ∪ C = E.

2420 CCP MP

1. Énoncer et démontrer la formule de Bayes pour un système complet d’évène-
ments.

2. On dispose de 100 dés dont 25 sont pipés (c’est-à-dire truqués). Pour chaque dé
pipé, la probabilité d’obtenir le chiffre 6 lors d’un lancer vaut 1

2 .
(a) On tire un dé au hasard parmi les 100 dés. On lance ce dé et on obtient le

chiffre 6. Quelle est la probabilité que ce dé soit pipé ?
(b) Soit n ∈ N∗.

On tire un dé au hasard parmi les 100 dés. On lance ce dé n fois et on obtient
n fois le chiffre 6. Quelle est la probabilité pn que ce dé soit pipé ?

(c) Déterminer lim
n→+∞

pn. Interpréter ce résultat.

2421 CCP 2016

Une machine à sous tire au hasard un entier n ∈ N∗ avec la probabilité 1
2n . (Si T est

l’entier tiré, P(T = n) = 1
2n ). Si le nombre tiré n est pair, le joueur gagne n points, si

le nombre tiré n est impair, le joueur perd n points.
1. Justifier qu’une telle loi de probabilité est cohérente. Quelle est la probabilité

que le joueur gagne ?
2. Soit G la variable aléatoire égale au gain du joueur. Calculer l’espérance de G.

2422 CCP 2016

Soit a > 0 et X une variable aléatoire qui a pour loi : ∀n ∈ N∗, P(X = n) =
a

n(n+ 1).

1. Déterminer la constante a.
2. La variable X admet-elle une espérance ? Une variance ? Expliciter sa fonction

génératrice.

2423 Mines-Télécom PC 2018

Soit deux urnes : la première contient 2 boules blanches et 3 boules noires et la seconde
4 blanches et 3 noires. On choisit un urne au hasard et on réalise un tirage avec remise :
si la boule tirée est blanche, on fait le tirage suivant dans l’urne 1 sinon dans l’urne 2.
Soit l’évènement : « Tirer une boule blanche au nème tirage. » et Pn = P(Bn).

1. Calculer P1.
2. Calculer Pn+1 en fonction de Pn.
3. Calculer Pn en fonction de n.
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2424 X PC 2019

On munit l’ensemble des permutations de {1; . . . ;n} de la distribution uniforme. On
note Pn la probabilité qu’une permutation n’ait aucun point fixe. Calculer Pn et sa
limite pour n → +∞.

2425 X ESPCI 2017

La durée de vie d’une ampoule électrique comptée en années est représentée par une
variable aléatoire X, à valeurs dans N∗, vérifiant, pour tout n ∈ N∗, P(X = n) = 1

2n .
Si l’ampoule fonctionne toujours au bout de n années, quelle est la durée moyenne
pendant laquelle elle fonctionnera encore ?

2426 TPE/EIVP 2016

Soit X une variable aléatoire à valeurs dans N∗ telle que, pour tout k ∈ N∗,

P(X = k) =
k − 1

2k
.

1. Vérifier par le calcul que
+∞∑
k=1

P(X = k) = 1.

2. Donner la fonction génératrice de X. Quel est son rayon de convergence ?
3. La variable X admet-elle une espérance finie ? Si oui, la calculer.

2427 CCP PSI

Deux joueurs jouent avec des pièces équilibrées. Ils lancent chacun n fois une pièce.
Celui qui gagne est celui qui obtient le plus grand nombre de fois pile. Quelle est la
probabilité qu’il y ait un gagnant ? On pourra utiliser (et éventuellement démontrer)

l’égalité
n∑

i=0

(
n

i

)2

=
(

2n
n

)
.

2428 Mines-Ponts PC

Soit X une variable aléatoire suivant une loi géométrique de paramètre p ∈ ]0 ; 1[.
Calculer E

(
1
X

)
.

2429 X ESPCI

On place aléatoirement n ⩾ 3 boules dans n urnes. Calculer la probabilité qu’une seule
urne soit vide.

2430 ENSEA/ENSIIE PSI

Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ. Montrer que :

E(|X − λ|) = 2e−λλ
N+1

N ! , avec N = ⌊λ⌋.

495



2431 Mines-Télécom

On pose une série de questions indépendantes, et on note pk la probabilité de répondre
correctement à la question k. On pose rk = p1 · · · pk.

1. On note X la variable aléatoire qui compte le nombre de questions justes avant
le premier échec. Déterminer la loi de X.

2. Montrer que E(X) =
+∞∑
k=0

P(X > k).

3. Montrer que X admet une espérance si et seulement si la série de terme général

rn converge. Prouver qu’on a alors E(X) =
+∞∑
n=1

rn.

2432 Centrale PC

Soit (Xn)n∈N∗ une suite de variables aléatoires discrètes, définies sur le même espace
probabilisé (Ω,A,P), mutuellement indépendantes, centrées et admettant un moment
d’ordre 2. On pose, pour tout n ∈ N∗, Sn = ∑n

k=1 Xk. On suppose, de plus, que
E(∑+∞

k=1 X
2
k) = σ ∈ R.

1. Montrer que, pour tout α ∈ R∗, pour tout n ∈ N∗,

P(|Sn| > α) ⩽ σ2

α2 .

2. Soit α ∈ R∗ et n ∈ N∗.
On note T1 la fonction indicatrice de l’ensemble (|S1| > α), et pour tout m ⩾ 2,
Tm la fonction indicatrice de l’ensemble ⋂m−1

k=1 (|Sk| ⩽ α)⋂(|Sm| > α).
(a) Montrer que ∑n

i=1 Ti est l’indicatrice de l’évènement :

∃k ∈ {1; . . . ;n}, |Sk| > α.

(b) Montrer que :
n∑

i=1
E(TiS

2
n) ⩽ σ2.

(c) Montrer que, pour tout k ∈ {1; . . . ;n} :

E(TkS
2
k) ⩽ E(TkS

2
n).

3. Montrer que :
P(∃k ∈ {1; . . . ;n}, |Sk| > α) ⩽ σ2

α2 .

Conclure que

P
(

sup
n∈N∗

|Sn| > α

)
⩽
σ2

α2 .

2433 Mines-Télécom PC 2017

Peut-on truquer deux dés (à 6 faces) pour que la somme suive une loi uniforme ?
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2434 X-ENS

Soit (Ω,A,P) un espace probabilisé. Montrer que, pour tout (A;B) ∈ A2,
∣∣∣P(A)P(B) − P(A ∩B)

∣∣∣ ⩽ 1
4 .

Quel est le cas d’égalité ?

2435 CCINP MP

Une puce se déplace sur un axe gradué d’origine O par bonds successifs d’une unité.
Elle peut aller à tout instant, soit à droite, soit à gauche, avec équiprobabilité. On note
Cn l’évènement : « La puce est en O après n sauts. ». On note P(C0) = 1.

1. Déterminer P(C2n+1) et P(C2n).

2. Calculer lim
n→+∞

P(C2n) en admettant que
(

2n
n

)
∼ 4n

√
nπ

.

3. La puce peut à présent se déplacer suivant deux directions (droite, gauche, haut,
bas) avec équiprobabilité.

(a) Montrer que P(C2n) =
(

2n
n

)2

·
(1

4

)2n

.

(b) Calculer lim
n→+∞

P(C2n).

2436 Mines-Télécom PSI 2024

Soit X et Y deux variables aléatoires indépendantes de même loi géométrique de pa-

ramètre p, avec p ∈ ]0 ; 1[. On pose Z =
X

Y
.

1. Montrer que Z ⩽ X et que Z admet une espérance et une variance finies.
2. Calculer l’espérance de Z.
3. Donner la loi de Z.

2437 Mines-Télécom MPI 2025

Soit une matrice aléatoire M ∈ M2(R) définie par :

M =
(
X X

−Y −Y

)
,

où X et Y sont deux variables indépendantes, suivant une même loi géométrique.
Déterminer la probabilité que la matrice M soit nilpotente.

2438 Mines-Ponts PC 2022

On choisit au hasard f : [[1 ;n]] → [[1 ;n− 1]], n ⩾ 2. Quelle est la probabilité que f soit
surjective ?

2439 Mines-Télécom PSI 2022

Soit X, Y, Z trois variables aléatoires mutuellement indépendantes suivant la loi uni-
forme sur [[1 ;n]]. Calculer P(X + Y = Z).
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2440 Mines-Télécom PSI 2024

On suppose que X et Y sont des variables aléatoires à valeurs dans N, telles que :

∀i, k ∈ N, P(X = i, Y = k) = a
i+ k

2i+k
.

1. Déterminer la valeur de a.
2. Déterminer les lois de X et Y .
3. Les variables X et Y sont-elles indépendantes ?
4. Calculer P(X = Y ).

2441 Mines-Télécom MP 2021

Soit k ∈ N.
1. Montrer que :

∀x ∈ ] − 1 ; 1[,
+∞∑
n=k

(
n

k

)
xn−k = 1

(1 − x)k+1 .

2. Soit p ∈ ]0 ; 1[. On pose :

∀n ⩾ k, P(n) =
(
n− 1
k − 1

)
pn(1 − p)n−k.

Montrer que P définit bien une loi de probabilité.

2442 Mines-Ponts MP 2016

On considère un meuble à huit tiroirs, dans lequel il peut se trouver un objet avec la
probabilité p. Lorsque cet objet est dans le meuble, il a autant de chances de se trouver
dans un tiroir que dans un autre. On a ouvert sept tiroirs du meuble sans trouver
l’objet. Calculer la probabilité que l’objet soit dans le meuble.

2443 ENSAE MPI 2025

Soit A2 l’ensemble des matrices carrées d’ordre 2 dont les coefficients sont contenus
dans {−1; 0; 1}. On munit A2 de la probabilité uniforme.

1. Quel est le cardinal de A2 ?
2. Quelle est la probabilité qu’une matrice de A2 soit inversible ?
3. Quelle est la probabilité que la matrice soit exactement de rang 1 ?

2444 TPE/EIVP MP 2017

Soit E un ensemble de cardinal n ⩾ 2. On tire au hasard et avec remise A,B des
parties de E, les deux tirages étant successifs et indépendants. Calculer la probabilité
que Card(A ∩B) = 1.

2445 Mines-Ponts MP 2024

Soit X une variable aléatoire discrète telle que E(|X|) = 0.
Montrer que X est presque-sûrement nulle, c’est-à-dire P(|X| > 0) = 0.
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2446 CCINP MP 2023

On obtient aléatoirement un entier strictement positif n avec un probabilité de 1
2n .

On note Ak l’évènement : « Le nombre n est un multiple de k. ».
1. Montrer qu’il s’agit bien d’une loi de probabilité sur N∗.
2. Calculer P(Ak).
3. Calculer P(A2 ∪ A3).

2447 Mines-Télécom MP 2024

On dispose de N coffres. Il y a une probabilité p que le trésor se trouve dans ces coffres.
Les coffres ont chacun la même probabilité de contenir le trésor. Sachant que le trésor
n’était pas dans les N − 1 premiers coffres, quelle est la probabilité qu’il soit dans le
dernier ?

2448 CCINP PSI 2025

On tire 5 cartes dans un jeu de 32 cartes. Soit X la variable aléatoire correspondant
au nombre de rois piochés (il y a 4 rois dans un jeu de 32 cartes).

1. Déterminer la loi de probabilité de X.
2. En admettant la formule de Vandermonde, déterminer l’espérance de X.

2449 Mines 2022

On considère une urne contenant n boules indiscernables au toucher, numérotées de 1
à n. On tire une poignée de boules. On replace cette poignée dans l’urne et on mélange.
On tire une deuxième poignée. Déterminer la probabilité que les deux poignées n’aient
aucune boule en commun.

2450 CCINP PC 2021

Des personnes se transmettent à la file une information. La première personne reçoit
l’information exacte ; ensuite, chaque personne transmet fidèlement l’information (telle
qu’elle l’a reçue, donc pouvant être ou non correcte) avec la probabilité p, ou transmet
l’information contraire de celle qu’elle a reçue avec la probabilité 1 − p. On note An

l’évènement « La nème personne reçoit correctement l’information initiale. », et l’on
pose pn = P(An). Exprimer pn+1 en fonction de pn, puis exprimer pn en fonction de n.

2451 ENS PC 2023

On lance une pièce de monnaie jusqu’à obtenir « pile », la probabilité d’obtenir « pile »
à chaque lancer étant p. On note ℓ le rang du lancer auquel « pile » est obtenu. Puis,
on lance ℓ fois un dé à 6 faces et pour gagner le jeu il faut obtenir 6 une seule fois.
Déterminer p de sorte que la probabilité de gagner soit maximale.

2452 Mines-Ponts MP 2023

Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ > 0. Soit
p ∈ N∗. On note Y le reste de la division euclidienne de X par p. Déterminer la loi de
la variable aléatoire Y .

499



2453 Mines PSI 2024

Soit X et Y des variables aléatoires indépendantes telles que X(Ω) = Y (Ω) = N et :

∀k ∈ N, P(X = k) = P(Y = k) = 1 + ak

4k! .

1. Déterminer a.
2. Déterminer l’espérance de X.
3. Déterminer la loi de X + Y .

2454 Mines-Télécom MP 2024

On considère une urne contenant n boules blanches et n boules noires. On pioche les
boules 2 par 2 et sans remise. Quelle est la probabilité que l’on tire exactement une
boule blanche et une boule noire à chaque tirage ?

2455 Mines-Télécom PC 2022

Soit X et Y deux variables aléatoires indépendantes qui suivent toutes les deux une loi
uniforme sur [[1 ;n]]. On note U = min(X;Y ) et V = max(X;Y ).

1. Rappeler la loi de X et son espérance.
2. Trouver la loi de V et son espérance.
3. Que vaut U + V ? En déduire l’espérance de U .

2456 CCINP TSI 2022

On considère un dé truqué à 2n faces, pour lequel la probabilité de tomber sur la face
k est proportionnelle à k3.

1. Montrer que
n∑

k=1
k3 = n2(n+ 1)2

4 .

2. Calculer la probabilité que le dé tombe sur la face k.

2457 Mines-Ponts MP 2022

Montrer qu’une intersection dénombrable d’évènements presque certains est un évène-
ment presque certain.

2458 X MP 2021

On considère une urne avec 10000 boules dont 6000 rouges et 4000 vertes. On effectue
des tirages successifs jusqu’à avoir tiré toutes les boules. Déterminer la probabilité que
l’on ait en permanence plus de boules rouges que de boules vertes durant ces tirages.

2459 Mines-Télécom MP 2024

Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ ⩾ 0. Soit Y une
variable aléatoire indépendante de X telle que Y (Ω) = {1; 2} et P(Y = 1) = P(Y = 2).
On pose Z = XY .

1. Donner l’espérance de Z.
2. Donner la loi de Z.
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2460 Mines-Télécom MP 2025

On a un QCM de 40 questions. Chaque question comporte 4 choix et 1 seule bonne
réponse existe. Un élève y répond au hasard. Chaque bonne réponse rapporte 3 points
et chaque mauvaise en fait perdre 1. On note les variables aléatoires Xi qui valent 1
si la réponse à la ième question est bonne, 0 sinon. On note Y la variable aléatoire qui
comptabilise le nombre de points.

1. Donner la loi de Xi.
2. Donner la loi de Y .
3. Calculer l’espérance de Y .
4. En utilisant l’inégalité de Pafnouti (Tchebychev), majorer p, la probabilité

d’avoir une note supérieure à 60.

2461 Mines-Ponts MP 2018

Soit r > 0. Pour tout k ∈ N, on pose :

P(X = k) = r
∫ 1

0
xk−1(1 − x)r dx.

1. Montrer que cette relation définit bien la loi d’une variable aléatoire.
2. Donner une condition sur r pour que l’espérance soit définie et la calculer.

2462 Mines-Ponts MP 2022

On considère 2p + 1 lumières disposées en cercle. À l’instant initial, seules deux lu-
mières adjacentes sont allumées. À chaque instant, on éteint toutes les lumières et,
pour chaque lumière qui était allumée à l’instant précédent, on allume une des deux
lumières adjacentes avec une équiprobabilité. On note N la variable aléatoire indiquant
le premier instant où une seule lumière est allumée. Déterminer la loi de N , puis son
espérance pour p = 2.

2463 Mines-Télécom PSI 2023

Une maladie circule dans la population et on note p la probabilité d’être contaminé.
La probabilité d’être contaminé par contagion (contact avec un malade) est égale à 2

3 .
On considère un commercial qui passe voir n clients durant sa journée de travail. On
note N la variable aléatoire représentant le nombre de clients contaminés rencontrés
par le commercial.

1. Déterminer la loi de N .
2. Quelle est la probabilité que le commercial ne soit pas contaminé à la fin de sa

journée de travail ?

2464 Mines-Ponts MP 2023

Soit X une variable aléatoire discrète à valeurs dans C et λ ∈ C tels que X et λX
suivent la même loi. Que dire de X et λ ?
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2465 Mines-Télécom MP 2021

Soit f : R → R une fonction convexe. On considère X une variable aléatoire réelle
définie sur un espace probabilisé (Ω, T ,P).

1. On suppose que X(Ω) est fini. Montrer que :

f(E(X)) ⩽ E(f(X)).

2. On suppose que X(Ω) est dénombrable et que X et f(X) admettent des espé-
rances finies. Montrer que l’inégalité ci-dessus reste vraie.

2466 CCINP MP 2018

Une puce se déplace sur un triangle équilatéral ABC. Elle se situe initialement en A.
Si elle est en A à un instant n donné, alors elle se déplace sur un des deux autres
sommets à l’instant n+ 1 de manière équiprobable.
Si elle est en B à un instant n donné, alors elle se déplace sur un des deux autres
sommets à l’instant n+ 1 de manière équiprobable.
Si elle est en C à un instant, alors elle reste en C à l’instant suivant.
On note An (resp. Bn, Cn) l’évènement « La puce est en A (resp. B,C) à l’instant n. ».
On note un (resp. vn, wn) le nombre P(An) (resp. P(Bn),P(Cn)).

1. (a) Déterminer un+1, vn+1, wn+1 en fontion de un, vn, wn.

(b) Soit Xn =

un

vn

wn

.

Montrer qu’il existe une matrice M ∈ Mn(R) telle que Xn = MnX0.
2. (a) Donner les expressions explicites de un, vn et wn.

(b) Que se passe-t-il lorsque n → +∞ ? Expliquer.

2467 Mines-Ponts MP 2023

Soit X1 et X2 deux variables aléatoires indépendantes et identiquement distribuées.
On suppose que X1 +X2 suit la même loi que 2X1, avec X1 ⩾ 0.
Montrer que X1 est presque sûrement constante.

2468 Mines-Télécom MP 2018

Soit X et Y deux variables aléatoires à valeurs dans N, telles que

P(X = i, Y = j) =


exp(−b)ajbi(1 − a)i−j

j!(i− j)! si i ⩾ j

0 si i < j

1. Donner les lois de X et de Y , ainsi que leur espérance.
2. Les variables aléatoires X et Y sont-elles indépendantes ?
3. Donner la loi de Z = X − Y .
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2469 CCINP TSI 2022

On pose 20 questions sous forme de QCM à un candidat. Pour chaque question, il y a
k (k > 2) réponses possibles, une seule est correcte.
Si le candidat trouve la bonne réponse du premier coup, il marque 1 point.
Si le candidat trouve la bonne réponse au second essai, il marque 0,5 point.
Sinon il ne marque aucun point.
Déterminer la valeur de k pour que le candidat, qui répond au hasard, ait 5/20 en
moyenne.

2470 CCINP MP 2021

Soit X une variable aléatoire à valeurs dans N∗, loi donnée par :

∀k ∈ N∗, P(X = k) = p(1 − p)k−1, où p ∈ ]0 ; 1[.

On pose Y = (−1)X .
1. Calculer la loi de Y .
2. Calculer E(Y ) et E(XY ).

2471 TPE/EIVP PC 2021

Une urne contient n boules numérotées de 1 à n. On tire sans remise une à une les
boules. On note Xi la variable aléatoire égale à 1 si la ième boule tirée porte le numéro
i et 0 sinon.

1. Donner la loi de Xi.
2. Lorsque l’on vide entièrement l’urne, combien de fois peut-on espérer que le

numéro d’une boule ait coïncidé avec son rang dans le tirage ?

2472 Mines-Télécom MP 2025

1. Calculer
Card

({
(A;B) ∈ P({1; . . . ;n})2 | A ⊂ B

})
.

2. On choisit au hasard deux parties A et B de {1; . . . ;n}.
Quelle est la probabilité que l’une soit incluse dans l’autre ?

2473 TPE/EIVP MP 2017

On dispose d’une urne contenant n boules. À chaque tirage, on tire une boule, on
la marque et on la remet dans l’urne. Les tirages sont indépendants. On note Xn la
variable aléatoire comptant le nombre de boules marquées au bout de n tirages.

1. Calculer E(Xn).
2. Trouver un équivalent simple de E(Xn) quand n → +∞.

2474 Centrale-Supélec PC 2017

On effectue des lancers indépendants d’une pièce, avec une probabilité 2
3 d’obtenir

pile, donc un probabilité 1
3 d’obtenir face. On note X le nombre de lancers nécessaires

pour obtenir deux piles consécutifs (et l’expérience s’arrête). Donner la loi de X et son
espérance.
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2475 Mines-Télécom MP 2019

1. Pour n ∈ N∗, on pose P({n}) =
1

n(n+ 1).

Montrer que l’on définit ainsi une probabilité sur N∗.
2. Soit X une variable aléatoire à valeurs dans N∗ dont la loi est donnée par :

P(X = n) = 1
n(n+ 1) .

Donner le domaine de définition de la fonction génératrice GX , son expression
et étudier sa continuité.

2476 Mines-Ponts MP 2019

Soit n un entier naturel non nul. On organise un tournoi de football entre 2n équipes :
n de première division, n de deuxième division.

1. On note an la probabilité que chaque match fasse s’opposer une équipe de pre-
mière division avec une de seconde. Calculer an, en donner un équivalent.

2. On note bn la probabilité qu’aucun match ne fasse s’opposer une équipe de
première division avec une de seconde. Calculer bn, en donner un équivalent.

2477 ENSEA/ENSIIE MP 2025

Soit X et Y deux variables aléatoires indépendantes suivant une loi géométrique de
paramètre p. On pose U = max(X;Y ) et V = min(X;Y ).

1. Calculer P(X ⩾ k) pour tout k ∈ N∗. Interpréter.
2. Trouver les lois de U et V .
3. Calculer l’espérance de U . Interpréter.

2478 ENSEA/ENSIIE MP 2016

Alice et Bob sont des correspondants téléphoniques. Ils appellent au hasard des clients.
Alice a une probabilité pA ∈ ]0 ; 1[ de signer un contrat et une probabilité qA ∈ ]0 ; 1[
d’effectuer une erreur de saisie dans le contrat. On définit de même pB et qB pour Bob.
Alice étant plus avenante, on a pA > pB. Un contrat a été signé et comporte une erreur
de saisie.

1. Quelle est la probabilité qu’Alice s’en soit chargée.
2. On suppose que ce contrat a été traité par Alice ou Bob avec la même probabilité.

Comparer qA et qB.

2479 CCINP MP 2016

Marcel effectue N tirages dans une urne contenant b boules blanches en ivoire et n
boules noires en chocolat. Lorsqu’il tire une boule en chocolat, il la mange.

1. (a) Quelle est la probabilité que Marcel mange au moins une boule en chocolat ?
(b) Quelle est la probabilité que Marcel mange une et une seule boule en choco-

lat ?
2. Marcel mange une et une seule boule en chocolat. Quelle est la probabilité qu’il

s’agisse de la dernière boule tirée ?
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2480 X ESPCI

On considère n droites vectorielles de Rd. On suppose que les angles qu’elles forment
deux par deux sont tous égaux. Montrer que :

n ⩽

(
d+ 1

2

)
.

2481 ENS MP 2016

1. Soit n ∈ N∗. Dénombrer :

An =
{

(xi)i∈[[1;r]] ∈ (N∗)r

∣∣∣∣ r∑
i=1

xi = n, r ∈ N∗
}
.

2. Soit n, k ∈ N∗. Dénombrer :

Bn,k =
{

(xi)i∈[[1;k]] ∈ (N∗)k

∣∣∣∣ r∑
i=1

xi = n, r ∈ N∗
}
.

2482 Mines-Télécom MP 2023

Soit n ∈ N et X,Y deux variables aléatoires discrètes. On suppose que X suit une loi
binomiale de paramètres n et p. On suppose aussi que, pour tout i ∈ {1; . . . ;n}, la loi
de Y conditionnée à X = i est la loi binomiale de paramètre n − i et p. Montrer que
Z = X + Y suit une loi binomiale et déterminer ses paramètres.

2483 Mines-Télécom MP 2017

Soit X une variable aléatoire suivant une loi binomiale de paramètres n et p. Montrer
que :

P
(
X

n
− p ⩾ ε

)
⩽

√
p(1 − p)
√
nε

.

2484 Mines-Télécom MPI 2025

On lance n boules dans N boîtes de manière indépendante. La probabilité qu’une boule
tombe dans une boîte suit une loi uniforme.

1. On pose Yk la variable aléatoire donnant le nombre de boules dans la boîte k, et
Zk la variable aléatoire valant 0 si la kème boîte est vide, et 1 sinon. Déterminer
les lois des variables Yk et Zk.

2. Les variables Zk sont-elles mutuellement indépendantes ?
3. On pose Tn la variable aléatoire comptant le nombre de boîtes contenant au

moins une boule à l’issue de n lancés. Calculer l’espérance de Tn.
4. Calculer lim

n→+∞
E(Tn) et interpréter le résultat.
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2485 CCINP PSI 2022

Soit p, q ∈ [0 ; 1] tels que p+ q = 1.
On suppose que X et Y sont des variables aléatoires réelles telles que X(Ω) = [[0 ;n]],
Y (Ω) = [[1 ;n]] et :

∀(j; k) ∈ [[0 ;n]] × [[1 ;n]], P((X = j) ∩ (Y = k)) =


(

n
k

)
pkqn−k si k = j et j ̸= 0

qn

n
si j = 0

0 si k ̸= j et j ̸= 0

1. Quelles sont les lois marginales de X etY ? Que vaut E(Y ) ?
2. Les variables X et Y sont-elles indépendantes ?
3. Donner la loi conditionnelle de Y sachant X = j.

2486 CCINP TSI 2022

Soit X1, . . . , Xn des variables aléatoires suivant une loi de Rademacher, c’est-à-dire :

P (X = 1) = p et P (X = −1) = 1 − p.

Déterminer la loi de Y =
n∏

k=1
Xk.

2487 Mines-Télécom PC 2024

Soit X et Y deux variables aléatoires indépendantes de même loi. Soit Z = X + Y + 1
qui suit une loi géométrique de paramètre p.

1. Rappeler l’espérance, la variance et la série génératrice d’une variable aléatoire
suivant une loi géométrique.

2. Donner l’espérance et la variance de X.

2488 Mines-Ponts MP 2022

On considère un mobile Z qui se déplace aléatoirement à droite ou à gauche, sur un
axe orienté. À l’instant 0, le mobile est à l’origine. Lorsqu’il est à l’abscisse n ∈ Z, le
mobile fait un bond Bn dont la loi de probabilité est donnée par :

∀k ∈ Z, P(Bn = k) = ap|k| avec p ∈ ]0 ; 1[.

On suppose que les bonds sont indépendants.
1. Déterminer a.
2. Pour n ∈ N∗, on note An la variable aléatoire égale à l’abscisse où se trouve le

mobile après n bonds. Montrer que :

∀n ∈ N∗, P(An ⩾ n) ⩽ p

n(1 − p)2 .

506



2489 Mines-Ponts MP 2022

Soit a, b,m trois nombres réels vérifiant a ⩽ m ⩽ b. On considère l’ensemble des
variables aléatoires discrètes X qui vérifient E(X) = m et a ⩽ X ⩽ b.

1. Qualitativement, que caractérise la variance ?
2. Déterminer le maximum des E(X2) pour X dans l’ensemble considéré.

2490 Centrale-Supélec TSI 2025

Soit X1, X2, . . . , Xn n variables aléatoires mutuellement indépendantes qui suivent
toutes une loi de Bernoulli de paramètre p ∈ ]0 ; 1[.

On note X =


X1
X2
...
Xn

 et M = XXT .

1. Soit R la variable aléatoire égale au rang de la matrice M . Déterminer la loi de
R.

2. Soit T la variable aléatoire égale à la trace de la matrice M . Déterminer la loi
de T .

3. Déterminer la probabilité que M soit la matrice d’un projecteur.

2491 Mines-Ponts MP 2024

Soit (Ω,A,P) un espace probabilisé et p ∈ ]0 ; 1[. Soit X et Y deux variables aléatoires
sur Ω à valeurs dans N, indépendantes, et telles que X + 1 et Y + 1 suivent la loi
géométrique de paramètre p. Soit enfin Z la variable aléatoire sur Ω, à valeurs dans
N∗, telle que :

∀ω ∈ Ω, Z(ω) =
(
X(ω) + Y (ω)

X(ω)

)
.

À quelle(s) condition(s) Z admet-elle une espérance finie ? une variance finie ? Calculer
E(Z) quand elle est finie.

2492 Centrale-Supélec PC 2022

Soit p ∈ ]0 ; 1[. Un petit garçon se promène dans un jardin et ramasse un nombre
aléatoire N de feuilles. Pour une feuille donnée, la probabilité qu’il la trouve jolie vaut
p.

1. Déterminer la probabilité qu’il trouve toutes les feuilles jolies.
2. Le nombre de feuilles qu’il trouve jolies est une variable aléatoire notée X.

Exprimer sa loi à partir de la loi de N .
3. Dans chacun des trois cas suivants, déterminer la loi de X.

(a) La loi de N est une loi de Poisson.
(b) La loi de N est une loi géométrique.
(c) La loi de N est une loi binomiale.
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2493 Centrale-Supélec PC 2016

Soit N une variable aléatoire donnant le nombre d’œufs pondus par une poule. On
suppose que N suit une loi de Poisson de paramètre λ. La probabilité qu’un œuf éclose
est p.

1. Soit D la variable aléatoire donnant le nombre de descendants d’une poule.
Déterminer la loi de D.

2. Les variables D et N sont-elles indépendantes ? Qu’en est-il de N −D et D ?
3. Comment retrouve-t-on la loi de N à partir de celles de N −D et de D ?

2494 Centrale-Supélec PSI 2017

Soit X une variable aléatoire. S’il existe, on note µ(n) = E((X −E(X))n) son moment
centré d’ordre n. On dit que X admet un Kurtosis, si X admet une espérance E(X) et
des moments centrés µ(2), µ(3), µ(4). Dans ce cas on note

K(X) = −3 + µ(4)
µ(2)2 = −3 + E((X − E(X))4)

(E((X − E(X))2))2

son Kurtosis.
1. Montrer que si X admet un Kurtosis, alors aX + b admet aussi un Kurtosis et

que K(aX + b) = K(X).
2. Calculer K(X) si X suit une loi de Bernoulli de paramètre p ∈ ]0 ; 1[.
3. Montrer que pour toute variable aléatoire X, on a K(X) ⩾ −2.
4. Existe-t-il M > 0 tel que pour toute variable aléatoire X, on ait K(X) ⩽M ?

2495 Mines-Télécom MP 2017

Soit X et Y deux variables aléatoires indépendantes suivant une même loi de Poisson
de paramètre λ.

1. Donner la fonction génératrice de X et de 3Y .
2. Soit Z = 3Y +X. Donner la fonction génératrice de Z.
3. Donner l’espérance E(Z) et la variance Var(Z) de Z.
4. Donner le minimum de Var(Z + tX) lorsque t décrit R.

2496 Mines-Ponts MP 2019

Soit (Ω, T ,P) un espace probabilisé. Soit (Xn)n∈N une suite de variables aléatoires
réelles mutuellement indépendantes suivant la même loi et admettant une variance. Soit
encore (X ′

n)n∈N une suite de variables aléatoires réelles mutuellement indépendantes
suivant la même loi et admettant une variance. On pose :

Sn =
n∑

ℓ=0
Xℓ et S ′

n =
n∑

ℓ=0
X ′

ℓ.

En supposant E(X1) ̸= E(X ′
1), étudier la convergence de P(Sn < S ′

n).
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2497 Mines-Ponts MP 2017

Une bactérie mortelle menace l’espèce humaine d’extinction. Heureusement, des scien-
tifiques ont développé un remède miracle pour la combattre : un super rayon laser.
En sachant qu’ils ont une probabilité p ∈ ]0 ; 1[ de toucher la bactérie à chaque tir, et
que la bactérie a r ∈ N∗ points de vie, donner la probabilité que la bactérie meure
lors du kème tir, puis déterminer l’espérance du nombre de tirs nécessaires pour que les
scientifiques viennent à bout de la bactérie, et sauvent ainsi l’humanité.

2498 TPE/EIVP MP 2019

Une urne contient une boule rouge et une boule blanche. On effectue des tirages avec
remise et si on tire une boule rouge, on la remet avec 2 autres boules rouges. Soit
l’évènement An =« Lors des n premiers tirages, on a eu des boules rouges. ». On
convient que P(A0) = 1.

1. Déterminer P(An | An−1) pour tout n ∈ N∗.
2. En déduire la valeur de P(An).
3. Quelle est la probabilité de tirer indéfiniment des boules rouges ?

2499 CCINP TSI 2019

Soit X et Y deux variables aléatoires indépendantes telles que, pour tout n ∈ N,
P(X = n) = P(Y = n) = qnp, où q = 1 − p. On note aussi S = X + Y .

1. Donner l’ensemble image de X + 1, Y + 1 et S.
2. Montrer que X + 1 et Y + 1 suivent une loi géométrique de paramètre p, puis

donner E(X),Var(X),E(Y ) et Var(Y ).
3. Déterminer la loi de S.
4. Soit I = min(X;Y ). Montrer que P(I ⩾ k) = q2k et en déduire la loi de I.

Calculer E(I) et Var(I).

2500 CCINP PSI 2018

Soit p ∈ ]0 ; 1[. Pour k ∈ N∗, on pose pk = p2k(1 − p)k−1.
1. Montrer que (pk)k∈N∗ définit une loi de probabilité sur N∗.
2. Soit X une variable aléatoire telle que, pour tout k ∈ N∗, P(X = k) = pk.

(a) En examinant son existence, déterminer E(X − 1).
(b) En examinant son existence, déterminer E((X − 1)(X − 2)).

3. Étudier l’existence et la valeur de E(X).

2501 Mines-Ponts PC 2018

On lance une pièce dont la probabilité de tomber sur pile est p. On note An : « Au
nème lancé on obtient pour la première fois deux piles consécutifs. ». On note an la
probabilité de cet évènement.

1. Calculer a1, a2, a3.
2. Trouver une relation reliant an+2 à an+1 et an.
3. Pourquoi est-il quasi certain d’obtenir deux piles consécutifs ?
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2502 ENS MP 2018

Soit X et Y deux variables aléatoires indépendantes à valeurs dans N. On suppose que
XY suit une loi de Poisson. Montrer que X ou Y ne prend presque sûrement que la
valeur 0 et 1, c’est-à-dire que X ou Y appartient presque sûrement à {0; 1}.

2503 Mines-Ponts PC 2018

Deux joueurs de foot tirent tour à tour un penalty. Le joueur 1 (respectivement 2)
marque avec une probabilité p1 ∈ ]0 ; 1[, (respectivement p2 ∈ ]0 ; 1[). On s’arrête au
premier penalty réussi.

1. Calculer la probabilité que le joueur 1 gagne.
2. Montrer que le jeu s’arrête de manière quasi certaine.
3. Pour quelles valeur de p1 peut-on obtenir un p2 de telle sorte que le jeu soit

équitable ?

2504 Mines-Ponts MP 2015

Soit n couples (homme/femme) de danseurs. Lorsque la musique change, les membres
des couples doivent trouver un nouveau partenaire de sexe opposé. Déterminer la pro-
babilité que tous les couples nouvellement formés soient différents des couples initiaux.
Quelle est la limite de cette probabilité lorsque n tend vers +∞ ?

2505 Centrale-Supélec MP 2016

Soit x, y et n trois entiers naturels vérifiant 0 ⩽ x, y ⩽ n. On considère deux joueurs
E et F et un chapeau dans lequel on dispose de n jetons, dont x jetons sont marqués
d’un X et y jetons d’un Y . Le jeu se décompose en deux temps :
Le joueur E tire consécutivement deux jetons avec remise. S’il tire deux fois un jeton
marqué d’un X, il a gagné.
Si le joueur E n’a pas gagné, alors c’est au joueur F de tirer consécutivement deux
jetons avec remise. Si il tire deux fois un jeton marqué d’un Y , alors il a gagné.
Si aucun des joueurs n’a gagné, alors on recommence.

1. Déterminer la probabilité q qu’aucun des deux joueurs ne gagne au premier tour.
2. Déterminer la probabilité que le joueur E gagne, que le joueur F gagne puis

qu’aucun des deux joueurs ne gagne.

Un triplet (a; b; c) d’entiers est dit pythagoricien s’il vérifie a2 + b2 = c2.
3. Montrer que le jeu est équilibré, c’est-à-dire que les deux joueurs ont la même

probabilité de gagner, si et seulement s’il existe un triplet pythagoricien (a; b; c)
tel que x = ab, y = ac et n = bc.

2506 Mines-Ponts MP 2017

Des personnes P1, . . . , Pn se transmettent un signe + ou − avec la probabilité p de le
passer inchangé et la probabilité q = 1 − p de le changer. La personne 1 reçoit le signe
+. Sachant que la personne n a reçu un signe +, quelle est la probabilité que P1 ait
transmis son signe sans le changer ?
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2507 CCINP PC 2021

1. Soit Y une variable aléatoire discrète telle que :

Y (Ω) = {0; 1; 2}, E(Y ) = 1 et E(Y 2) = 5
3 .

Calculer p0, p1, p2, où pk = P(Y = k) pour k ∈ {0; 1; 2}.
2. Soit X un variable aléatoire discrète telle que :

X(Ω) = {x0; x1; . . . ;xn}.

On suppose connaître E(X),E(X2), . . . ,E(Xn).
Comment faire pour calculer p0, p1, . . . , pn ?

2508 CCINP MP 2017

On dispose dans une urne n boules numérotées de 1 à n. On tire p boules simultanément.
Les variables aléatoires X et Y représentent respectivement le maximum et le minimum
des numéros tirés.

1. Montrer que :
n∑

k=p

k!
(k − p)! = (n+ 1)!

(p+ 1)(n− p)! .

2. (a) Quel est le nombre de tirages différents ?
(b) En déduire la loi de X :

P(X = k) = p

n!
k!(n− p)!
k(k − p)! .

(c) Déterminer l’espérance de X.
3. (a) Déterminer la loi de Y .

(b) En déduire que E(Y ) = n+ 1
p+ 1 .

2509 CCINP MP 2017

1. En exprimant (X + 1)2n de deux manières, calculer
n∑

k=0

(
n

k

)2

.

2. Deux joueurs tirent chacun une pièce équilibrée. Le gagnant est celui qui obtient
le plus de « pile ». Quelle loi suit le nombre de « pile » obtenu par un joueur ?
Donner son espérance et sa variance.

3. Déterminer la probabilité qu’il y ait un gagnant.
4. Donner un équivalent quand n → +∞ de la probabilité calculée précédemment.
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2510 Mines-Ponts MP 2023

Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ. Montrer que :

P(X ⩾ 2λ) ⩽
(e

4

)λ

.

Comparer avec l’inégalité de Bienaymé-Tchebychev.

2511 ENS MP 2024

Soit G un groupe fini de cardinal N . On considère A une partie aléatoire de G. On
note AA = {ab | (a; b) ∈ A2}.

1. Montrer que lim
N→+∞

P(1 ∈ AA) = 1.

2. Montrer que lim
N→+∞

P(AA = G) = 1.

2512 Mines-Ponts MP 2021

On étudie la diffusion d’une information. Il y a une probabilité p qu’une personne trouve
cette information intéressante à tout instant. Si une personne trouve cette information
intéressante à un instant n, elle la diffuse à N personnes, qui sont alors au courant
à l’instant n + 1. À l’instant n = 0, une seule personne a l’information. Soit Xn la
variable aléatoire donnant le nombre de personnes ayant reçu l’information à l’instant
n et qui l’ont trouvé intéressante. On pose an = P(Xn = 0).

1. Donner la loi de X1 et son espérance.
2. Exprimer an en fonction de an−1, p et N .
3. Étudier la convergence de la suite (an)n∈N.

2513 Mines-Ponts MP 2021

Toutes les variables aléatoires sont définies sur un même espace probabilisé (Ω,A,P).
Soit m ∈ [[1 ;n]] et X,Y des variables aléatoires indépendantes suivant toutes deux une
loi uniforme sur [[1 ;n]]. Soit Z la variable aléatoire définie par :

Z(ω) =
X(ω) si Y (ω) ⩽ m

Y (ω) sinon

1. Établir la loi de Z.
2. Établir les espérances de X, Y et Z.
3. Trouver les valeurs de m maximisant E(Z).

2514 Mines-Ponts MP 2018

On tire n fois une pièce à pile ou face. La variable aléatoire X compte le nombre de
« face » obtenus. À partir de l’inégalité de Bienaymé-Tchebychev, trouver n tel que la
probabilité que ∣∣∣∣Xn − 1

2

∣∣∣∣ ⩽ 1
100

soit supérieure à 0, 99.
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2515 Mines-Ponts PC 2017

On téléphone à n personnes. Chaque personne a une probabilité p de répondre à l’appel.
On note X1 le nombre de personnes qui répondent à ce premier appel. On effectue une
deuxième vague d’appels à destination des personnes qui n’ont pas répondu la première
fois. On note X2 le nombre de personnes qui répondent au deuxième appel. On répète
le processus jusqu’à ce que tout le monde ait répondu. Pour tout j ∈ [[1 ;n]], on note
Yj le numéro de l’appel auquel la jème personne a répondu.

1. Les variables aléatoires X1 et X2 sont-elles indépendantes ?
2. Donner la loi de Yj.
3. Déterminer les lois de X1 et X2.

2516 Mines 2022

Soit f ∈ C1([0 ; 1],R+). Pour tout n ∈ N, on pose :

pn =
∫ 1

0
tnf(t) dt.

Trouver une condition nécessaire et suffisante pour que la suite (pn)n∈N définisse une
distribution de probabilité. L’hypothèse « f de classe C1 » est-elle nécessaire ?

2517 CCINP PSI 2022

Soit (Xn)n∈N∗ une suite de variables aléatoires mutuellement indépendantes suivant
toutes une loi de Bernoulli de paramètre p. On note :

Yn = Xn+1 +Xn et Mn = Y1 + · · · + Yn

n
.

1. Énoncer la loi faible des grands nombres.
2. Les variables Yn sont-elles indépendantes ?
3. Calculer l’espérance et la variance de Mn.
4. Montrer que pour tout ε > 0 :

lim
n→+∞

P(|Mn − 2p| ⩾ ε) = 0.

2518 CCINP PSI 2021

Soit un dé équilibré à 10 faces numérotées de 1 à 10. On lance le dé jusqu’à obtenir un
chiffre inférieur ou égal à 6. On note X le chiffre du dernier lancer.

1. Soit N le nombre de lancers obtenus. Déterminer la loi de N .
2. Pour tout (k;n) ∈ [[1 ; 6]] × N∗, calculer P(X = k,N = n).
3. Calculer P(X = k). En déduire la loi de X.
4. Les variables X et N sont-elles indépendantes ?
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2519 Mines-Ponts MP 2017

On définit, pour k ∈ N, pk = a
(

αk+βk

k!

)
avec (a, α; β) ∈ R3. Soit X une variable

aléatoire discrète à valeurs dans N, telle que P(X = k) = pk pour tout k ∈ N.
1. Pour quelles valeurs de α et β peut-on définir un a ∈ R pour lequel la probabilité

est bien définie ? Quelle est alors cette valeur de a ?
2. La variable X peut-elle suivre une loi de Poisson ?

2520 ENS MP 2019

Calculer la probabilité qu’une variable aléatoire suivant la loi uniforme sur Sn possède
un cycle de taille strictement supérieure à n

2 .

2521 ENSAM PSI 2018

On considère un jeu de ballon et trois joueurs, notés A, B et C. Le joueur A envoie le
ballon à B avec une probabilité de 0.75, B envoie toujours le ballon à C, C envoie le
ballon à A avec une probabilité de 0.25 et à B avec une probabilité de 0.75.
On note An l’évènement « Le joueur A possède le ballon à l’issue du nème lancer. » et
on considère de même Bn et Cn. On note an la probabilité de l’évènement An et on
note de même bn et cn.
Au début du jeu, c’est le joueur A qui a le ballon.

1. Donner an+1 en fonction de an, bn, cn. Exprimer de même bn+1 et cn+1.
2. Montrer que :

∃M ∈ M3(R), ∀n ∈ N∗,

an+1
bn+1
cn+1

 = M

an

bn

cn

 .
Déterminer M .

3. Déterminer la limite de an, bn, cn, quand n → +∞.

2522 TPE/EIVP MP 2016

On a une urne avec 2 boules vertes et 6 boules blanches et on effectue des tirages avec

remises. On note Xn le nombre de boules vertes obtenues après n tirages et Fn =
Xn

n
.

1. Rappeler l’inégalité de Bienaymé-Tchebychev.
2. Déterminer la loi de Xn, son espérance et sa variance, ainsi que l’espérance et

la variance de Fn.
3. Pour n = 10000, notons : A = {Fn ∈ ]0.22 ; 0.26[}.

Minorer P(A).
4. Trouver n tel que P(A) ⩾ 0.99.
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2523 CCINP MP 2023

Soit n ∈ N∗ et X, Y deux variables aléatoires définies sur un même espace probabilisé
et à valeurs dans [[1 ;n+ 1]] dont la loi de couple est donnée par :

∀(i; j) ∈ [[1 ;n+ 1]]2, P(X = i, Y = j) = λ

(
n

i− 1

)(
n

j − 1

)
.

1. Montrer que λ =
1
4n

.

2. Déterminer les lois marginales de X et Y .
Les variables aléatoires X et Y sont-elles indépendantes ?

3. Déterminer l’espérance et la variance de X.
4. Soit B = (bij)1⩽i,j⩽n+1 ∈ Mn+1(R) telle que bij = P(X = i, Y = j) pour tout

(i; j) ∈ [[1 ;n+ 1]]2.
(a) Justifier que B est diagonalisable.
(b) En calculant B2, déterminer les valeurs propres de B et donner la dimension

des sous-espaces propres associés.

2524 ENS MP 2017

Existe-t-il une variable aléatoire X à valeurs dans Z telle que X et X + ε soient de
même loi, où ε est une variable aléatoire indépendante de X qui vaut +1 ou −1 avec
une probabilité de 1

2 ?

2525 Mines-Ponts PC 2015

On considère une urne contenant une proportion p dans ]0 ; 1[ de boules noires et
q = 1 − p de boules blanches. On effectue des tirages successifs avec remise. Soit X la
longueur de la première suite de même couleur, Y la longueur de la deuxième.

1. Déterminer la loi conjointe de (X, Y ).
2. En déduire la loi, l’espérance et la variance de X.
3. Idem pour Y .
4. Vérifier rapidement que E(X) ⩾ 2.

2526 CCINP PSI 2016

Un joueur dans un casino joue sur une machine qui renvoie un entier N dans N∗ selon
la probabilité P(N = n) = 1

2n . Si n est pair le joueur gagne n jetons et si n est impair,
le joueur perd n jetons.

1. Calculer la probabilité de gagner à ce jeu.
2. Soit G le gain algébrique du joueur. Donner G et calculer son espérance.

2527 Centrale-Supélec MP 2015

Soit Y une variable aléatoire discrète à valeurs dans N, et P une probabilité. Montrer
que Y admet une espérance finie si et seulement si

∑
n⩾1

P(Y ⩾ n) converge.
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2528 ENSEA/ENSIIE MP 2015

1. Soit N ∈ N∗ et x ∈ R avec |x| < 1.

Déterminer le développement en série entière de
1

(1 − x)N+1.

2. Soit X une variable aléatoire réelle de loi de probabilité :

∀k ∈ N \ [[0 ;N − 1]], P(X = k) =
(
k − 1
N − 1

)
pN(1 − p)k−N .

Déterminer E(X).

2529 TPE/EIVP MP 2018

On dispose de n pièces numérotées. La kème pièce a une probabilité 1
2k+1 de donner

« pile ».
1. On note ui la probabilité d’avoir un nombre pair de « pile » après avoir lancé

les i premières pièces. Exprimer ui+1 en fonction de i et ui.
2. Quelle est la probabilité d’avoir un nombre pair de « pile » en lançant toutes les

pièces ?

2530 CCINP PC 2023

On pose :
∀x ∈ ]0 ; 1], φ(x) = −x ln(x).

1. Donner le tableau de variations de φ sur ]0 ; 1].
Montrer que φ est prolongeable par continuité en 0.
Soit X une variable aléatoire à valeurs dans N∗. On pose, pour tout n ∈ N∗,
pn = P(X = n).
On appelle entropie de X, lorsqu’elle existe, la quantité :

H(X) =
+∞∑
n=1

φ(pn).

2. On suppose que X suit la loi géométrique de paramètre p. Montrer que X admet
une entropie et la calculer.
On revient au cas général d’une variable aléatoire X à valeurs dans N∗ et on
suppose que celle-ci est d’espérance finie.

3. (a) Montrer que lim
n→+∞

npn = 0.

(b) Montrer que √
pn ln2(pn) ⩽ 4.

4. Déduire de la question 3 que :

0 ⩽ −pn ln(pn) ⩽ npn + 4
n

3
2

√
npn.

5. En déduire que X admet une entropie.
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2531 Mines-Ponts MP 2021

Soit r > 0.
1. Montrer que la relation

P(X = k) =
∫ 1

0
rxk−1(1 − x)r dx

définit bien une probabilité d’une variable aléatoire X dans N∗.
2. Préciser pour quelle valeur de r la variable aléatoire X admet une espérance et

la calculer.

2532 CCINP PC 2022

Soit X une variable aléatoire telle que X(Ω) = N et, pour tout n ∈ N,

P(X = n+ 2) = 4P(X = n+ 1) − P(X = n).

Déterminer la loi de X.

2533 Mines-Ponts PSI 2025

Déterminer le nombre de parties A de [[1 ;n]] ayant p éléments et telles que :

∀i ∈ [[1 ;n− 1]], i ∈ A ou i+ 1 ∈ A.

2534 X MP 2017

Un polygone à 2n sommets est inscrit dans un cercle. On trace n cordes de telle sorte
qu’elles ne se croisent pas (même en un point). On note pn le nombre d’arrangements
de ces cordes.

1. Montrer que pn =
n−1∑
k=0

pipn−1−i.

2. Calculer pn.
3. Donner un développement asymptotique de pn.

2535 Mines-Ponts MP 2018

Soit une urne remplie de a boules blanches et de b boules d’une autre couleur. On tire
successivement et sans remise toutes les boules de cette urne. On note X la variable
aléatoire représentant le numéro du tirage où la dernière boule blanche a été tirée.

1. Soit p < q. Vérifier que
q∑

k=p

(
k

p

)
=
(
q + 1
p+ 1

)
.

2. Soit n ∈ X(Ω). Montrer que P(X = n) =

(
n−1
a−1

)
(

a+b
a

) .
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2536 Mines-Télécom MP 2018

On dispose de deux boîtes A et B. Initialement, A contient deux jetons marqués « 0 »,
et B deux jetons marqués « 1 ». On tire un jeton au hasard de A, que l’on échange
avec un jeton tiré au hasard de B. On répète l’expérience indéfiniment. On note Xn la
somme des valeurs des jetons situés dans A au bout de n tirages.
Pour tout n, on pose pn = P(Xn = 0), qn = P(Xn = 1), rn = P(Xn = 2) et

Un =

pn

qn

rn

 .
1. Pour tout n, exprimer Un+1 en fonction de Un.
2. Pour tout n, exprimer Un en fonction de n.
3. La suite (Un)n∈N∗ converge-t-elle ?

2537 Mines-Ponts MP 2018

Soit n ∈ N∗ et i ∈ [[1 ;n]]. Soit (mi)1⩽i⩽n une famille d’éléments de N∗ et (pi)1⩽i⩽n

une famille d’éléments de ]0 ; 1[. On considère n variables aléatoires Xi mutuellement
indépendantes suivant chacune une loi binomiale : Xi ∼ B(mi, pi).

Montrer que
n∑

i=1
Xi suit une loi binomiale si, et seulement si, les pi sont tous égaux.

2538 Mines-Télécom MP 2018

Soit n ∈ N∗ et (Xij)1⩽i,j⩽n une famille de variables aléatoires indépendantes telle que :

∀(i; j) ∈ [[1 ;n]]2, P(Xij = 1) = P(Xij = −1) = 1
2 .

On considère la matrice M = (mij)1⩽i,j⩽n telle que mij = Xij pour tout (i; j).
1. Calculer l’espérance de Tr(M).
2. Calculer l’espérance de det(M).
3. Calculer la probabilité que rang(M) = 1.

2539 Centrale-Supélec PC 2022

Soit p ∈ ]0 ; 1[. On considère des cellules susceptibles de se diviser en deux (avec une
probabilité p) ou de mourir (avec une probabilité 1 − p).
On suppose qu’il y a exactement une cellule à la génération 0.
Pour tout n ∈ N, on note Xn la variable aléatoire égale au nombre de cellules à la
génération n. En particulier, la variable aléatoire X0 vaut 1.
Pour tout n ∈ N, on note gn la fonction génératrice de Xn.

1. Déterminer les lois de X1 et X2.
2. Déterminer l’univers image Xn(Ω) pour tout n ∈ N.
3. Pour tout n ∈ N et tout t ∈ [0 ; 1], montrer l’égalité gn+1(t) = gn(g1(t)).
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2540 CCINP MP MPI 2026

Soit n un entier naturel supérieur ou égal à 3. On dispose de n boules numérotées de 1
à n et d’une boîte de trois compartiments identiques également numérotés de 1 à 3. On
lance simultanément les n boules. Elles viennent toutes se ranger aléatoirement dans
les 3 compartiments. Chaque compartiment peut éventuellement contenir n boules.
On note X la variable aléatoire qui à chaque expérience aléatoire fait correspondre le
nombre de compartiments restés vides.

1. Préciser les valeurs prises par X.
2. (a) Déterminer la probabilité P(X = 2).

(b) Finir de déterminer la loi de probabilité de X.

(a) Calculer E(X).
(b) Déterminer lim

n→+∞
E(X). Interpréter ce résultat.

2541 Mines-Télécom PC 2024

Soit X, Y des variables aléatoires indépendantes suivant une loi de Poisson de para-
mètres respectifs λ, µ et Z = X + Y .

1. Lequel de ces deux évènements est le plus probable :
• X est pair ;
• X est impair ?

2. Déterminer max
k∈N

P(X = k).

3. Montrer de deux façons différentes que la variable aléatoire Z suit une loi de
Poisson de paramètre λ+ µ. En donner l’espérance et la variance.

2542 Mines-Ponts MP 2024

1. Soit (Yn)n∈N∗ une suite de variables aléatoires mutuellement indépendantes sui-

vant chacune une loi uniforme sur {−1; 1}. On pose Sn =
n∑

k=1
Yk.

Calculer de deux manières l’espérance de S4
n.

2. Soit (Xn)n∈N∗ une suite de variables aléatoires mutuellement indépendantes sui-
vant chacune une loi B(1

2).
Montrer que la suite ( 1

n

∑n
k=1 Xk)n∈N∗ converge simplement presque sûrement

vers la loi constante 1
2 .

2543 X MP 2021

Soit n ∈ N. On note Tn le triangle de sommets (0; 0), (0;n) et (n; 0).
1. On note Rn l’ensemble des rectangles inclus dans Tn, dont les sommets sont à

coordonnées entières et dont les côtés sont horizontaux et verticaux. Calculer
|Rn|.

2. Soit Un l’ensemble des rectangles dont les sommets sont à coordonnées entières
et qui sont inclus dans un rectangle de Rn. Les côtés des rectangles de Un ne
sont pas nécessairement horizontaux ou verticaux. Calculer |Un|. En donner un
équivalent quand n → +∞.
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2544 Mines-Ponts PC 2025

Soit n ∈ N∗ et A,B,C des points d’affixes a, b, c dans Un.
1. Combien y a-t-il de triangles non aplatis de sommets A,B,C ?
2. Combien d’entre eux sont rectangles ?

2545 Mines-Ponts MP 2019

Soit A un sous-ensemble de R, de cardinal n. On définit B = A+ A par :

B = {a+ a′ | (a; a′) ∈ A2}.

1. Montrer que 2n− 1 ⩽ Card(B) ⩽
n(n+ 1)

2 et que ces inégalités sont optimales.

2. Peut-on généraliser pour B = kA = A+ · · · + A︸ ︷︷ ︸
k fois A

?

2546 Mines-Ponts MP 2022

Soit p ∈ ]0 ; 1[, m ∈ N∗ et (Ω,A,P) un espace probabilisé. Soit X une variable aléatoire
suivant la loi G(p). On note Y la variable aléatoire définie par :

∀ω ∈ Ω, Y (ω) = min(m; (X − 1)(ω)).

Calculer l’espérance et la variance de Y .

2547 CCINP MP 2015

On dispose de 9 jetons numérotés de 1 à 9. On considère une matrice carrée de taille 3×3
composée de ces 9 jetons. On cherche à déterminer la probabilité p que le déterminant
de la matrice soit impair.

1. Soit A = (aij) ∈ Mn(Z) avec n ⩾ 2. Montrer que la classe du déterminant de A
modulo 2 est égale à la classe du déterminant de la matrice dont les coefficients
sont les restes rij de la division euclidienne de aij par 2.

2. On note M l’ensemble des matrices carrées d’ordre 3 composées des 9 jetons.
Déterminer Card(M).

3. On définit Ω = {M ∈ M | det(M) est impair} et ∆ l’ensemble des matrices
carrées d’ordre 3 dont cinq coefficients sont égaux à 1, quatre coefficients sont
nuls et de déterminant impair. Donner une relation entre Card(Ω) et Card(∆).

4. Détermination de Card(∆).
(a) On considère une matrice de ∆ dont une colonne possède trois coefficients

égaux à 1. Déterminer le nombre K1 de ces matrices.
(b) On considère une matrice de ∆ dont 2 colonnes possèdent exactement un

coefficient nul. Déterminer le nombre K2 de ces matrices.
(c) Calculer Card(∆).
(d) En déduire Card(Ω).

5. Déterminer la probabilité p.
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2548 CCINP MP 2019

Soit E un ensemble à n éléments. On note an le nombre de bijections sans point fixe
de E dans E.

1. Démontrer que n! =
n∑

k=0

(
n

k

)
an−k.

2. On pose f(x) =
+∞∑
n=0

an

n!x
n.

Démontrer que la série entière de définition de f admet un rayon de convergence
non nul.

3. Calculer exf(x).
4. Soit n ∈ N. Déterminer an.
5. Un professeur distribue aléatoirement des copies à ses élèves. On note Dn l’évè-

nement « Aucun des n élèves n’a sa propre copie. ».
Calculer lim

n→+∞
P(Dn).

2549 Mines-Ponts MP 2019

Soit (a;α; β) ∈ R3. Pour n ∈ N, on pose pn = a
αn + βn

n! .

1. Déterminer une condition sur (α; β) pour qu’il existe une variable aléatoire X à
valeurs dans N telle que P(X = n) = pn pour tout n ∈ N. Que vaut alors a ?

2. La variable X peut-elle suivre une loi de Poisson ?

3. Généraliser à pn = a
αn

1 + · · · + αn
k

n! pour k ∈ N∗ quelconque.

2550 ENS Lyon

Soit n ∈ N. Soit X et Y deux variables aléatoires à valeurs dans [[0 ;n]]. Montrer que
les deux affirmations suivantes sont équivalentes :

i) Les variables X et Y sont indépendantes.
ii) Pour tous P,Q ∈ Rn[X] on a E(P (X)Q(Y )) = E(P (X))E(P (Y )).

2551 Mines-Ponts MP

Soit p1, p2 et p des réels de ]0 ; 1[, et X1 et X2 deux variables aléatoires réelles suivant
une loi géométrique de paramètres respectifs p1 et p2. Soit Y une variable aléatoire à
valeurs dans {−1; 1} telle que P(Y = 1) = p.

On pose M =
(
X1 X2
Y X2 X1

)
.

1. Quelle est la probabilité que la matrice M soit inversible ?
2. Quelle est la probabilité que les valeurs propres de M soit réelles ?
3. Soit θ0 ∈

]
0 ; π

2

[
. Quelle est la probabilité que les valeurs propres de M soient

dans l’ensemble S = {ρeiθ | ρ ∈ R∗
+, |θ| ⩽ θ0} ?
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2552 TPE/EIVP

Soit X,Y des variables aléatoires sur un espace probabilisé (Ω,A,P) de même loi
uniforme sur E = {0, . . . , n}. Soit encore Z = |X − Y | et T = inf(X;Y ).

1. Montrer que E(Z) =
n(n+ 2)
3(n+ 1).

En déduire E(T ).
2. Soit U une variable aléatoire à valeurs entières dans [[0 ; k]], où k ∈ N∗.

(a) Déterminer une relation entre
k∑

j=1
P(U ⩾ j) et E(U).

(b) Trouver de même une relation entre
k∑

j=1
j2P(U ⩾ j) et E(U), E(U2) et E(U3).

Retrouver E(T ) à l’aide de la question 2(a).

2553 Centrale-Supélec PSI 2022

Soit ξ une variable aléatoire discrète suivant la loi de Rademacher, ne prenant que les
valeurs −1 et 1, avec la probabilité 1

2 .
1. Montrer que :

∀u ∈ R, E(exp(uξ)) ⩽ exp
(
u2

2

)
.

• On note ∥·∥ la norme euclidienne induite par le produit scalaire sur Mn×1(R).
• Soit M = (ξij)1⩽i,j⩽n une matrice aléatoire dont les coefficients sont des

variables aléatoires indépendantes suivant la loi de Rademacher.
• On considère une matrice colonne X ∈ Mn×1(R) telle que ∥X∥ = 1.
• Soit ζ = MX et (ζi)1⩽i⩽n les coordonnées de ζ dans la base canonique de
Mn×1(R).

2. Montrer que :

∀i ∈ [[1 ;n]], ∀λ ⩾ 0, P(|ζi| ⩾ λ) ⩽ 2 exp
(

−λ2

2

)
.

3. En déduire l’existence d’une constante C ⩾ 0, indépendante de n, telle que :

∀i ∈ [[1 ;n]], E
(

exp
(
ζ2

i

4

))
⩽ C.

2554 Mines-Télécom PC 2019

Soit X un variable aléatoire de loi P(λ).

Calculer E
(

1
X + 1

)
.
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2555 Mines-Ponts

Soit (Ω, T ,P) un espace probabilisé.
1. Montrer que :

∀x ∈ [−1 ; 1], ∀t ∈ R, etx ⩽
1 − x

2 e−t + 1 + x

2 et.

2. Soit X une variable aléatoire discrète ayant une espérance, centrée avec |X| ⩽ 1.
Montrer que etX admet une espérance et que E(etX) ⩽ e

t2

2 .
3. Soit X1, . . . , Xn des variables aléatoires réelles discrètes indépendantes et
a1, . . . , an dans R∗

+. On suppose de plus, que pour tout i ∈ [[1 ;n]], |Xi| ⩽ ai. On

pose Sn =
n∑

i=1
Xi. Montrer que :

∀t ∈ R, E(etSn) ⩽ exp
(
t2

2

n∑
i=1

a2
i

)
.

2556 Mines-Télécom MP 2017

Considérons un dé équilibré à six faces.
1. Dans cette première question, on effectue 10 lancers de dé indépendants. Soit T

la variable aléatoire qui donne le premier lancer où l’on obtient 6. (On supposera
que si l’on n’obtient aucun 6, alors T = 0.)
Déterminer la loi de T .

Dans les questions suivantes, on ne limite plus le nombre de lancers de dés.
Notons Tn la variable aléatoire renvoyant le numéro de lancer où l’on obtient le
nème 6.

2. (a) Déterminer la loi de T1.
(b) Calculer la fonction génératrice de T1, son rayon de convergence et sa somme.

3. (a) Déterminer la loi de T2 − T1.
(b) Calculer la fonction génératrice de T2 − T1, son rayon de convergence et sa

somme.
(c) En déduire la loi de T2.

2557 X-ENS Cachan PSI 2021

Soit A,B deux variables aléatoires suivant une loi uniforme sur {0; 1; 2}.

Soit M =

1 A−B 0
0 A A− 1
0 0 B

.

Quelle est la probabilité que M soit diagonalisable ?
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2558 CCINP MP 2023

Une urne contient 2 boules blanches et 8 boules noires.
1. Un joueur tire successivement, avec remise, 5 boules dans cette urne. Pour

chaque boule blanche tirée, il gagne 2 points et pour chaque boule noire ti-
rée, il perd 3 points. On note X la variable aléatoire représentant le nombre de
boules blanches tirées. On note Y le nombre de points obtenus par le joueur sur
une partie.
(a) Déterminer la loi de X, son espérance et sa variance.
(b) Déterminer la loi de Y , son espérance et sa variance.

2. Dans cette question, on suppose que les cinq tirages successifs se font sans remise.
(a) Déterminer la loi de X.
(b) Déterminer la loi de Y .
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10 Nombres complexes

2559 X ESPCI

Résoudre dans C3 le système : 
x+ y + z = 1
xyz = 1
|x| = |y| = |z| = 1

2560 Mines-Ponts MP 2023

1. Trouver les polynômes P ∈ C[X] tels que P (C) ⊂ R.
2. Trouver les polynômes P ∈ C[X] tels que P (R) ⊂ R.

2561 ENS PC 2015

Soit a et b deux nombres complexes distincts. Soit P et Q deux polynômes complexes
non constants. On fait les hypothèses :

P−1({a}) = Q−1({a}) et P−1({b}) = Q−1({b}).

Montrer que P et Q sont égaux.

2562 Mines-Télécom MP 2022

Trouver les polynômes P ∈ C[X] tels que P (U) ⊂ U, où U est l’ensemble des nombres
complexes de module 1.

2563 ENSEA/ENSIIE 2022

Soit n ∈ N∗. Calculer Sn =
∑

α∈Un

|α− 1|.

On rappelle que Un =
{
e 2kπi

n | 0 ⩽ k ⩽ n− 1
}
.

2564 Mines-Télécom 2022

Soit n ∈ N∗ et f : Un → Un définie par f(z) = z2.
1. Pour quels n ∈ N∗ la fonction f est-elle bijective ?
2. Pour quels n ∈ N∗ la fonction f est-elle une involution ?

2565 Centrale 2024

Soit n ∈ N∗.

1. Factoriser Qn =
n−1∑
k=0

Xk dans C[X].

2. En déduire que
n−1∏
k=1

sin
(
kπ

n

)
= n

2n
.
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2566 Mines-Ponts PC 2022

Soit n ∈ N, n ⩾ 3 et impair. On pose w = e 2πi
n .

1. Montrer l’existence de Pn =
n−1∏
k=1

1 − wk

1 + wk
et calculer Pn.

2. En déduire
n−1∏
k=1

tan
(
kπ

n

)
.

2567 Mines-Ponts PC 2022

Soit n ∈ N, n ⩾ 2. On note U∗
n = Un \ {1} et

Pn =
∏

α∈U∗
n

(x− α) et Sn =
∑

α∈U∗
n

1
1 − α

.

1. Simplifier Pn.
2. Simplifier Sn.

2568 CCINP

Soit a un nombre complexe tel que |a| < 1.
1. Démontrer que, pour tout nombre complexe z tel que 1 − az ̸= 0,

1 −
∣∣∣∣ z − a

1 − az

∣∣∣∣2 = (1 − |a|2)(1 − |z|2)
|1 − az|2

.

2. Déterminer les nombres complexes z vérifiant
∣∣∣∣∣ z − a

1 − az

∣∣∣∣∣ ⩽ 1.

2569 CCINP MP 2024

1. Donner la définition d’un argument d’un nombre complexe non nul. (On ne
demande ni l’interprétation géométrique, ni la démonstration de l’existence d’un
tel nombre.)

2. Soit n ∈ N∗. Donner, en justifiant, les solutions dans C de l’équation zn = 1.
3. En déduire, pour n ⩾ 2, les solutions dans C de l’équation (z+ i)n = (z− i)n et

démontrer que ce sont des nombres réels.

2570 ENSAM 2012

1. Déterminer l’ensemble des z ∈ C tels que
z2

z + 1 ∈ R.

2. Déterminer l’ensemble des z ∈ C tels que
z2

z + 1 ∈ iR.

2571 X-ENS

Trouver les polynômes P ∈ C[X] tels que P (Q) = Q.
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2572 CCINP

Soit z un nombre complexe, z ̸= 1. Démontrer que :

|z| = 1 ⇐⇒ 1 + z

1 − z
∈ iR.

2573 Mines 2015

On considère le plan complexe C. Donner une condition sur z ∈ C pour que le triangle
ABC dont les sommets ont pour affixes respectives z, z2 et z3 ait pour orthocentre le
point O, d’affixe 0.

2574 Centrale 2015

Soit P (X) ∈ C[X] un polynôme non constant. On note ΩP l’ensemble des nombres
complexes tels que le polynôme P (X) + c est scindé à racines simples sur C.

1. Montrer que l’ensemble C \ ΩP est fini.
2. Soit P (X) ∈ R[X] non constant. On note ΘP l’ensemble des nombres réels r

tels que le polynôme P (X) + r est scindé à racines simples sur R.
(a) Montrer que ΘP est un intervalle non vide et ouvert dans R.
(b) Déterminer les polynômes P (X) ∈ R[X] tels que ΘP soit non borné.

2575 Mines-Ponts PSI 2015

Résoudre dans C :
1 + 2z + 2z2 + · · · + 2zn−1 + zn = 0.

2576 CCP PC 2015

Soit w = e 2πi
7 .

Soit S = w + w2 + w4 et T = w3 + w5 + w6.
Calculer S + T et ST , puis en déduire S et T .

2577 Mines-Ponts PSI 2015

Soit a ∈ R et n ∈ N∗. Résoudre dans C :(1 − iz
1 + iz

)n

= 1 + ai
1 − ai .

2578 CCINP PC 2018

Soit θ ∈ R. On pose z = eiθ.
1. Exprimer |1 + z| en fonction de θ.
2. Montrer que |1 + z| ⩾ 1 ou |1 + z2| ⩾ 1.

2579 Centrale-Supélec PSI 2014

Soit (a; b; c; d) ∈ C4. Donner une condition nécessaire et suffisante pour que les affixes
z1, z2, z3, z4 des quatre racines du polynôme P = X4 + aX3 + bX2 + cX + d soient sur
les quatre sommets d’un carré du plan complexe.
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2580 Mines-Ponts PSI 2017

Trouver les nombres complexes z tels que z, z2, z5 soient alignés.

2581 ENS Ulm

Soit (a1; . . . ; am) ∈ Cm et pour tout n ∈ N, soit zn =
m∑

k=1
an

k .

Que dire des nombres complexes a1, . . . , am si la suite (zn)n∈N converge ?

2582 ENSEA/ENSIIE PSI 2023

Soit f : z ∈ C \ {2i} 7→
z + 1
z − 2i.

1. Trouver tous les z tels que f(z) ∈ R.
2. Trouver tous les z tels que f(z) ∈ iR.

2583 ENSEA/ENSIIE MPI 2023

1. Factoriser dans C les polynômes X2 +X + 1 et X2 −X + 1.
2. Montrer que X2 −X + 1 divise (X − 1)n+2 +X2n+1.

2584 CCINP PC

Pour tout entier n ⩾ 2, on note Un = {z ∈ C | zn = 1}. On note U = {z ∈ C | |z| = 1}.

On cherche à savoir s’il existe n ∈ N∗ tel que
(3 + 4i

5

)n

= 1.

1. Montrer que Un ⊂ U, puis que 3+4i
5 ∈ U.

2. Soit ak la partie réelle de (3 + 4i)k et bk sa partie imaginaire.
Exprimer ak+1 et bk+1 en fonction de ak et bk, puis montrer que, pour tout k ∈ N,
ak et bk sont des entiers relatifs.

3. Montrer que, pour k ⩾ 1, le reste de la division euclidienne de ak par 5 est 3,
puis montrer que le reste de la division euclidienne de bk par 5 est 4. Conclure.

4. Démontrer l’inégalité : ∣∣∣eiβ − eiα
∣∣∣ ⩽ |β − α|.

2585 Mines-Télécom MP 2018

1. Résoudre dans C l’équation :

z3 + (1 + i)z2 + (4 − i)z + 12 − 6i = 0.

Indication : l’équation possède une solution réelle.
2. Que peut-on dire du triangle ABC, où A,B,C sont les points du plan dont les

affixes sont les racines trouvées à la question 1 ?
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2586 Centrale-Suplélec PSI 2025

1. Soit f : Ω ⊂ R → R.
(a) Rappeler la définition de « f est bornée sur Ω ».
(b) Rappeler la définition de « f admet un maximum sur Ω ».

2. Pour tout z ∈ C, on pose s(z) = eiz − e−iz

2i et φ(z) = |s(z)|2.

(a) L’application φ est-elle bornée ?
On pose D = {z ∈ C | |z| ⩽ 1}.

(b) Montrer que φ est bornée sur D.
(c) Montrer que φ atteint son maximum sur D en exactement deux points.

2587 Mines-Télécom MP 2022

Soit
f : Un −→ Un

z 7−→ z2

où Un est le groupe des racines nèmes de l’unité.
1. Pour quels n ∈ N∗ l’application f est-elle bijective ?
2. Pour quels n ∈ N∗ a-t-on f ◦ f = Id ?

2588 Mines-Télécom MP 2016

Trouver z ∈ C tel que sin(z) = 3.

2589 CCINP TSI 2024

Soit P = (X + 1)7 −X7 − 1.
1. Vérifier que e 2iπ

3 est racine de P .
2. Trouver toutes les racines de P .

2590 X MP 2019

Soit x, y, z ∈ C tels que x+ jy + j2z = 0, avec j3 = 1 et j ̸= 1.
Que peut-on dire du triangle xyz ?

2591 ENS MPI 2025

1. Soit (a; b) ∈ R × (R \ πZ). Prouver qu’il existe z ∈ C tel que z + ez = a+ bi.
2. Démontrer que z 7→ zez est surjective sur C.

2592 Mines-Ponts MP

Calculer
n∏

k=1

1
1 − e 2kπi

n

.

2593 CCINP PC 2014

Soit n ∈ N∗. On considère le polynôme Pn = (X + 1)n + (X − 1)n. Déterminer le degré
et le coefficient dominant du polynôme Pn, puis factoriser ce polynôme sur C.
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2594 Centrale-Supélec PSI 2014

Soit n ∈ N∗.
1. Résoudre dans C l’équation (1 + x)2n = (1 − x)2n.
2. Calculer le produit des solutions non nulles.

2595 TPE/EIVP MP 2017

Soit P ∈ C[X]. Montrer que les racines de P ′ sont comprises dans l’enveloppe convexe
contenant les racines de P .

2596 X MP 2019

Soit P ∈ C[X]. Montrer que :

sup
|z|⩽1

|P (z)| = sup
|z|=1

|P (z)|.

2597 CCINP PC 2019

Soit z ∈ C∗. On pose f(z) = z +
1
z
.

1. Soit n ∈ N∗. Montrer que :

f(zn+1) = f(z)f(zn) − f(zn−1).

2. Soit n ∈ N∗. Montrer qu’il existe un polynôme Pn de degré n et de coefficient
dominant un tel que :

∀z ∈ C∗, f(zn) = Pn(f(z)).

On donnera une expression de Pn+1 en fonction de Pn et Pn−1.
3. Soit n ∈ N∗. Montrer que le seul polynôme Q vérifiant :

∀z ∈ C∗, f(zn) = Q(f(z))

est Pn.
4. Soit n ∈ N∗ et k ∈ [[0 ;n− 1]]. On pose zk = e

i(2k+1)π
2n .

Calculer f(zn
k ). Que peut-on en déduire ? Donner une expression des Pn.

5. (a) Montrer que (Pn(0))n∈N est une suite récurrente linéaire d’ordre 2.
(b) En déduire le coefficient constant de Pn.

6. Calculer
n−1∏
k=0

cos
(

(2k + 1)π
2n

)
.

7. Calculer
n−1∑
k=0

cos
(

(2k + 1)π
2n

)
.
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2598 Mines-Ponts PC 2024

Soit n un entier supérieur ou égal à 2.
1. Montrer l’existence d’un polynôme réel Pn tel que :

(1 + iX)2n+1 − (1 − iX)2n+1 = 2iXPn(X2).

2. Déterminer le degré de Pn et son coefficient dominant.
3. Déterminer les racines de Pn.

4. Simplifier
n∏

k=1

(
4 + tan2

(
kπ

2n+ 1

))
.

2599 X-ENS

Soit (z1; . . . ; zn) ∈ (C\{0})n. Prouver qu’il existe une partie I contenue dans {1; . . . ;n}
telle que : ∣∣∣∣∣∣

∑
k∈I

zk

∣∣∣∣∣∣ ⩾ 1
4
√

2

n∑
k=1

|zk|.

2600 X ESPCI

Calculer
∑
z∈U

1
2 − z

.

2601 ENSEA/ENSIIE PSI 2024

Soit n > 1 un entier. On considère le polynôme P tel que :

∀z ∈ C, P (z) =
n−1∑
k=0

zk.

1. Déterminer les racines de P .

2. Montrer que
n−1∏
k=1

∣∣∣1 − e2i kπ
n

∣∣∣ = n.

3. En déduire que
n−1∏
k=1

sin
(
kπ

n

)
= n

2n−1 .

2602 TPE/EIVP MP 2017

Soit a, b, c trois nombres complexes quelconques. Trouver la condition nécessaire et
suffisante pour que : 

x+ y + z = a

x+ jy + j2z = b

x+ j2y + jz = c

admette une solution (x; y; z) dans R3.
On rappelle que j = e 2πi

3 .
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2603 Mines-Télécom MP 2019

1. Résoudre dans C l’équation 4x4 + 3x2 + 1 = 0.
2. Factoriser dans R[X] le polynôme 4X4 + 3X2 + 1.
3. Trouver quatre diviseurs (positifs) de 40301.

2604 X MP 2014

Soit z une racine nème primitive de l’unité. Montrer pour d ⩾ 1 :

z(k+n)d = zkd

.

Calculer le module de la somme des zk2 pour k variant de 0 à n− 1.

2605 CCINP PC 2021

1. Résoudre dans C l’équation zn = ei π
3 .

2. Résoudre l’équation : (
z + 1
z − 1

)n

+
(
z − 1
z + 1

)n

= 1.

2606 CCINP PC 2018

Soit n ∈ N∗ et P = (X − 1)2n+1 − 1 ∈ C[X].
1. Déterminer les racines complexes du polynôme P .
2. En déduire une simplification du produit :

2n∏
k=0

cos
(

kπ

2n+ 1

)
.
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11 Équations fonctionnelles

2607 X-ENS 2023

Trouver les fonctions f : Z → Z telles que f(f(n)) = n+ 2023 pour tout entier n.

2608 Centrale 2020

Trouver les fonctions réelles définies et continues sur ]0 ; +∞[ vérifiant, pour tout
(x; y) ∈ R∗

+
2,

f(xy) = xf(y) + yf(x).

2609 Mines-Ponts PSI 2022

Déterminer les polynômes P ∈ C[X] tels que XP (X + 1) = (X + 4)P (X).

2610 X PC 2015

1. Montrer que la fonction cosinus admet un unique point fixe sur R.
2. Montrer qu’il n’existe pas de fonction dérivable sur R telle que f ◦ f = cos .

2611 X MP

Soit f une application de R dans R telle que :
f(1) = 1
∀(x; y) ∈ R2, f(x+ y) = f(x) + f(y)
∀x ∈ R∗, f(x−1) = (f(x))−1

Que dire de f ?
On commencera par montrer que f est bornée au voisinage de 0 en considérant la
fonction φ : x 7→ x+ x−1.

2612 Centrale

Soit P ∈ R[X] tel que P ̸= 0 et P (X2) = P (X)P (X − 1).
1. Montrer que si ω ∈ C est racine de P , alors ω2 l’est aussi.
2. Montrer que toutes les racines ω ∈ C de P vérifient |ω| = 1 ou ω = 0.
3. En déduire que 0 n’est pas une racine de P .
4. Déterminer P en le factorisant.

2613 X

Déterminer les fonctions continues f : R → R telles que pour tout (x; y) ∈ R2 l’on ait

f
(√

x2 + y2
)

= f(x)f(y).
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2614 X MP

Trouver toutes les fonctions continues f telles pour tout r ∈ Q et pour tout x ∈ R,
f(x+ r) − f(x) ∈ Q.

2615 CCP MP

On note F l’ensemble des fonctions de C2(R,R) ne s’annulant pas sur R et vérifiant
l’équation fonctionnelle suivante :

∀(x; y) ∈ R2, f(x+ y) + f(x− y) = 2f(x)f(y).

1. Soit f ∈ F . Montrer que f vérifie une équation différentielle de la forme

y′′ + ky = 0. (1)

2. Déterminer les solutions de (1).
3. Déterminer F .

2616 Mines-Télécom PSI 2015

Trouver les fonctions f : R → R continues telles que, pour tout x ∈ R,

xf(x) =
∫ x

0
f(t) dt.

2617 X MP

Trouver toutes les fonctions f et g appartenant à C(R∗
+,R) telles que, pour tous x et

t appartenant à R∗
+, f(xt) = f(x)f(t).

2618 X-ENS

Trouver les fonctions f : R∗
+ → R∗

+ qui vérifient, pour tout x > 0,

f(f(x)) = 6x− f(x).

2619 TPE/EIVP PC 2016

Trouver les fonctions f : R → R dérivables telles que, pour tout x ∈ R, f ′(x)f(−x) = 1.

2620 Mines-Ponts MP 2023

Trouver les fonctions f : R → R dérivables telles que, pour tout x ∈ R, f ′(x) = f(π−x).

2621 Mines-Ponts MP

Trouver les fonctions f : R∗
+ → R dérivables telles que, pour tout x ∈ R, f ′(x) = f

(
1
x

)
.

2622 Centrale

Trouver les fonctions f : R → R dérivables telles que f ◦ f = f.
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2623 Mines-Ponts PC 2023

Trouver les fonctions f : R → R continues telles que, pour tout x ∈ R,

f(f(x)) = f(x) + 1.

2624 Centrale MP 2023

Trouver les fonctions f : R → R continues telles que, pour tout x ∈ R,

f(f(x)) = 2f(x) − x.

2625 CCINP MP 2022

Trouver tous les polynômes P ∈ R[X] tels que (X2 −X)P ′′ = 6P .

2626 Centrale PC 2024

Trouver tous les polynômes P ∈ R[X] tels que :
1. P (X2) = (X3 + 1)P (X).
2. P (X2) = P (X + 1)P (X).

2627 Mines-Ponts MP 2022

Trouver tous les polynômes P ∈ C[X] tels que P (X2) = P (X)P (X − 1).

2628 X-ENS

Trouver tous les polynômes P ∈ R[X] tels que P (X)P (X + 1) = P (X2 +X + 1).

2629 Mines-Ponts PSI 2019

On cherche les polynômes P ∈ R[X] tels que, pour tout x ∈ R, P (cos(x)) = cos(P (x)).
1. Trouver les solutions de degré 0.
2. Trouver les solutions de degré 1.
3. Trouver toutes les solutions.

2630 X 2024

Déterminer les fonctions dérivables f : R → R telles que pour tout (x; y) ∈ R2 l’on ait

f(x)f(y) = f(x+ yf(x)).

2631 X 2024

Trouver les fonctions f ∈ C2([0 ; 1],R) telles que

f(x) = 2
(
f
(
x

2

)
+ f

(
1 − x

2

))
.

2632 X PC 2019

Trouver les fonctions f de classe C1 définies sur R vérifiant

|f | + |1 + f ′| ⩽ 1.
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2633 X PC 2019

Déterminer les fonctions continues f : [0 ; 1] → R telles que, pour tout x ∈ [0 ; 1],

f(x) =
∑
n⩾1

f(xn)
2n

.

2634 CCP 2015

Trouver les fonctions f ∈ C(R,R) telles que, pour tout x ∈ R,

f(x) +
∫ x

0
(x− t)f(t) dt = 1.

2635 CCP 2015

On recherche les fonctions f : R → R continues telles que :

∀(x; y) ∈ R2, f
(
x+ y

2

)
= 1

2(f(x) + f(y)). (E)

1. Soit f une fonction vérifiant la relation (E), et les conditions f(0) = f(1) = 0.
(a) Montrer que f est impaire.
(b) Montrer que f est 2-périodique et en déduire que f est bornée.
(c) Montrer que f(2x) = 2f(x).
(d) Qu’en déduire sur f ?

2. Trouver toutes les fonctions f vérifiant la propriété (E).

2636 Mines-Ponts 2015

Trouver toutes les fonctions f continues de ] − 1 ; 1[ dans R telles que :

∀x ∈]0 ; 1[, f(x) = 1 +
∫ x

0
f 2(t) dt.

2637 ENS Ulm

Déterminer les fonctions f : R+ → R dérivables telles que :

∀x, y ⩾ 0, f(xy) ⩾ f(x)f(y) et f(1) = 1.

2638 Centrale PSI 2017

On cherche à résoudre l’équation fonctionnelle (E) : 2xy′(x) − 2y(−x) =
x

x2 + 1.
Montrer qu’une fonction f de R dans R se décompose de manière unique en la somme
d’une fonction paire et d’une fonction impaire.
Montrer que le problème (E) se ramène à deux équations différentielles du premier
ordre, et résoudre le problème (E).

2639 X ESPCI

Déterminer les polynômes P ∈ R[X] tels que P (X2 + 1) = P (X)2 + 1 et P (0) = 0.
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2640 Centrale PC

Déterminer les fonctions f : R → R dérivables telles que :

∀x ∈ R, f ′(x) + f(−x) = ex.

2641 Mines

Quelles sont les fonctions f : R+ → R+ telles que :

∀x, y ∈ R+, ∃a, b ∈ R+, f ([x ; y]) = [a ; b] et |x− y| = |a− b| ?

2642 Mines-Ponts MP 2015

Déterminer les fonctions f : R → R de classe C1 vérifiant :

f ′(f(x))f ′(x) = 1, f(0) = 0 et f ′(0) > 0.

2643 Centrale-Supélec PC 2014

Trouver l’ensemble des fonctions f : R → R continues vérifiant :

∀x ∈ R, f(2x) = exp
(
x2

2

)
cos(x)f(x).

2644 X FUF 2024

Déterminer les fonctions f : R∗
+ → R vérifiant :

∀x > 0, ∀y > 0, |f(x) − f(y)| ⩽ 1
x+ y

.

2645 X MP 2020

Trouver les fonctions f : N∗ → N∗ vérifiant :

∀n > 0, f(n+ 1) > f(f(n)).

2646 Mines 2022

Trouver toutes les fonctions continues f : R → R vérifiant :

∀x ∈ R, f(2x) = 1 +
∫ x

0
(x− t)f(2t) dt.

2647 ENS Ulm 2022

Trouver toutes les fonctions f : R → R continues et bornées telles que :

∀x ∈ R, f(x) = f(x− 1) + f(x+ 1) + f(x− π) + f(x+ π)
4 .

2648 Mines-Télécom MP 2023

Soit P ∈ R[X] un polynôme vérifiant XP (X) = (X − 3)P (X + 1).
1. Montrer que si P vérifie la relation, alors 1, 2 et 3 sont des racines de P .
2. Donner tous les polynômes Q ∈ R[X] tels que Q(X) = Q(X + 1).
3. Conclure.
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2649 Mines-Télécom MP 2023

Déterminer les fonctions f de classe C1 sur R et 2π-périodiques, vérifiant :

∀x ∈ R, f ′(x) = f(x− π) + sin(x).

2650 Mines-Télécom MP 2023

Trouver toutes les fonctions f : R → R continues telles que :

∀x, y ∈ R, f(x) =
∫ x+y

x−y
f(t) dt.

2651 Mines-Ponts MP 2023

1. Soit c > 2. On considère une fonction f : R → R continue 1-périodique vérifiant :

∀x ∈ R, f
(
x

2

)
+ f

(
x+ 1

2

)
= cf(x).

Montrer que f = 0.
2. Montrer que :

∀x ∈ R \ Z,
+∞∑

n=−∞
(x− n)−2 = π2

sin2(πx) .

2652 Mines-Ponts PC 2023

On admet que si I est un intervalle de R non trivial, alors toute fonction définie sur I,
à valeurs réelles, continue et injective est strictement monotone. Pour tout réel x, on
note {x} = x− ⌊x⌋. On pose :

E = {f ∈ C(R,R) | ∀x ∈ R, f(f(x)) = x+ 1}.

Soit f ∈ E .
1. Montrer que f est strictement croissante.
2. Pour tout x ∈ R, montrer l’égalité f(x+ 1) = f(x) + 1.
3. Pour tout x ∈ R, montrer l’égalité f(x) = f({x}) + ⌊x⌋.
4. On pose d = f(0) et on note g la restriction de f à l’intervalle [0 ; d].

(a) Montrer l’encadrement 0 < d < 1.
(b) Montrer que g réalise une bijection de [0 ; d] sur [d ; 1] et que celle-ci est

continue et strictement croissante.
5. Décrire les éléments de E .

2653 Mines-Télécom PSI 2019

Trouver toutes les fonctions continues f de R dans R telles que :

∀x ∈ R, f(x) = 1 −
∫ x

0
(t+ x)f(x− t) dt.
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2654 TPE/EIVP MP 2015

Trouver les fonctions f : ]0 ; 1[→ R continues telles que :

∀x ∈ ]0 ; 1[,
∫ 1

1−x

f(t)
t

dt = f(x).

2655 X MP 2018

Trouver toutes les fonctions continues f de R dans R telles que :

∀x ∈ R, 3f(2x+ 1) = f(x) + 5x.

2656 X MP 2017

Trouver toutes les fonctions f : R → R dérivables telles que :

∀(x;h) ∈ R2, f(x+ h) − f(x) = f ′(x)h.

2657 X ESPCI 2015

Trouver toutes les fonctions f ∈ C2(R,R) telles que :

∀(x; y) ∈ R2, f(x+ y)f(x− y) = f 2(x) − f 2(y).

2658 X

Montrer qu’il n’existe pas trois fonctions continues de R dans R, f, g et h telles que :

∀(x; y) ∈ R2, h(f(x) + g(y)) = xy.

2659 ENS PC 2024

Trouver toutes les fonctions f ∈ C2(R,R) telles que :

∀t ∈ R, f(t)2 = f(t
√

2).

2660 X PSI 2023

Déterminer les fonctions f : R → R monotones telles que :

∀(x; y) ∈ R2, f(xy) = f(x)f(y).

2661 Mines-Ponts PC 2024

Soit f : R → R dérivable telle que :

∀x ∈ R, f(x)2 + (1 + f ′(x))2 ⩽ 1.

Que dire de f ?

2662 X-ENS

Déterminer les fonctions f : R → R continues telles que :

∀x ∈ R, ∀a > 0, f(x) = 1
2a

∫ x+a

x−a
f(t) dt.
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2663 Centrale-Supélec PC 2022

Soit a ∈ R∗ et λ ∈ ] − 1 ; 1[. Soit encore f : R → R une fonction lipschitzienne.
1. Montrer qu’il existe une unique fonction F : R → R lipschitzienne telle que :

∀x ∈ R, F (x) − λF (x+ a) = f(x).

2. Exprimer la fonction F dans le cas où f est la fonction cosinus.

2664 Mines-Ponts PC 2015

Trouver les fonctions continues f de R dans R telles que :

∀x ∈ R, f(x) = 2
∫ x

0
f(t) cos(x− t) dt+ 1.

2665 X MP 2015

Montrer que la fonction nulle est la seule fonction bornée vérifiant :

f ′(t) = f(t− 1).

2666 ENS MP 2014

Soit f une fonction de R dans R vérifiant :
• ∀(x; y) ∈ R2, f(x+ y) ⩽ f(x) + f(y) ;
• ∀x ∈ R, f(x) ⩽ x.

Que dire de f ?

2667 ENS 2013

Quels sont les polynômes P ∈ C[X] tels que P (X2) = P (X)2 ?

2668 Mines-Télécom PSI 2019

On cherche à résoudre l’équation

(E) : ∀x ∈ R+, u(x) = 1 +
∫ x

0
u
(
t

2

)
dt,

avec u ∈ C0(R+,R).
1. Soit (un)n∈N la suite de fonctions définie par u0 = 1 et, pour tout n ∈ N :

∀x ∈ R+, un+1(x) = 1 +
∫ x

0
un

(
t

2

)
dt.

Montrer par récurrence que :

∀x ∈ R+, 0 ⩽ un+1(x) − un(x) ⩽ xn+1

(n+ 1)! .

En déduire que la suite (un)n∈N converge vers une certaine fonction u.
2. Montrer que u est solution de (E).
3. Donner les fonctions développables en série entière dont la restriction à R+ est

solution de (E).
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2669 ENS MP 2015

Soit f une fonction définie sur ]0 ; +∞[ telle que :
• ∀x ∈ ]0 ; +∞[, f(x+ 1) = ln(x) + f(x) ;
• f(1) = 0 ;
• f est convexe sur ]0 ; +∞[.
1. Montrer que, en cas d’existence, la fonction f est unique.
2. Expliciter f .

2670 Mines-Ponts

Soit l’équation fonctionnelle :

(E) : f(2x) = 2f(x) − 2f(x)2.

1. Quelles sont les solutions constantes sur R ?
2. Soit h : R → R. On pose, pour tout x ∈ R, f(x) = xh(x). À quelle condition

sur h, la fonction f est-elle solution de (E) ?
On définit par récurrence une suite (hn)n∈N de fonctions de R dans R en posant
h0 : x 7→ 1 et :

∀n ∈ N, hn+1 : x 7−→ hn

(
x

2

)
− x

2

(
hn

(
x

2

))2
.

Soit x ∈ [0 ; 1] et Tx : y 7→ y −
xy2

2 .

3. Montrer que Tx est 1-lipschitzienne sur [0 ; 1] et que Tx([0 ; 1]) ⊂ [0 ; 1].
Montrer que la suite (hn)n∈N converge uniformément sur [0 ; 1].

4. Montrer que (E) admet une solution continue et non constante sur [0 ; 1].
5. Montrer que (E) admet une solution continue et non constante sur R+.

2671 Mines-Ponts

Trouver les fonctions f de R dans R deux fois dérivables telles que :

∀x ∈ R, f ′′(x) + f(−x) = x cos(x).
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12 Divers

2672 X/Centrale

On a 2n + 1 cailloux. Lorsqu’on isole n’importe lequel d’entre eux, on peut séparer
l’ensemble des 2n autres en deux groupes de n cailloux dont la somme des masses est
égale. Montrer que tous les cailloux ont la même masse.

2673 X

Calculer :
inf

α∈]0;π]

{
sup
n∈Z

|sin(nα)|
}
.

2674 Mines

1. Montrer que a = cos
(

π
9

)
est une racine d’un polynôme de degré trois à coeffi-

cients entiers.
2. Justifier que a est irrationnel.

2675 X-ENS

1. Soit (an)n∈N ∈ CN. Pour tout n ∈ N, on pose :

bn =
n∑

k=0

(
n

k

)
ak.

Montrer la formule d’inversion de Pascal : pour tout n ∈ N,

an =
n∑

k=0

(
n

k

)
bk(−1)n−k.

2. Pour tout n ∈ N∗, on note dn le nombre de dérangements de [[1 ;n]], c’est-à-dire
le nombre de permutations de [[1 ;n]] sans point fixe. Calculer dn.

2676 ENS ULSR MP 2023

Montrer qu’il n’existe pas de polynôme P ∈ R[X,Y ] tel que :{
(x; y) ∈ R2 | x > 0, y > 0

}
=
{
(x; y) ∈ R2 | P (x; y) > 0

}
.

2677 X

Montrer que
n∑

k=1
(−1)k+1 ∑

1⩽i1<···<ik⩽n

min {xi1 ; . . . ;xik
} = max {x1; . . . ;xn}.

2678 X-ENS MP

On considère P (X) = X3 + aX2 + bX + c ∈ R[X].
Montrer que les racines de P ont une partie réelle strictement négative si et seulement
si a > 0, b > 0, c > 0 et ab− c > 0.
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2679 X MP

Soit P ∈ R[X] admettant n racines réelles distinctes supérieures à 1.
On pose Q(x) = (1 +X2)P (X)P ′(X) +X(P (X)2 + P ′(X)2).
Montrer que Q admet au moins 2n− 1 racines réelles distinctes.

2680 X PC 2015

Soit f : [0 ; 1] → R une fonction continue et p, q deux nombres réels strictement positifs.
Montrer qu’il existe x0 ∈ [0 ; 1] tel que pf(0) + qf(1) = (p+ q)f(x0).

2681 X

Montrer que cos(1) est irrationnel.

2682 X-ENS

Soit I ⊂ R∗
+ un intervalle et f : I → R. Montrer que les deux affirmations suivantes

sont équivalentes :
i) x 7→ xf(x) est convexe ;
ii) x 7→ f

(
1
x

)
est convexe.

2683 Mines-Ponts

Déterminer les couples d’entiers naturels (x; y) tels que xy = yx. Peut-on trouver des
solutions non entières ?

2684 X

Soit P ∈ R[X] tel que P (R) ⊂ R+.
Montrer qu’il existe A,B ∈ R[X] tels que P = A2 +B2.

2685 X PC 2019

On considère une fonction f définie sur R de la forme

f(x) = xn + ax+ b

avec n ⩾ 2 entier et a, b réels.
1. Montrer que f n’a pas plus de 3 racines réelles différentes.
2. Donner un exemple avec 3 racines réelles différentes.
3. Montrer que si de plus n est pair, f n’a pas plus de 2 racines réelles différentes.

2686 X

Soit f la fonction définie pour tout λ ∈ ]0 ; 1] par :

f(λ) = sup
x∈[0; 1

λ
]

(
e−x − (1 − λx) 1

λ

)
.

Déterminer un développement asymptotique à l’ordre 2 de f en 0.
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2687 Mines-Ponts

Soit (a; b;n) ∈ N3 tel que a+ b ⩾ n.

Montrer que
(
a+ b

n

)
=

n∑
k=0

(
a

k

)(
b

n− k

)
.

2688 X-ENS MP

Montrer que la fonction sinus n’est pas la restriction à ]a ; b[ d’une fraction rationnelle.

2689 X

Soit I un intervalle réel et f : I → R∗
+. On dit que f est logarithmiquement convexe si

ln ◦f est convexe.
1. Montrer que si f est logarithmiquement convexe, alors f est convexe. La réci-

proque est-elle vraie ?
2. Montrer que f est logarithmiquement convexe si et seulement si, pour tout
a ∈ R∗

+, la fonction fa : x 7→ f(x)ax est convexe.

2690 Mines-Ponts PC 2022

Montrer que la seule involution continue f : R+ → R+ est IdR+ .

2691 X-ENS

Une partie A de R est dite négligeable (ou de mesure nulle) si pour tout ε > 0, il existe
une suite (In)n∈N d’intervalles ouverts tels que :

A ⊂
⋃

n∈N
In et

∑
n∈N

µ(In) < ε

où µ(In) désigne la longueur de l’intervalle In.
1. Montrer qu’une réunion dénombrable de parties négligeables est négligeable.
2. Soit f : R → R de classe C1. On note Z l’ensemble des zéros de f ′. Montrer que
f(Z) est négligeable.

2692 Mines-Ponts PSI 2019

On considère, pour k ∈ N∗, Ik = inf
(a;b)∈R2

∫ +∞

0
(xk − ax− b)2e−x dx.

Montrer que Ik existe, est atteint, et calculer sa valeur.

2693 X-ENS PC 2023

Soit x0 < · · · < xn appartenant à l’intervalle [0 ; 1]. Montrer qu’il existe des nombres
réels α0, . . . , αn tels que pour tout polynôme P ∈ Rn[X] l’on ait

∫ 1

0
P (t) dt =

n∑
k=0

αkP (xk).
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2694 X-ENS

Soit n ∈ N∗.

1. Montrer qu’il existe un unique polynôme Tn ∈ R[X] tel que :

∀x ∈ R, Tn(cos(x)) = cos(nx).

Calculer Tn+1+Tn−1. (Les polynômes Tn sont appelés polynômes de Tchebychev.)
2. Montrer que Tn ∈ Z[X], préciser son degré et son coefficient dominant. Déter-

miner ses racines et les extrema de la fonction x 7→ Tn(x).
3. Montrer que, pour tout polynôme P ∈ R[X], unitaire et de degré n, on a

sup
x∈[−1;1]

|P (x)| ⩾ 1
2n−1 ,

avec égalité si et seulement si P = 1
2n−1Tn.

2695 Mines

Montrer qu’il existe (a0; . . . ; an−1) ∈ Rn tel que :

P (x+ n) =
n−1∑
k=0

akP (x+ k) pour tout P ∈ R[X] de degré inférieur à n.

2696 CCP

Soit a et b deux nombres réels tels que a < b.
1. Soit h une fonction continue et positive de [a ; b] dans R. Démontrer que :∫ b

a
h(x) dx = 0 =⇒ h = 0.

2. Soit E l’espace vectoriel des fonctions continues de [a ; b] dans R. On pose, pour
tout f et tout g de E,

⟨f, g⟩ =
∫ b

a
f(x)g(x) dx.

Démontrer que l’on définit un produit scalaire sur E.

3. Majorer
∫ 1

0

√
x e−x dx en utilisant l’inégalité de Cauchy-Schwarz.

2697 Mines-Ponts

Soit (α;λ) ∈ R2 avec λ ∈ ] − 1 ; 1[.
Soit E = {f ∈ C1(R,R) | f ′(x) = αf(x) + f(λx)}.

1. Montrer que E ⊂ C∞(R,R).
2. Déterminer une fonction non nulle de E qui est développable en série entière.
3. Déterminer E.
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2698 Centrale

Soit n et p deux entiers naturels non nuls. Déterminer à quelles conditions sur n et p,
les polynômes Xn − 1 et (X + 1)p − 1 admettent au moins une racine commune.

2699 X PC 2019

Soit E l’ensemble des fonctions f de classe C2 de [−1 ; 1] dans R vérifiant :

f(0) = f(1) et
∫ 1

−1
f(x) dx = 2.

On définit :
H : E −→ R

f 7−→
∫ 1

−1
f 2(x) dx

Montrer que le minimum de H sur E est atteint et le calculer.

2700 X PC 2019

Soit n ⩾ 3 un entier. Discuter l’existence et l’unicité dans le plan d’un polygone à n
côtés dont les milieux sont fixés.

2701 Mines PSI 2017

Calculer
n∑

k=0

(
n

k

)
k3.

2702 Mines-Ponts 2012

Calculer arctan(2) + arctan(5) + arctan(8).

2703 Mines-Ponts 2016

Résoudre dans R l’équation suivante :

arctan(x− 1) + arctan(x) + arctan(x+ 1) =
π

2.

2704 Mines-Ponts

Quelles sont les fonctions f : [0 ; 1] → R qui sont limite uniforme de polynômes
convexes ?

2705 Centrale PSI

1. Montrer que l’intégrale
∫ 1

0
P (t) ln(t) dt converge pour tout P ∈ R[X].

2. Soit n ∈ N. Montrer qu’il existe un unique Q ∈ Rn[X] tel que, pour tout
P ∈ Rn[X],

∫ 1

0
P (t) ln(t) dt =

∫ π

0
P (t)Q(t) sin(t) dt.
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2706 X ESPCI

Soit n ∈ N. Montrer qu’il existe un unique Pn ∈ R[X] tel que :

∀t ∈ R, Pn(sin2(t)) = cos(2nt)

et le déterminer.

2707 X ESPCI

1. Soit P ∈ R[X] scindé à racines simples.
(a) Calculer P ′(X)

P (X) pour tout x appartenant à R privé des racines de P . En
déduire que, pour tout x ∈ R, P (X)P ′′(X) ⩽ P ′(X)2.

(b) Montrer que, si deg(P ) ⩾ 2, alors P ′ est aussi scindé à racines simples. En
déduire que, si P = ∑n

k=0 akX
k, alors akak+2 ⩽ a2

k+1 pour tout k ∈ [[0 ;n−2]].
2. Soit P ∈ R[X] scindé. Le polynôme P ′ l’est-il aussi ?

2708 Mines-Ponts PSI

Soit P (X) = ∑n
k=0 akX

k ∈ R[X] un polynôme de degré n ⩾ 2 ayant n racines réelles
distinctes deux à deux. Montrer que P n’a pas deux coefficients consécutifs nuls, au-
trement dit, pour tout k ∈ [[0 ;n− 1]], |ak| + |ak+1| ̸= 0.

2709 X MP 2019

Pour toute fonction f : N∗ → R, on considère sa fonction moyenne :

Mf : N∗ −→ R

n 7−→ 1
n

n∑
k=1

f(k)

Montrer que pour tout n ⩾ 1, on a

lim
m→+∞

(Mmf)(n) = f(1).

2710 Mines-Ponts MP 2019

Soit a1 < · · · < an des entiers, et

P = 1 +
n∏

i=1
(X − ai)2.

Montrer que P est irréductible sur Z[X].

2711 Mines-Télécom MP 2024

Factoriser X8 +X4 + 1 dans R[X].

2712 Mines-Télécom MP 2022

Exprimer sin(3x) comme polynôme de sin(x). En déduire que sin
(

π
18

)
est irrationnel.
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2713 Mines-Ponts 2021

On pose g : x 7→ cos(α arcsin(x)) avec α ∈ R∗.
Déterminer pour quelles valeurs de α la fonction g est polynomiale.

2714 CCINP PC 2014

Soit
P : x− y + z = 3 et S : x2 + y2 + z2 = 4.

Déterminer l’intersection de S et P .

2715 X MP 2015

Un nombre x ∈ R est un nombre algébrique s’il existe P ∈ Q[X] tel que P (x) = 0.
Montrer que l’ensemble des nombres algébriques est dénombrable.

2716 X MP 2019

Existe-t-il des fractions rationnelles non constantesX,Y ∈ C(t) telles queX2+Y 2 = 1 ?

2717 Mines-Ponts MPI 2024

1. Soit (un)n∈N une suite réelle. On dit que (un)n∈N vérifie la propriété P si

∀ε > 0, ∃N ∈ N, ∀p, q ⩾ N, |up − uq| ⩽ ε.

(a) Soit (un)n∈N une suite réelle convergente.
Montrer que (un)n∈N vérifie la propriété P .

(b) Étudier la réciproque.
2. Soit (E, ∥·∥) un espace vectoriel réel normé de dimension finie.

Soit a ∈ ]0 ; 1[ et f : E → E telle que :

∀(u; v) ∈ E2, ∥f(u) − f(v)∥ ⩽ a∥u− v∥.

Démontrer qu’il existe un unique x ∈ E tel que f(x) = x.
3. Soit f : R2 → R2 telle que :

∀(x; y) ∈ R2, f(x; y) = 1
5(cos(x) − sin(y); sin(x) − cos(y)).

Démontrer que f admet un unique point fixe.

2718 ENSEA/ENSIIE MP 2021

Montrer que l’équation
arctan(x) + x = 1

admet une unique solution sur [0 ; 1].
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2719 CCINP PC 2019

Soit E un ensemble non vide et f une application de E dans lui-même.
1. Montrer que si f est surjective, alors f ◦ f est surjective. La réciproque est-elle

vraie ?
2. On suppose que f ◦ f ◦ f = f . Montrer que f est injective si et seulement si f

est surjective.

2720 ENSEA/ENSIIE MPI 2023

Factoriser dans R[X] le polynôme X6 + 1.

2721 Mines-Ponts MP 2018

1. Comment définir l’angle formé par deux plans dans R3 ?
2. Trouver l’angle formé par les plans P1 et P2 d’équations :

P1 : 2x+ 3y − z = 0 et P2 : x− 2y + 3z = 0.

2722 Mines-Ponts PC 2024

Soit I un intervalle de R non trivial. Montrer que toute fonction de classe C2 sur I est
différence de deux fonctions convexes.

2723 CCINP PSI 2012

Résoudre dans R l’équation suivante :√
x+ 3 − 4

√
x− 1 +

√
x+ 8 − 6

√
x− 1 = 1.

2724 Mines-Télécom PSI 2021

Résoudre le système suivant où (m; a; b) ∈ R3 :mx+ y +mz + t = a

x+my + z +mt = b

2725 CCINP PSI 2014

Soit la conique d’équation x2 + 6xy + y2 + 4x = 0.
1. Donner la nature de cette conique. La tracer.
2. Donner l’équation des tangentes aux points d’intersection avec les axes.

2726 TPE/EIVP MP 2017

Soit un entier n supérieur ou égal à 2 et P ∈ Rn[X] possédant n racines distinctes.
Comparer la moyenne arithmétique des racines de P et celle des racines de P ′.
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2727 X MP 2023

Soit (x; y; z) ∈ R3 vérifiant :

0 ⩽ x ⩽ y ⩽ x2 + z et z <
1
4 .

Montrer que :
y ⩽ 2z ou x ⩾ 1 − z.

2728 ENSEA/ENSIIE MP 2019

On définit une suite de polynômes telle que H0 = 1 et Hn+1(X) = XHn(X) −H ′
n(X)

pour tout n ∈ N.
1. Calculer H1 et H2.
2. Expliciter, en justifiant, le degré de Hn.
3. Montrer que pour tout entier n non nul, H ′

n(X) = nHn−1(X).

4. En déduire que Hn(X + a) =
n∑

k=0

(
n

k

)
Hn−k(a)Xk.

Indication : on pourra utiliser la formule de Taylor pour les polynômes.

2729 TPE/EIVP MP 2017

Montrer qu’il existe un unique polynôme A ∈ Rn[X] tel que :

∀P ∈ Rn[X], P (0) =
∫ 1

0
A(t)P (t) dt.

2730 Mines-Ponts MP 2025

Soit
f(x) = x3 − ln(x).

Déterminer les intervalles sur lesquels f admet une fonction réciproque, et donner un
développement asymptotique en +∞ de la fonction réciproque.

2731 X 2022

On considère le nombre rationnel :

r = 1
9899 = 0.00010102030508132134 . . .

1. Que vous inspire r ?
2. Formuler une conjecture à l’aide d’une série, puis la démontrer.
3. Que peut-on dire du développement décimal de r ?
4. En déduire une conjecture faisant intervenir la suite de Fibonacci, puis la dé-

montrer.

2732 X 2022

Existe-t-il P ∈ Z[X] tel que P
(

1√
2

)
=

√
3 ?
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2733 ENS 2022

Montrer que, dans tout triangle, on peut inscrire une ellipse tangente au milieu de
chaque côté du triangle.

2734 Mines 2022

Soit P ∈ Rn[X] possédant n racines distinctes a1, . . . , an. Calculer, sous réserve d’exis-
tence :

n∑
i=1

1
P ′(ai)

et
n∑

i=1

1
aiP ′(ai)

.

2735 X 2022

Existe-t-il un cercle contenant exactement trois points à coordonnées rationnelles ?

2736 Mines 2023

Soit P ∈ Rn[X] unitaire.
1. Montrer qu’il existe A ∈ R[X] tel que :

P =
n∑

k=0

P (k)
A′(k)

A

X − k
.

2. En déduire qu’il existe k ∈ {1; . . . ;n} tel que :

|P (k)| ⩾ n!
2n
.

2737 Mines 2022

On pose P =
n∑

i=0
aiX

i ∈ C[X].

On note A = {i ∈ {0; . . . ;n} | ai ̸= 0} et µ(P ) = Card(A). On suppose que (x − 1)k

divise P pour un certain k ∈ N, et on veut montrer que µ(P ) ⩾ k+ 1. On raisonne par
l’absurde en supposant que µ(P ) ⩽ k.

1. On pose P0 = 1 et Ps+1 = X(X − 1) · · · (X − s) pour s ∈ N. Montrer que pour
tout s ∈ {0; . . . ; k − 1} :

P (s)(1) =
∑
i∈A

aiPs(i).

2. En déduire que ai = 0 pour tout i ∈ A. Conclure.
3. Discuter de l’optimalité de la minoration obtenue.

2738 Mines-Télécom MP 2022

Pour tout n ∈ N, soit le polynôme

Pn = (X2 −X + 1)n −X2n −Xn + 1.

1. Déterminer n tel que X3 −X2 +X − 1 divise Pn.
2. Dans le cas où Pn n’est pas divisé, calculer le reste de la division euclidienne.
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2739 TPE/EIVP MP 2018

Soit P ∈ Q[X] un polynôme irréductible.
Montrer que P ∈ C[X] n’admet que des racines simples.

2740 X MP 2018

Soit n ∈ N∗. Montrer que {n
√

2} >
1

2n
√

2
.

2741 X ESPCI 2024

Soit A,B ∈ C[X] non constants, n’ayant pas de racine en commun et tels que AB est
un carré. Montrer que A et B sont des carrés.

2742 Mines-Ponts MP 2022

Soit n ∈ N et a0, . . . , an des nombres réels. Montrer que les deux propriétés suivantes
sont équivalentes :

i) a0 ̸= 0

ii) ∀Q ∈ R[X], ∃!P ∈ R[X] tel que Q =
n∑

k=0
akP

(k)

2743 Centrale-Supélec TSI 2025

Soit f une fonction 1-périodique, définie par :

∀x ∈
[
−1

2 ; 1
2

]
, f(x) = |x|.

1. Tracer le graphe de f sur deux périodes.
2. Calculer les coefficients de Fourier de f .
3. Étudier la convergence de la série de Fourier de f .
4. Déterminer les sommes suivantes :

(a) A =
+∞∑
k=0

1
(2k + 1)2

(b) B =
+∞∑
k=1

1
k2

(c) C =
+∞∑
k=1

1
k4

2744 Centrale-Supélec TSI 2024

Soit f une fonction 2π-périodique, impaire, telle que :

∀x ∈ [0 ; π], f(x) = x(π − x).

1. Tracer f sur deux périodes.
2. Calculer la série de Fourier de f .

3. Calculer R =
+∞∑
n=0

(−1)n

(2n+ 1)3 .
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2745 Mines-Ponts MP 2015

Étudier x 7→
ln|x− 1|
ln|x− 2|

.

2746 Mines-Ponts MP 2025

On considère un sous-espace vectoriel U convexe de Rn. On dit que f est convexe si :

∀x, y ∈ U, ∀t ∈ [0 ; 1], f((1 − t)x+ ty) ⩽ (1 − t)f(x) + tf(y).

1. On suppose que f est différentiable.
Montrer que f est convexe si et seulement si

∀x, y ∈ U, f(y) − f(x) ⩾ Df(x) · (y − x).

2. Soit α, β, a, b ∈ R. On note F l’ensemble des fonctions f telles que f(a) = α et
f(b) = β. Montrer que min

∫ 1

0

√
1 + (f ′(x))2 pour f ∈ F est atteint par la seule

fonction affine appartenant à F .

2747 Centrale-Supélec TSI 2024

Soit une surface S d’équation z3 = xy et la droite D d’équation x = 2 et y = 3(z + 1).
Déterminer les plans tangents à S qui contiennent D.

2748 Mines-Ponts MP 2018

Soit f une fonction de classe C1 vérifiant f(0) = 0 et f ′(x) = e−xf(x).
1. Étudier les variations de x 7→ (f(x) + f(−x))2.
2. Qu’en déduire sur f ?
3. Montrer que f admet une limite en +∞ supérieure ou égale à 1.

2749 Mines-Ponts MP 2018

Soit f ∈ C([0 ; 1],R) telle que f(0) = f(1) = 0 et telle que :

∀x ∈
[
0 ; 7

10

]
, f(x) ̸= f

(
x+ 3

10

)
.

1. Montrer que f s’annule en 7 points distincts de [0 ; 1].
2. Dessiner l’allure de cette fonction.

2750 ENS MP 2016

Soit F ∈ R(X).
1. On suppose qu’il existe une infinité d’entiers tels que F soit rationnelle en ces

points. Montrer qu’alors F est le quotient de deux polynômes à coefficients
entiers.

2. On suppose désormais qu’il existe une infinité d’entiers tels que F soit entière
en ces points. Montrer que F est un polynôme à coefficients rationnels.
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2751 CCINP PC 2023

1. Soit P = X2 − 2X + 1 et Q = P + P ′ + P ′′.
Vérifier que la fonction P est positive sur R et que Q est strictement positive
sur R.

2. Soit P ∈ R2n[X] \ {0}. On suppose que la fonction P est positive sur R et on
pose :

Q =
2n∑

k=0
P (k).

(a) Exprimer Q′.
(b) À l’aide de la fonction g : t 7→ e−tQ(t), montrer que la fonction Q est

strictement positive sur R.
3. Pour tout couple (P ;Q) d’éléments de Rn[X], on pose :

⟨P,Q⟩ =
2n∑

k=0
(PQ)(k)(0).

(a) Montrer que l’on a ainsi défini un produit scalaire.
(b) Déterminer une base orthonormée de R1[X] pour ce produit scalaire.
(c) Calculer la distance de Xn à R1[X] pour ce produit scalaire. Ce nombre est

noté un.
4. Étudier la nature de la série de terme général (un)− 1

n .
Pour cela, on donne le développement asymptotique :

ln(n!) = n ln(n) − n+ o(n).

2752 CCINP MP 2018

1. Soit x ∈ R \ 2πZ. Montrer que :

n∑
k=1

cos(kx) = cos
(

(n+ 1)x
2

) sin
(

nx
2

)
sin

(
x
2

) .

2. Résoudre sur R l’équation
n∑

k=1
cos(kx) = 0.

3. Pour quels entiers p l’équation
n∑

k=1
cos(kx) = p a-t-elle des solutions sur R ?

2753 Mines-Télécom PC 2018

On se place dans un repère orthonormé du plan. On considère n points du plan,
A1, . . . , An, donnés par leurs coordonnées dans ce repère orthonormé : pour tout
i ∈ [[1 ;n]], Ai(ai; bi). Soit M(x; y). On définit f telle que f(M) = ∑n

i=1 MAi
2. Dé-

terminer les éventuels extrema de f .
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2754 CCINP TSI 2021

Étudier la courbe paramétrée par
(

t2

1 − t2
; t3

1 − t2

)
.

2755 CCINP PSI 2016

Soit la surface d’équation xyz = 1.
1. Cette surface est-elle régulière ?
2. Montrer que quelque soit le point de cette surface, les intersections du plan

tangent à la surface en ce point avec les plans Oxy, Oxz et Oyz forment un
tétraèdre dont le volume est toujours le même.

2756 X MP 2017

Soit α, β et γ les trois angles d’un triangle. Montrer que :

1
sin(α) + 1

sin(β) ⩾
8

3 + 2 cos(γ) .

2757 Mines-Ponts MP 2017

Soit j ∈ N∗, x ∈ [0 ; 1] et mj = cos((j − 1)x).
Montrer que mj est un polynôme en cos(x).

2758 Mines-Ponts MP 2019

Soit n ∈ N∗ et (a; b) ∈ R2 tel que a < b. Soit (sk)k∈N une subdivision de [a ; b]. On note
A l’ensemble des applications de [a ; b] dans R qui, pour tout k ∈ [[1 ;n]], sont affines
sur [sk ; sk+1].

1. Montrer que A est un sous-espace vectoriel, de dimension finie, et déterminer sa
dimension.

2. Soit (fp)p∈N une suite de AN qui converge simplement. Montrer que (fp)p∈N
converge uniformément et que sa limite est dans A.

2759 Mines-Ponts MP

Pour tout réel t, on considère la droite d’équation (1 − t2)y + 2tx = 2t − 4. Montrer
qu’il existe un point équidistant de toutes ces droites.

2760 Centrale PC 2013

Étudier la courbe donnée par l’équation polaire ρ(t) = cos(t)
1 − cos(t) .

2761 Mines-Ponts MP 2015

Montrer qu’il existe une fraction rationnelle F telle que pour tout x ∈ R l’on ait
F (tanh(x)) = tanh(5x). Décomposer F en éléments simples dans R(X).
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2762 CCINP TSI 2023

On pose, pour tout x ∈
]

−π
2 ; π

2

[
, f(x) = 2 tan(x) − x.

1. Montrer que f admet une bijection réciproque impaire.
2. Montrer que f−1 est C∞ et admet un développement limité à tout ordre en 0.
3. Déterminer le développement limité de f−1, en 0, à l’ordre 4.

2763 Centrale-Supélec MP 2019

Soit P,Q ∈ R[X] tels que P et Q ont les mêmes racines. On suppose qu’il existe α ∈ C∗

tel que P + α et Q+ α ont les mêmes racines. Montrer que P = Q.

2764 CCINP MPI 2024

Soit n ⩾ 2 entier, α1, . . . , αn des réels strictement positifs tels que
n∑

i=1
αi = 1. On pose

deux fonctions f et g telles que, pour tout (x1; . . . ;xn) ∈ Rn
+ :

f(x1; . . . ;xn) =


n∏

i=1
xαi

i si
n∏

i=1
xi ̸= 0

0 sinon
et g(x1; . . . ;xn) =

n∑
i=1

αixi.

On pose également Γ = {(x1; . . . ;xn) ∈ Rn
+ | g(x1; . . . ;xn) = 1}.

1. Montrer que f admet un maximum µ sur Γ, en particulier sur Γ ∩ ]0 ; +∞[n.
2. Déterminer µ et A ∈ Γ ∩ ]0 ; +∞[n tels que f(A) = µ.
3. En déduire que :

∀(x1; . . . ;xn) ∈ Rn
+,

n∏
i=1

xαi
i ⩽

n∑
i=1

αixi.

2765 ENS MP 2023

1. Montrer l’existence d’une suite de polynômes de R[X], (Tn)n∈N, telle que :

∀n ∈ N, ∀θ ∈ R, Tn(2 cos(θ)) = 2 cos(nθ).

Montrer que ces polynômes sont à coefficients entiers.
2. Soit r ∈ Q. Trouver les valeurs rationnelles possibles de cos(rπ).

2766 Centrale 2015

On considère n+ 1 nombres réels tels x0 < x1 < . . . < xn.
Montrer, après avoir justifié l’existence des intégrales considérées, qu’il existe n + 1
nombres réels a0, a1, . . . , an tels que :

∀P ∈ Rn[X],
∫ 1

0

P (t)√
t(1 − t)

dt =
n∑

k=0
akP (xk).
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2767 CCINP MPI 2024

1. Soit γ : [−1 ; 1] → C∗ définie par :

∀t ∈ [−1 ; 1], γ(t) =
(
t2

2 + 1
2

)
e2iπt.

Calculer 1
2πi

∫ 1

−1

γ′(t)
γ(t) dt.

2. Soit g une fonction de classe C1 de [a ; b] dans C∗. On note :

ϕ : t 7−→ 1
i

∫ t

a

g′(s)
g(s) ds et ψ : t 7−→ g(t)e−iϕ(t).

(a) Montrer que ϕ est de classe C1.
(b) Montrer que ψ est constante.
(c) Montrer qu’il existe ρ : [a ; b] → R∗

+ et θ : [a ; b] → R tels que :

∀t ∈ [a ; b], g(t) = ρ(t)eiθ(t).

3. Soit γ : [a ; b] → C∗ de classe C1 tel que γ(a) = γ(b).

Montrer que 1
2iπ

∫ b

a
= γ′(t)
γ(t) dt ∈ Z.

Pouvait-on déduire la valeur de la question 1 ?

2768 CCINP PC 2024

1. Montrer que l’application x 7→ xn−1 est une bijection de [0 ; 1] dans [0 ; 1].
2. On note M la matrice de M3(R) dont tous les coefficients sont égaux à 1.

(a) Montrer que M est diagonalisable et déterminer son spectre.
(b) En déduire le spectre de M + I3.

3. Soit D = {(x1; x2; x3) ∈ ]0 ; 1[ | x1 + x2 + x3 < 1}.
(a) Montrer que D est un ouvert de R3.
(b) Montrer que la fonction f définie sur D par :

(x1; x2; x3) 7−→ xn
1 + xn

2 + xn
3 + (1 − x1 − x2 − x3)n

est de classe C2 sur D et calculer ses dérivées partielles.
4. Montrer que le seul point critique de f est (1

4 ; 1
4 ; 1

4).
5. Calculer la matrice hessienne de f en a.
6. En déduire que f admet un minimum local strict en a.

On admettra dans la suite que f atteint un minimum global strict en a.

7. Soit n ∈ N∗ variables aléatoires X1, . . . , Xn indépendantes de même loi à valeurs

dans {0; 1; 2; 3}. Montrer que P(X1 = · · · = Xn) ⩾
1

4n−1.
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2769 Centrale-Supélec TSI 2025

Faire une étude complète de la courbe paramétrée par :

x(t) = 3 cos(t) + cos(3t) et y(t) = 3 sin(t) + sin(3t).

2770 X ESPCI 2023

Montrer que
n−1∑
k=0

|cos(k)| ⩾ 2n
5 .

2771 Mines-Télécom MP 2023

Montrer que le polynôme P (x) = x3 + 3x2 + 2 est irréductible sur Q.

2772 Mines-Ponts MP 2025

Soit n un entier naturel non nul et x un réel tel que x /∈ [[1 ;n]].
On définit :

un(x) =
n∑

k=1

1
k − x

et vn(x) =
n∑

k=1
(−1)k

(
n

k

)
k

(k − x)2 .

Calculer
un(x)
vn(x).

2773 X ESPCI 2019

On pose E = {(x; y) ∈ R2 | x2 + y2 = 1} et f : (x; y) 7→ x+ ixy.
Représenter f(R2). La courbe présente-elle des points multiples ? Si oui, les déterminer.

2774 Mines-Télécom MP 2023

Soit A =

0 0 1
1 0 1
0 1 0

 ∈ M3(C).

1. Montrer que A est diagonalisable dans M3(C) et admet une unique valeur propre
réelle α. Montrer que α > 1.

2. Soit n ∈ N. Montrer que
∑

λ∈Sp(A)
λn est un entier.

3. Montrer que
∑
n⩾0

sin(παn) converge.

2775 ENS MP MPI 2024

Soit (x; y; z) ∈ R3
+. Démontrer que :

(x+ y + z)3 + 9xyz ⩾ 4(x+ y + z)(xy + yz + zx).

2776 X PC 2023

Soit P défini par P (X;Y ) = aX2 + bXY + cY 2 + dX + eY + f avec a, b, c, d, e, f ∈ Z.
Trouver une condition nécessaire et suffisante pour que P |N2 soit injective.
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2777 Mines-Ponts MPI 2023

Soit P,Q,R ∈ R[X] tels que P 2 −XQ2 = XR2. Montrer que P = Q = R = 0.
Ce résultat est-il vrai dans C[X] ?

2778 Mines-Télécom PSI 2023

Soit
f : x 7−→ arccos(cos(x)) + 1

2 arccos(cos(2x)).

Tracer le graphe de f .

2779 X ESPCI 2017

Pour tout (x1; . . . ;xn) ∈ Rn, prouver l’inégalité :(
n∑

i=1
xi

)2

⩽ n
n∑

i=1
x2

i .

2780 Mines-Ponts MP 2014

Pour tout (n; p) ∈ N2, soit Sn,p =
n∑

k=1

1
kp

.

Pour quels couples (n; p), le nombre Sn,p est-il un entier ?

2781 Mines-Ponts MP 2017

Soit E l’espace vectoriel des fonctions continues de [0 ; π] dans R. On pose :

⟨f, g⟩ = 1
π

∫ π

0
f(t)g(t) dt.

1. Montrer qu’on a ainsi défini un produit scalaire.
2. On pose e0 : t 7→ 1 et pour k > 0, ek : t 7→

√
2 cos(kt).

Interpréter Sn(f) =
n∑

k=0
⟨f, ek⟩ek.

3. Montrer que
∑
k⩾0

⟨f, ek⟩2 converge.

4. Montrer que pour tout ε > 0, il existe une fonction polynomiale p telle que :

∥f − p ◦ cos∥∞ ⩽ ε.

5. Montrer que lim
n→+∞

∥f − Sn(f)∥∞ = 0 et déterminer la somme de
∑
k⩾0

⟨f, ek⟩2.

2782 X MP 2019

Soit deux ensembles A et B. On admet que si on dispose de deux injections respec-
tivement de A dans B et de B dans A, alors A et B sont en bijection et ont même
cardinal.

1. Montrer que {0; . . . ; 9}N est en bijection avec NN.
2. Montrer que C([0 ; 1],R) est en bijection avec R.
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2783 Mines-Télécom MP 2019

Déterminer tous les n-uplets (x1; . . . ;xn) ∈ Rn tels que
n∑

i=1
xi = n et

n∑
i=1

x2
i = n.

2784 Mines-Ponts MP 2018

Soit P = Xn + · · · + an−1X + an ∈ R[X] scindé à racines simples.
Soit Q = Xn + · · · + bn−1X + bn ∈ R[X].
Montrer que si les bi sont assez proches des ai, alors Q est scindé à racines simples.

2785 ENS MP 2019

Montrer qu’il existe un polynôme P ∈ Z[X] unitaire de degré 10 ayant 8 racines (au
moins) dans U, 2 (au moins) dans R∗

+, vérifiant P (0) = 1 et irréductible dans Q[X].

2786 Centrale-Supélec PSI 2015

On sait que pour tout x ∈ ]0 ; 1[, il existe une suite (an)n⩾1 telle que x puisse s’écrire
x = 0, a1a2a3 . . . en base 10. On définit f sur [0 ; 1] qui associe 0 à 0, 1 à 1 et, pour tout
x ∈ ]0 ; 1[ associe 0, a2a1a3 . . .

1. Donner la représentation graphique de f .
2. La fonction f est-elle continue sur [0 ; 1] ?
3. La fonction f est-elle continue par morceaux sur [0 ; 1] ?

4. Donner une valeur approchée de
∫ 1

0
f(x) dx.

2787 ENS MP 2015

Soit f de classe C∞. On dit que x est un « super zéro » de f si pour tout k ∈ N,
f (k)(x) = 0. Quelles sont les implications valables entre les trois propositions suivantes ?
Pour les implications fausses, fournir des contre-exemples.

• La fonction f s’annule une infinité de fois.
• La fonction f s’annule une infinité de fois sur un segment.
• La fonction f a un super zéro.

2788 CCINP PC 2024

1. Déterminer sup
{
n

1
n | n ∈ N∗

}
.

2. Comparer eπ et πe.

2789 X MP

1. Montrer que pour tout p ∈ P et n ∈ N :

vp(n!) =
+∞∑
k=1

⌊
n

pk

⌋
(formule de Legendre)

2. Par combien de zéros l’entier 100! s’achève-t-il ?
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2790 Centrale-Supélec MP 2015

Soit N une application de Q dans R+. On dit que N est une valeur absolue si et
seulement si :

• ∀x ∈ Q, N(x) = 0 ⇐⇒ x = 0
• ∀(x; y) ∈ Q2, N(xy) = N(x)N(y)
• ∀(x; y) ∈ Q2, N(x+ y) ⩽ N(x) +N(y)

Une valeur absolue N est dite ultramétrique si

∀(x; y) ∈ Q2, N(x+ y) ⩽ max(N(x);N(y)).

La valeur absolue N est dite triviale si elle est constante sur Q∗.
Si p est un nombre premier, on note νp(n) la valuation p-adique définie sur les entiers.
On pose par convention νp(0) = +∞.

1. Soit N une valeur absolue. Déterminer N(1) et N(−1).
2. Soit q = a

b
∈ Q∗, où (a; b) ∈ (Z∗)2, et p un nombre premier.

Montrer que νp(a) − νp(b) ne dépend que de q.
On le note νp(q). On définit pour q ∈ Q, |q|p = p−νp(q).
Montrer que |·|p est une valeur absolue ultramétrique.

3. Soit N une valeur absolue ultramétrique non triviale.
Montrer qu’il existe α ∈ R∗

+ et p premier tels que N = |·|αp .

2791 Mines-Ponts

Soit f : R+ → R une fonction convexe.

1. Montrer que ℓ = lim
x→+∞

f(x)
x

existe.

2. On suppose que ℓ ∈ R. Montrer que lim
x→+∞

f(x) − ℓx existe.

2792 Mines-Ponts MP 2024

Soit n ⩾ 2 entier. Calculer :

Sn =
⌊ n

2 ⌋∑
k=0

(
n

2k

)
(−3)k et Tn =

⌊ n
3 ⌋∑

k=0

(
n

3k

)
.

2793 Centrale-Supélec MP 2017

Soit f : C → C une fonction continue. On dit que α est valeur asymptotique de
f s’il existe une fonction γ : [0 ; +∞[→ C continue telle que lim

t→+∞
|γ(t)| = +∞ et

lim
t→+∞

f(γ(t)) = α.

1. Déterminer l’ensemble des valeurs asymptotiques de f : z 7→
z

1 + |z|
.

2. Même question pour f : z 7→ ez.
3. Même question pour f : z 7→ sin(z).
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2794 Mines-ponts

Soit n ∈ N∗. Montrer que :

∀x ∈ ]1 ; +∞[, xn − 1 ⩾ n
(
x

n+1
2 − x

n−1
2
)
.

2795 Mines-Ponts MP 2016

Soit X,Y et Z des variables aléatoires indépendantes suivant toutes une loi géométrique
de paramètre 1

2 . On dit qu’une matrice A vérifie la propriété (P ) si et seulement si ses
valeurs propres sont exactement ses coefficients diagonaux.

1. Soit A =

 0 X − Y Y − Z
X − Y 0 0
Y − Z 0 0

 .
Calculer la probabilité que A vérifie la propriété (P ).

2. Montrer qu’une matrice symétrique réelle vérifie la propriété (P ) si, et seulement
si, elle est diagonale.

2796 ENS MP 2015

Soit H l’ensemble des bijections de R dans R, continues, dont la bijection réciproque
est continue. Quelle est la nature de H ? Quels sont ses sous-groupes finis ?

2797 X MP 2018

Soit P ∈ Rn[X] tel que :

∀x ∈ C, P (x) = 0 =⇒ Re(x) < 0.

Montrer que tous les coefficients de P sont de même signe.

2798 X MP 2018

1. Soit θ ∈
]
0 ; π

2

[
et n un entier supérieur à 1. Montrer que

sin(4nθ)
sin(θ) cos(θ)

est un polynôme en cos2(θ) de degré inférieur ou égal à 2n− 1.

2. Montrer que
2n−1∏
k=1

cos
(
kπ

4n

)
=
√

n

24n−3 .

3. Calculer de la même façon
n∏

k=1
cos

(
(2k − 1)π

4n

)
.

2799 X MP 2018

Décrire qualitativement l’ensemble {(x; y) ∈ R2 | x2 − xy − 2y2 = 0}.

2800 CCINP PC 2024

Soit P = nXn −Xn−1 −Xn−2 − · · · −X − 1 et Q = (n+ 1)Xn − nXn+1 − 1.
1. Montrer que P et Q possèdent les mêmes racines.
2. Montrer que toutes les racines de P sont simples.
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2801 ENS

On se propose de montrer que α =
arccos

(
1
3

)
π

/∈ Q.

1. Calculer eiαπ.
2. Montrer que α ∈ Q si et seulement si il existe un entier naturel non nul n tel

que (1 + 2i
√

2)n = 3n.
3. Montrer que (1 + 2i

√
2)n = an + ibn

√
2, où an et bn sont des entiers vérifiant

an − bn ̸≡ 0 mod 3. Conclure.

2802 X

Montrer que parmi treize réels distincts on peut toujours en choisir deux, disons x et
y, tels que :

0 < x− y

1 + xy
< 2 −

√
3.

2803 ENS MP 2017

On dit que P est un polygone entier si P est l’enveloppe convexe de points de Z2. On
dit que P est équivalent à Q, et on note P ∼ Q, si P et Q sont des polygones entiers
et s’il existe une transformation affine A qui envoie P sur Q et telle que A(Z2) = Z2.
Quelle est le nombre de classes d’équivalence (éventuellement infini) ? Même question
si l’on fixe l’aire du polygone.

2804 Mines-Télécom MP 2018

Déterminer toutes les fonctions convexes et bornées de R dans R.

2805 ENS MP 2016

Soit F et G deux polynômes non constants à coefficients entiers tels que pour tous
entiers a et b, F (a) − F (b) divise G(a) −G(b). Montrer qu’il existe un polynôme H à
coefficients rationnels tel que G(X) = H(F (X)).

2806 Mines-Ponts MP 2016

Soit E l’ensemble défini par :

E = {f ∈ C1([0 ; +∞[,R), f bornée sur R+}.

On pose ϕ définie par, pour tout f dans E et pour tout x dans R+ :

ϕ(f)(x) =
∫ +∞

0
f(t)tanh(tx)

cosh(t) dt.

1. Montrer que ϕ est un endomorphisme de E.
2. On pose, pour tout n dans N∗, fn définie sur R+ par fn(t) = arctan(nt). Étudier

les convergences simple et uniforme de la suite (ϕ(fn))n∈N.
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2807 Mines-Télécom MP 2017

Soit λ et µ deux nombres réels. On définit la suite (Pn)n∈N par :P0 ∈ R2[X]
∀n ∈ N, Pn+1 = λPn + µP ′

n

Soit n ∈ N∗. Pour tout polynôme Q ∈ R2[X], existe-t-il P0 tel que Pn = Q ?

2808 Mines-Ponts MP 2018

Soit f ∈ C2([a ; b],R). On suppose que ff ′′ = 0. On pose :

Zff ′ = {x ∈ [a ; b] | f(x)f ′(x) = 0}.

1. Montrer que Zff ′ est un intervalle fermé.
2. Montrer que f est affine.

2809 Mines-Ponts PC 2018

Soit P et Q deux polynômes réels non nuls. L’équation

P (x)
Q(x) = ex

peut-elle avoir une infinité de solutions ?

2810 X-ENS PSI 2021

Soit E un espace vectoriel réel normé de dimension 2 muni d’une base (e1; e2), et tel
que, pour tout (λ;µ) ∈ R2 :

∥λe1 + µe2∥ = ∥|λ|e1 + |µ|e2∥ condition (C1)

On veut montrer que pour tout (λ1;λ2;µ1;µ2) ∈ R4 :

|λ1| ⩽ |µ1| et |λ2| ⩽ |µ2| =⇒ ∥λ1e1 + λ2e2∥ ⩽∥µ1e1 + µ2e2∥ condition (C2)

1. Donner un exemple d’espace vectoriel normé dans lequel (C1) est vérifiée, puis
un exemple dans lequel elle ne l’est pas.

2. Soit λ ∈ R. Soit φ : µ 7→ ∥µe1 + λe2∥. Montrer que :

∀(µ1;µ2) ∈ R2, φ
(
µ1 + µ2

2

)
⩽
φ(µ1) + φ(µ2)

2 .

3. En déduire que φ est convexe, c’est-à-dire :

∀(µ1;µ2) ∈ R2, ∀α ∈ [0 ; 1], φ((1 − α)µ1 + αµ2) ⩽ (1 − α)φ(µ1) + αφ(µ2).

4. Montrer que φ est croissante sur R+.
5. En déduire la propriété (C2).
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2811 ENS MP 2018

Soit n un nombre premier. On considère dans le plan le triangle T formé par l’origine
et les points de coordonnées (0;n) et (n; 0). On subdivise ce triangle en n triangles
ti, i ∈ {1; . . . ;n}, où chaque ti est formé par l’origine et les points de coordonnées
(i− 1;n+ 1 − i) et (i;n− i).

1. On admet le théorème de Pick :
Soit P un polygone dont les sommets ont des coordonnées entières. Alors
S = A + B

2 − 1, où S est l’aire du polygone, A le nombre de points intérieurs
à coordonnées entières du polygone, et B le nombre de points à coordonnées
entières appartenant à la frontière du polygone.
Montrer alors que pour tout i ∈ {2; . . . ;n − 1}, les ti ont le même nombre de
points intérieurs à coordonnées entières.

2. Démontrer le théorème admis.

2812 ENS MP 2017

Existe-t-il une fonction f de R∗
+ dans R telle que l’on ait simultanément :

• ∀α > 0, f(x) = o(xα) ;
• ∀β > 0, (ln(x))β = o(f(x)) ?

2813 ENS MP 2014

1. Montrer qu’il existe une constante C strictement positive telle que pour tous
entiers p, q avec q non nul, l’on ait :∣∣∣∣∣√2 − p

q

∣∣∣∣∣ ⩾ C

q2 .

2. En déduire le rayon de convergence de la série entière suivante :

+∞∑
n=1

zn

sin(nπ
√

2)
.

2814 X MP 2018

Soit P ∈ R[X] scindé, unitaire, nul en 1 et en −1, et strictement positif sur ] − 1 ; 1[.
Soit S l’aire sous la courbe de P entre −1 et 1. Soit T l’aire du triangle défini par l’axe
des abscisses et les tangentes à P en −1 et en 1.
Montrer que S ⩾ 2

3T .

2815 ENS

Soit m ∈ N∗, z1, . . . , zm ∈ U distincts et a1, . . . , am ∈ C. On suppose que :

lim
n→+∞

m∑
k=1

akz
n
k = 0.

Montrer que a1 = · · · = am = 0.
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2816 X MP 2021

Quels sont les n ∈ N tels qu’il existe un cercle du plan dont le nombre de points
d’intersection avec Q2 soit n ? L’intersection peut-elle être infinie ?

2817 ENS MP 2017

Soit d ∈ N∗ et n ∈ N. Trouver les fonctions f de [[0 ;n]]d dans R vérifiant :
• La fonction f est nulle aux « bords » de [[0 ;n]]d : pour x ∈ [[0 ;n]]d, si une des

coordonnées de x est dans {0;n}, alors on a f(x) = 0.
• Pour tout x ∈ [[0 ;n]]d n’ayant aucune coordonnée dans {0;n}, on a :∑

y∈Ax

(f(x) − f(y)) = 0,

où Ax désigne l’ensemble des points de [[0 ; d]]n « adjacents » à x, c’est-à-dire
obtenus en ajoutant ou soustrayant 1 à une des coordonnées de x.

2818 Mines-Ponts MP 2019

1. Soit P = (X−r1)α1 · · · (X−rn)αn un polynôme à coefficients complexes. Montrer
que les racines de P ′ sont des barycentres à coefficients positifs des rj, 1 ⩽ j ⩽ n.

2. Soit (un)n∈N une suite telle que :

∀n ∈ N, un+d = un + un+1 + · · · + un+d−1

d
,

où d ∈ N∗.
Montrer que la suite (un)n∈N converge vers

ℓ = 2(u0 + 2u1 + · · · + dud−1)
d(d+ 1) .

2819 X MP 2019

Pour f : [a ; b] → R, on pose :

V (f) = sup
n⩾2, a⩽t1<···<tn⩽b

∑
|f(ti+1) − f(ti)| .

Montrer que :

V (f) < +∞ ⇐⇒ f est la différence de deux fonctions croissantes.

2820 X MP 2016

Soit λ0, . . . , λn et µ1, . . . , µn des réels, et la fonction P définie pour tout θ réel par :

P (θ) = λ0 + λ1 cos(θ) + · · · + λn cos(nθ) + µ1 sin(θ) + · · · + µn sin(nθ).

Montrer que si, pour tout θ ∈ R, P (θ) ⩾ 0, alors il existe Q ∈ C[X] vérifiant l’égalité
P (θ) = |Q(eiθ)|2 pour tout θ.
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