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Introduction

Ce document est un recueil de questions d’oraux de mathématiques des concours d’entrée
aux ENS (Ecoles normales supérieures) et a de grandes écoles d’ingénieurs frangaises. 11
rassemble notamment des questions provenant de :

ENS (Ulm (Paris), Lyon, Paris-Saclay, Rennes)

X (Ecole Polytechnique (Paris))

Centrale

Centrale-Supélec

Mines

Mines-Ponts

Mines-Télécom

ENTPE (Ecole Nationale des Travaux Publics de 'Etat)

EIVP (Ecole des Ingénieurs de la Ville de Paris)

ENSEA (Ecole Nationale Supérieure de I'Electronique et de ses Applications)

ENSIIE (Ecole Nationale Supérieure d’Informatique pour I'Industrie et I’'Entre-
prise)
ENSAM (Ecole Nationale Supérieure d’Arts et Métiers)

CCINP (anciennement CCP) : Concours Commun INP (Instituts Nationaux Po-
lytechniques)

La majorité des questions provient du site BEOS (Base d’épreuves orales scientifiques
de concours aux grandes écoles) ainsi que de vidéos disponibles en ligne. Je remercie
chaleureusement tous les internautes dont les contributions ont permis la réalisation de
ce document.

Les exercices sont numérotés et, dans la mesure du possible, chaque énoncé est précédé
du nom de Iécole, de la filiere (par exemple MP, PC, PSI, etc.) ainsi que de I"année du
concours. Aucune des questions présentées dans ce document ne requiert la maitrise du
langage de programmation Python ni d'un quelconque autre logiciel.

Une grande partie des exercices est issue des concours de mathématiques du CCINP
(anciennement CCP) destinés aux étudiants de classes préparatoires scientifiques et visant
I’admission dans les écoles d’ingénieurs du groupe INP.

Les questions sont organisées en 12 paragraphes, chacun structurant les exercices autour
d’un theme ou d’un domaine mathématique particulier.

Les questions ne se sont classées ni par école, ni par filiere, ni par année, ni par niveau de

difficulté!

Certaines questions comportaient un temps de préparation, tandis que d’autres devaient
étre traitées immédiatement.

Presque toutes les questions devaient étre résolues sans recours a une calculatrice, a un
formulaire ou a un dictionnaire.

En regle générale, les exercices les plus exigeants proviennent des concours des ENS (en
particulier celui de Ulm) et de I’Ecole Polytechnique, notamment pour la filiere MP.



Notations

() | ensemble vide
N | ensemble des nombres naturels
N* | ensemble des nombres naturels non nuls
7 | ensemble des entiers relatifs
7> | ensemble des entiers relatifs non nuls
Z._ | ensemble des entiers relatifs négatifs
Q | ensemble des nombres rationnels
Q* | ensemble des nombres rationnels non nuls
R | ensemble des nombres réels
R | RU{—o0;+00}
R* | ensemble des nombres réels non nuls
R, | ensemble des nombres réels positifs
R? | ensemble des nombres réels strictement positifs
R_ | ensemble des nombres réels négatifs
C | ensemble des nombres complexes
C* | ensemble des nombres complexes non nuls

U | ensemble des nombres complexes de module 1
U,, | ensemble des racines n®e de 1'unité
[a;0] | ensemble des nombres entiers k avec a < k < b (a, b entiers)

ppem(ay, ..., a,) | plus petit commun multiple de aq, ..., a,
pged(aq, . .., a,) | plus grand commun diviseur de ay, ..., a,
a ADb | le plus grand commun diviseur de a et b
a|b | adivise b
(Z) ﬁlk), (coefficient binomial)
Card(E) | cardinal de I’ensemble E
|E| | cardinal de 'ensemble F

|| | partie entiere de x
{z} | partie fractionnaire de z
sgn(z) | signe de x

K | corps commutatif
K* | ensemble des éléments non nuls de K
[X] | ensemble des polynomes a coefficients dans K
deg(P) | degré du polynéme P
]

K[X,Y] | ensemble des polynémes en X et Y, a coefficients dans K
Z[X] | ensemble des polyndmes a coefficients dans Z
K(X) | corps des fractions de K[X]
K, [X] | ensemble des polynémes & coefficients dans K de degré au plus n

a=0b mod n | a et b congrus modulo n

T | classe de entier x modulo n
Z/nZ | anneau des entiers modulo n
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S

ensemble des inversibles de Z/nZ
corps des entiers modulo p (p premier)
ensemble des éléments non nuls de F,

ensemble des automorphismes de G
groupe symétrique de [1;n]
signature de la permutation o

A isomorphe a B

ensemble de définition de f
ensemble des zéros de f

graphe de f

f équivalent a g

f(z) négligeable devant g(x)

f(z) ne croit pas plus vite que g(z)

gradient de f
Laplacien de f

polynome caractéristique de u
polynéme minimal de u

noyau de u

image de u

rang de u

déterminant de u

déterminant de la matrice A
comatrice de A

commutant de A

trace de u

spectre de u

espace vectoriel engendré par les éléments de S
orthogonal de I’ensemble S
dimension de I'espace vectoriel £
dimension du K-vectoriel £

ensemble des endomorphismes de E

dual (algébrique) de E

ensemble des applications linéaires de E vers F
ensemble des matrices n x n a coefficients dans K
ensemble des matrices n x n a coefficients dans Z
ensemble des matrices m x n a coefficients dans K
ensemble des matrices inversibles de M, (K)
ensemble des matrices inversibles de M,,(Z)

noyau du morphisme de groupes det : GL,(K) — K*
noyau du morphisme de groupes det : GL,(Z) — Z*

adjoint de f
application identité



I,
(f)E
; An)

AT
Il-All
(2, y)

diag()\l, e

|z — y’p

cosh

tanh
arcosh
arsinh
artanh

conv (
diam(

BB

matrice identité de taille n

matrice de f relativement aux bases B et 5’

matrice diagonale dont les coefficients diagonaux sont Aq, ...
transposée de la matrice A

norme subordonnée (& la norme |-||) de A

produit scalaire de = et y

, An

ensemble des matrices symétriques de M, (R)

ensemble des matrices positives (semi-définies positives) de M, (R)
ensemble des matrices définies positives de M, (R)

ensemble des matrices orthogonales de M, (R)

noyau du morphisme de groupes det : O,(R) — {—1;1}

ensemble des matrices antisymétriques de M, (R)

ensemble des isométries de £

ensemble des suites bornées

ensemble des suites sommables pour la norme ||-||,
norme infinie

p-norme

boule ouverte de centre x et de rayon R

ensemble des nombres premiers

valuation p-adique de n (p € P)

valeur absolue p-adique

distance p-adique entre x et y

complété du corps Q pour la distance p-adique

ensemble des fonctions f de E vers F

restriction de la fonction f a A (A C F)

fonction indicatrice de E

ensemble des fonctions continues sur E a valeurs réelles
ensemble des fonctions continues sur E a valeurs dans F'
ensemble des fonctions de classe C* sur F a valeurs dans F
ensemble des fonctions indéfiniment différentiables sur F,

a valeurs dans F

ensemble des fonctions différentiables sur E a valeurs dans F

cosinus hyperbolique

sinus hyperbolique

tangente hyperbolique
argument cosinus hyperbolique
argument sinus hyperbolique
argument tangente hyperbolique

adhérence de 'ensemble A
intérieur de 'ensemble A
enveloppe convexe de ’ensemble A
diametre de 'ensemble A



distance entre A et B

probabilité de I’évenement E
complémentaire de I’évenement F
espérance de la variable aléatoire X
variance de la variable aléatoire X
covariance des variables aléatoires X et Y
fonction génératrice des probabilités de X

loi de Bernoulli de parametre p
loi binomiale de parametres n, p
loi géométrique de parametre p
loi de Poisson de parametre \



1 Suites et séries

Centrale
- k
Pour tout n € N*, on pose u,, = Z sin <2>
k=1 n
Trouver un développement asymptotique & trois termes de (u,)nens, ¢’est-a-dire des

nombres réels .3,y tels que u, =« + % +-5+o0 (#)

X-ENS MP

Soit (an)nen+ une suite strictement croissante d’entiers vérifiant a; > 1.
Etudier la nature de

+00 1
nz::l ppem(ay, ..., ap)

X-ENS
+oo

Etudier la nature de la série > sin(m(2 + V3)M).

n=1

Mines

Etudier la suite (uy,)neny définie par u, 1 = u, — u? avec 0 < uy < 1.
Trouver un équivalent de (uy,)nen.
Indication : on pourra considérer la suite (z,),en définie par x,, = ui

Mines-Ponts
+o00

Résoudre dans R I'équation »_ (3n + 1)*z" = 0.

n=0

(6] BNS

n n
Pour tout n € N*, on pose u,, = (H kk> :
k=1

—_

Trouver un équivalent de (uy,)nens-

X-ENS

" In(k 1
1. Pour tout n € N*, on pose u, = Y n(k) _ —In*(n).
=k 2
Montrer que la suite (u,),en+ converge.
+o00o 1
2. Calculer la somme » (—1)" n(n)
n=1 n




8] x-ENs

Soit (uy )nen+ une suite de nombres réels telle que pour tous m,n € N*, w1 < U+ .

. . un . 3
Montrer que si la suite | — est minorée, elle converge.
N/ neN*

@ X ESPCI 2013

/7 . —_ 2
1. Montrer que la série Z 27" converge.
n=0

2. Soit S = Z 27" Montrer que le nombre S est irrationnel.

n=0

X ESPCI 2022

Pour tout nombre réel z, on note {z} =z — |[z].
Trouver un équivalent de {n!e} quand l'entier n tend vers +oc.

Mines-Télécom

Calculer nl_l)gl_loo ];1 :2 sin (nkj 1) .

Mines-Ponts PC 2019
™

Pour tout n € N, on pose w,, = /2 cos™(t) dt.
0

—+00
Montrer que la série Z(—l)"wn converge et calculer sa limite.
n=0

CCINP PC 2002

s
La série Z In (COS (2n>> est-elle convergente ? Le cas échéant, calculer sa limite.
n=2

Mines
n

. 1
Calculer nl_lgloo 11 (1 + k(n — k;))

Mines-Ponts PC 2016

Soit (ay)nen une suite réelle de termes positifs. On suppose que la série Y- a,, converge.
Trouver la nature de la série Y \/GnGniq-

X PSI

2n? + 4n + 2
Pour tout n € N, on pose u,, = BT
Montrer que la série Z u, converge et calculer sa limite.

n=0




Mines-Ponts MP
1

1
dt.
/0 L+t+ 124 !

1. Montrer que la suite (I,)nen+ converge. On note ¢ sa limite.

Soit n € N* et I, =

2. Trouver un équivalent de I,, — ¢ lorsque n tend vers +oc.

X-ENS MP

Etudier la suite (2 )nen définie par :

.730:1

n

CCINP /Mines-Télécom MP
Etudier la nature de la série de terme général :

un:cos(ﬁn21n< n1>> avec n € N,

n +

XENS

Soit ug € [0 : g} et pour tout n € N, u,, 1 = sin(uy,).

Donner un équivalent simple de la suite (u,)nen-

Mines-Ponts MP

400 e~
Pour tout a € R*, on considere la série F(a) = Y ————

n=0 \/n2+1.

Donner un équivalent simple de F'(«) lorsque a tend vers zéro.

Mines-Ponts PC 2018

1. Montrer que si a,b > 0, alors

arctan(a) — arctan(b) = arctan <1a+—abb> :

2. Calculer :

2
Z arctan <2> .
n

neN*

Mines-Télécom MP 2024

Donner la nature des séries de terme général u,, avec :

1
1. u, =n" (1 — COoS ()), pour a € R.
n

2. u, = /n — 1.




Mines-Ponts PC 2015

On définit la suite (uy,)en+ grace a la régle suivante :

ulzx/I, 142:\/2—|—\/I7 u3:\/3+\/2+ﬁ,...
un:\/n—l—\/n—l—l—---—l—\/Z—l—\/I

Montrer que la suite (uy,)nen+ diverge.

Exprimer wu,; en fonction de u,,.
Montrer que u,, < n pour tout n € N*.

Montrer que u,, est négligeable devant n.

AR R

Donner un équivalent simple de wu,,.

Mines-Télécom PSI 2023

1 n
Pour tout n € N*, on pose u,, = (n sin ()) .

Déterminer lim wu,.
n—-4o00

X-ENS MP

Soit (@ )nen €t (by)nen deux suites définies par ag > 0 et by > 0, et pour tout n € N,

et =-(—
a, bn

2 bn+1 2

Qp41 =

an + by, 1 1(1 1)

1. Etudier la convergence des suites (an)nen et (bp)nen-

2. En notant / = lim a,, trouver un équivalent de a, — /.
n—-+00

Centrale 2010

Soit ug > 1 et pour tout n € N, u, 11 = u, + In(uy,).
Etudier la convergence de la suite (u,)nen €t donner un équivalent.

ENS Ulm Lyon PC 2022

Soit f la fonction continue sur R, définie par :

n

x
fx) = :
2 Tl
Montrer que la série converge pour tout x € R, et que f(x) = o(e”).
[e.e]

Mines-Ponts PSI
Soit v € R et fo: o —In (x2 — 2cosh(a)z + 1).
1. Déterminer I’ensemble de définition de f,.

2. Déterminer le développement en série entiere de f, au voisinage de zéro.

9




X PC 2008

Etudier la nature de la suite de terme général

n

u, =n+In(n) — ) er.

k=1

Sl

Mines-Ponts PSI 2019

Déterminer la nature de la série de terme général

(=D"

Un = ne —+ (_1)nnb

selon les valeurs de a et b.

CCINP

Montrer que la série de terme général

n+ 22 4+n+1
a, =

n!

est convergente et calculer sa somme.

Centrale
n

Pour n € N*, on pose P, = [[(X — k).
k=0

1. Montrer qu’il existe un unique «, €]0; 1] tel que P (a,) = 0.
B ()
P,(x)

3. Déterminer la limite de la suite (av,)pens-

2. Pour x € R\ {0;1;...;n}, exprimer sous forme de somme.

4. Trouver un équivalent de av,.

Centrale PC 2015

Soit n € N*. On note s(n) le nombre de chiffres dans I'écriture en base 10 de n. Etudier
la convergence, puis la somme de la série

i‘“ s(n)
n=1 n(n + 1) ‘
Centrale PC 2023
1 on 1 n(t
Pour n € N*, on pose u,, = / < dx. Soit encore J = n(t) dt.
o 1+am o 1+¢

1. Calculer la limite ¢ de la suite (uy)nens-

2. Etudier la convergence de J et calculer cette intégrale.
et .
On pourra utiliser I’égalité : Z =G
n>1

« 1
3. Montrer que u,, = ¢+ — + % +o (2>, ol « et [ sont deux nombres réels.
+00 n o n n

10




Mines-Ponts PC 2013

Quelle est la nature de la série

400 1

;::3 nin(n)In(ln(n)) !

X MP 2018
Pour tout n € N*, on pose u,, = {(1 + \/5)2"}

Etudier la nature de la série Z Uy,
n>1

Centrale PC 2004

Soit @ > 0. On pose, pour tout n € N,

n
a2

- ITr=o (sz + 1) .

Up

Déterminer la nature de la série Z u,, selon les valeurs de a et calculer sa somme
n=0
lorsqu’elle converge.

CCINP PSI 2013

On considere la série de terme général défini pour tout n € N* par :

B 1
o1 kP

Unp

1. Montrer que la série Z u, converge.
n=1

2. Trouver trois réels a, b, c tels que pour tout n € N*,

1 a b c

Wt D2t 7 ntl gl

3. Calculer la somme de la série.

Mines-Ponts PSI 2019

On pose f:x — Jioln (1+e’”"”).

n=0
Trouver Dy.

Calculer xl—lgloo f(z).

La fonction f est-elle intégrable sur [1;+o00[?

Trouver un équivalent de f en zéro.

A e

La fonction f est-elle intégrable sur |0; 1] ?

11




CCP MP

1. Soit n € N. Montrer qu'il existe un unique w,, €]0;1] tel que :

t

Le
/ —dt = n.
un t
1

t
e
On pourra considérer la fonction f définie par f(z) = 7 dt.

2. Etudier la monotonie de la suite (Un)nen et calculer lim w,.
n—-+00

3. Pour tout n € N, on pose v, = n — In(uy,).
Montrer que la suite (v,)nen converge et exprimer sa limite a partir d’'une inté-
grale.

4. Trouver un équivalent simple de u,,.

Mines-Télécom PSI 2019

Soit f une fonction continue, croissante et positive de ]0;1] dans R.

1 1
On note, pour tout n € N, u,, = f(e™") et pour tout n € N* v, = —f ()
n

Montrer que les séries de terme général u,, et v, ont méme nature.

Mines-Ponts
1
Pour tout n € N*, on pose u, = (—1)""'In (1 + )
n

Montrer que la série de terme général u,, est convergente et calculer sa somme.

Mines

Calculer :

n k(n—k
e f1 (1),
n—>+ook:U n

Mines-Ponts

Pour a et b réels, trouver la nature de la série de terme général

/1 1 n+1
U, = sin <> + atan <> +bln( )
n n n—1

CCINP

1. Montrer que pour tout n € N tel que n > 2, I’équation
e+ =n,

d’inconnue z € [0; 00|, admet une unique solution notée x,.
2. Montrer que la suite (x,,),>2 est équivalente a In(n) lorsque n tend vers +oc.

3. Pour a € R, déterminer la nature de la série de terme général z7.

12




X PC 2013
Soit = > 0. Quelle est la nature de la série Z (QZ% — 1) ?

n=1

CCINP PC

Quelle est la nature de la série de terme général défini par :

1 1
Vn € N*, u,, = arccos <> — arccos () ?

n n?
Centrale PC 2019

Soit (uy,)nen+ une suite de réels positifs ou nuls.
1. On suppose que u,, > — sauf pour un nombre fini d’entiers n € N*.
n
La série " u,, est-elle divergente ?

1
2. On suppose que u,, > — pour un nombre infini d’entiers n € N*.
n

La série > u, est-elle divergente ?

Centrale
+0o0

Soit (uy,)nen une suite réelle. On suppose que Z u, converge.
n=0

n
Montrer que » _ kuy, = o(n).
k=1

X-ENS

Soit (an)nen une suite réelle telle que, pour tout n € N,
n
Qn, Z a; = 1.
k=0

Trouver un équivalent de (a,)nen-

Mines-Ponts/Centrale PC 2010
Pour tout n € N*, on pose

"1
Uy = — —2vn.
1. La suite (uy)nen+ est-elle convergente ?

2. Soit a > 0. Quelle est la nature de la série de terme général donné par

CCINP
1
Pour tout n > 2, on pose u,, = In (1 — >

Etudier la nature de la série Z Upy.
n=>2

13




X-ENS

Soit (uy)nen une suite réelle telle que 1_131 (Ups1 — up) = 0.

Montrer que 1’ensemble des valeurs d’adhérence de (uy,)nen est un intervalle.

55] x

Soit (an)nen+ une suite de naturels telle que pour tout n € N*, 0 < a, <n — 1.
a
1. Montrer que la série Z —T'L converge.
n=1 """

2. On suppose que a, =n — 1 a partir d'un certain rang.

a .
Montrer que Z —T est rationnel.
n>1 """

3. Soit ¢ € [-1;1].

Montrer qu’il existe o € R tel que lim sin(27mnla) = ¢.
n—+oo

X-ENS
n

, 1
Etudier la suite (u,)nen+ définie par u, = — Z k
nt 4

n

X-ENS

Trouver un équivalent de u,, = Z:(—l)k_1 LHJ

X-ENS

Soit a et b deux nombres réels tels que a < b. Soit f : [a;b] — [a;b] une fonction

continue, ug € [a;b] et pour tout n € N, u,; = f(u,). On suppose de plus que
1_131 (Ups1 — u,) = 0. Montrer que la suite (uy,),en converge.
n o

59] x

n 2
Calculer lim E CoS b .
n—-+oo o 2n +1

(60| x-ENS

Pour tout n € N*  on note B,, le nombre de partitions de I’ensemble [1;n]. On pose
By = 1. Montrer que pour tout n € N :

Bu1 =Y. (Z) By

k=0

En déduire la formule :
1 &> jn
vneN, B, = - -
e = J!

14




Mines/CCP

+o00 -1 n—1
Caleuler lim 3 1y (1 4 x)
z—0t 1 T n

Centrale

Soit a un réel irrationnel fixé. On note R, le rayon de convergence de la série entiere

Z X

= sin(nlma)

n

1. Démontrer que R, < 1.

2. On considere la suite (u,),>; définie par :
u =2 et VYn =1, upy = (uy)".
Démontrer que, pour tout n > 1 :

Up, < 1
Un+1 h (7’L+ 1)n'

En déduire que la série de terme général — converge.
n

“+o00o
Dans la suite, on pose a = Z — et on admet que « est irrationnel.
n=1 Un
3. Démontrer qu’il existe une constante C' strictement positive telle que, pour tout
entiern > 1 :

+oo
Uy, Z i< ¢

= up—1°
k=n+1 Uk U™

4. Démontrer que R, = 0.

5. Question subsidiaire : démontrer que « est effectivement irrationnel.

BN

1. Soit (zp,)nen une suite a valeurs dans ]0; 1[. Montrer que la suite

(2n(1 = Tp11))nen

admet une valeur d’adhérence inférieure ou égale a .
2

2. On suppose que (2, (1 — x,11))nen n’admet pas de valeur d’adhérence inférieure
s 1 , 1
a 7. Montrer que la suite (z,,),en converge vers .

BN

Soit (u)nen une suite réelle vérifiant ug > 0 et u,41 = |u, — n| pour tout n € N.
Trouver un équivalent de wu,,.

15




CCP MP

"k
Pour tout n € N*, on pose u,, = » ———
pose ]; T

1. Donner un équivalent de u,.1 — u,.

—In(n).

En déduire que la suite (u,)nen+ converge. On note ¢ sa limite.
2. Proposer un équivalent simple de u,, — /.
3. Etudier la nature de la série Y (—1)"(u,, — ¢).

neN*

m Centrale
1

400
Considérons la suite (I,,)pen+ définie par I,, = / —— dt.
(In)nex P o (1+13)
1. Soit les suites (un)nens €t (vn)nen+ telles que pour tout n € N* :

n n

1 1
unzzg—ln(n) et vn:Z%—ln(n%—l).

k=1 k=1
Montrer que ces deux suites convergent.

1
2. Montrer que pour tout n € N*, [,, 1 = (1 — 3) I,.
n

3. Montrer qu’il existe deux nombres réels a et
tels que In(7,,) = aln(n) + 5 + o(1).
+o0o
4. Etudier la convergence de la série Z I,.

n=1

Mines-Télécom MP

Soit Z u, une série a termes strictement positifs.
neN
1. On suppose qu’il existe £ € R, tel que HEIEOO Yu, = L.
Montrer que :

(a) £ <1 = > w, converge;
neN

(b) £>1 = > u, diverge.

neN

u
2. On suppose qu'il existe £ € R, tel que lim —=+ = /.
n—-+o0o Up,

Montrer que nl—lgloo Sy, =1L

[68] x mP

Soit A €]0;1]. Etudier la suite (2,)nen définie par :

{ZL‘Q 6]0,1[

VneN,z,p 1 =1— a2
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m Mines-Ponts
f'(z)

Soit f € CY([1;4oo[,R% ) vérifiant Jim i) = —00
1. Etudier la nature de la série > fn).
neN*
+o0
2. Donner un équivalent de R, = » _ f(k) en +oc.
k=n

Centrale MP

Soit ¢ une application continue de R dans C telle que ¢ — tq(t) soit intégrable sur R, .

+oo 1
1. Montrer qu'il existe a € R, tel que / [tq(t)|dt < 5

a

On définit (y,)nen une suite de fonctions définies sur R par :

Yo =1
+o0o
Vi €N, Ve € R gy =1— [ (t—a)a(t)yn(t) dt
0

2. Justifier la définition de (y,)nen €t montrer que pour tout n € N, y,, est continue
sur R et bornée sur [a; +00.

3. Montrer la convergence uniforme de (y,)nen sur [a;+o0.

Mines-Télécom MP

Soit (uy)nen la suite définie par :

uy € R

)nCOS(Zn_l)

up = (—1 sin>1

Etudier la nature de la série de terme général wu,,.

ENS ESPCI 2015

2
1 & /n

Pour tout n € N, soit ¢, = .

n+1 ,;) (k)

1 (2
1. Montrer que pour tout n > 1, ¢, = ( n)

n+1
2. Montrer que la série ) c,2™ a un rayon de convergence R > 0.
+oo
3. On pose f:x+— Z cpx”.
n=1
1
Montrer que f(z) = 9 (1 — V1 - 4x) pour tout z €] — R; R[\{0}.
x

17




CCP MP
i
5

Soit M = | e My(R).

W= = N

—

Dlo i wi—
Ju—

1

3

1. La suite (M™),en converge-t-elle ?

2. On note N = lim M"™. Que représente N 7

n—-+oo
3. Déterminer N.

Ug
4. Soit ug, vy et wq trois nombres réels et Xy = | vy
Wo
Up,
Soit X,, = | v, | tel que, pour tout n € N, X,, .1 = M X,,.
Wn,

La suite (X, )nen converge-t-elle ? Le cas échéant, quelle est sa limite ?

CCP MP

Soit § €]0; 7). Pour tout n € N, on pose S,(6) = > _ cos(kd).
k=1

1. Donner une expression simplifiée de S,,(0). Exhiber M (§) € R, indépendant de
n, tel que :
Vi € N, [S,(9)] < M(5).
n

2. Pour tout n > 2 entier, on pose u,(J) = 1 cos(nd).
?/I/ p—

(a) Montrer que la fonction z —

est décroissante sur [2;4o00].
x p—
(b) Montrer que la série Z u,(0) converge simplement sur [2; 400.
n=2

On pourra écrire cos(nd) = S,(0) — Sp—1(0).

3. Etudier la convergence uniforme de > ,,(§) sur tout segment inclus dans ]0; ).
n>2

Mines-Ponts MP 2023

1. Soit n > 2 un entier. Montrer que 1’équation
2" —nr+1=0

admet une unique solution dans l'intervalle [0;1]. On la note z,.
2. Etudier la monotonie et la convergence de la suite (z,,)n>.
3. Donner un équivalent de la suite (z,)n>2.

4. Donner un développement asymptotique a deux termes de la suite (x,,),>2.

18




X ESPCI

Etudier le comportement en U'infini de la suite (u,)nen+, avec pour n € N* :

"1

=Y

= n+i

Mines-Télécom MP 2023
Soit f : R — R définie par :

froe o]+ (z—|z))°.

On définit la suite récurrente (u,),en par :

ug € R
Uny1 = f(un)
1. Etudier la continuité de f et esquisser le graphe de cette fonction.

2. Etudier la monotonie de la suite (un)nen et calculer sa limite en fonction de wp.

Mines-Ponts MP 2023

1. Soit n > 2 un entier. Montrer que 1’équation

sin(z) =

Sy

admet une unique solution dans l'intervalle |0; 7[. On la note z,.
2. Montrer que la suite (x,),>2 converge. Calculer sa limite.

3. Donner un développement asymptotique de la suite (z,),>2 avec la précision

(i)

X-ENS
+oo

Soit p, le n®™¢ nombre premier. Montrer que Z — diverge.

n=1£n

(80| ccp mP 2007
Pour tout n € N*, on pose f, : x — exp(—zy/n).
1. Etudier la convergence simple de la série de fonctions Z fn-
neN*

Lorsque Z fn converge, on note S sa somme.
neN*

Montrer que S est continue sur R7 .
Montrer que lim S(z) = 0.
T—r+00

Montrer que S est décroissante sur R .

ARl ol o

Montrer que S(z) est équivalent & e™® en infini.
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X-ENS
+oo

Quelle est la nature de la série Y sin(nlre) ?

n=0

Mines-Ponts MP 2023
Pour tout A € M,,(C) on pose :

n
4] = sup {Zram}.
1<ysn =1

1. Montrer que ||-|| est une norme d’algebre sur M,,(C).

2. Soit A € M, (C). Etudier la convergence de Y A* si ||A|| < 1. Cette condition
est-elle nécessaire pour la convergence de la série ?

A p
(1.
p

Etudier la convergence de la suite (Up) pen-

3. Pour tout p € N* on pose

Mines-Ponts PC 2023
Soit n € N*, o € R et

=

Il
S|IQ =
— 319

Déterminer lim M.
n—-+00

CCP MP

Soit (uy)nen la suite définie par :

Ug = 1
Vn € N7 Un+1 = ZZ:O UpUn—p

On souhaite obtenir une expression de w, en fonction de n. On suppose qu’il existe un
nombre réel R strictement positif tel que la série entiere - u,x" converge sur | — R; R|.
Pour tout x €| — R; R, on pose S(x) = > u,z™.

1. Pour tout z €] — R; R[\{0}, calculer S?(z).
En déduire que pour tout x €| — R; R[\{0} :

S%*(z) — S(z) +1=0.

1—+vV1—-4x

2. Montrer que S(0) = 1, et qu’au voisinage de 0, S(z) =

2z
3. Montrer qa voisinage de 0, S(x) = 3 — DL
. Montrer qu’au voisinage de r)=)» ———=u
a & ’ “— nl(n+1)!

4. Conclure.
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X MP
+o0 1

Pour [t| < 1, on pose f(t) = [[ ——.
o L—t

1. Montrer que f est bien définie.

2. Montrer, pour [t| < 1, que f(t) =1+ Zp , ot p(n) est le nombre de suites
+oo
(yx)ken= d’entiers naturels telles que Z kyr = n.
k=1

|86 x-ENS

1. Soit n € N. Montrer qu’il existe un polynéme P, tel que,

sin((2n + 1)t)
sin?t(¢) -

Vt € ]O; g[, Py(cot®(t)) =

2. Expliciter les racines de P, et calculer leur somme.

3. En observant que

1
cot?(t) < ) < 1+ cot?(t)
+00 1
pour tout t € }0 ; g[, déterminer la valeur de ((2) = Z —-
n=1 n

Mines-Ponts

"1
Pour n € N*, on note H, = ) _ o
k=1

+o0 1
k=n ﬁ

2. Montrer que la suite (H,, —In(n)),en+ converge vers un certain réel v, appelé la
constante d’Fuler. Déduire que

1. Soit p > 1. Donner un équivalent de R,, =

H, =In(n)+ v+ o(1).

3. Pour n € N* on note t,, = H,, —In(n) —v. Déterminer un équivalent de ¢, 1 —t,,
puis de t,,. Déduire que

1 1
H,=1 — — .

4. Avec un raisonnement similaire, montrer que

1 1 1
H, =1 R =),
n(n) + 7+ o = o +O(n2)
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X-ENS

Soit P € R[X]. Etudier la convergence et calculer explicitement la série :

+00 "
Z P(n)*,
n—0 n.

m Centrale PC 2023

1. Soit n et p deux naturels. Calculer :
1
I, = / (In(z))Pz" dz.
0

|
2. On pose [ = / — dx. Montrer que I converge et que
0o x%

1
=Y —

o
n}ln

3. En majorant les restes de la série précédente, donner une valeur approchée a
1073 pres de 1.

m Mines-Ponts MP 2024

Calculer : . h
lim Z nt

n—too £~ 2 4+ sin(n+ k) + (n + k)2’

Mines-Ponts PSI 2024

Soit uy € R et pour tout n € N, w41 = sin(u,).

1. Etudier la convergence de la suite (1, )nen-

+00
, , . s Un+1
2. Sous réserve de sens, étudier la nature de la série E In ( .

n=0 Un
+o0 +o0
3. Quelle est la nature des séries Y uZ et > u,?
n=0 n=0

4. Bonus : trouver un équivalent simple de la suite (u,)nen-

X PC 2021

Soit (2, )nen une suite vérifiant zo > 0, 1 = 0, o+ 21 > 0 et

Ln+1
Vn €N, z,419 = —
n+2 n+1

+ x,.

Etudier la convergence de la suite (2,)nen-
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cor

1. Soit (uy)nen et (vn)nen deux suites de nombres positifs. On suppose que (U )nen
et (Un)nen sont non nulles a partir d'un certain rang. On suppose encore que
U, ~ vU,. Montrer que > u,, et > v, sont de méme nature.

2. Etudier la convergence de la série
n : : 1
o ((=1)" +1i)In(n) sin (5)
;::2 vn+3—-1

cor

1. On considére deux suites réelles (uy,)nen €t (vn)nen telles que (vy)nen €st non
nulle a partir d'un certain rang et u,, ~ v,. Démontrer que u,, et v, ont le méme
signe a partir d’un certain rang.

2. Déterminer le signe au voisinage de +o0o de

1 1
u,, = sinh <> — tan <> .
n n

CCINP

Considérons la suite de fonctions (f;,)nen définie par :

n+2 _
= e
n+1

ful2) " cos(V/a).

1. Etudier la convergence simple de la suite de fonctions (fn)nen-
2. La suite (f,,)nen converge-t-elle uniformément sur [0 ; +oo[ ?
3. Soit a > 0. La suite (f,)nen converge-t-elle uniformément sur [a; +o00] ?

4. La suite (f,)nen converge-t-elle uniformément sur |0 ; 4+o00] ?

196 x-ENS

Soit a,, la plus grande racine réelle de X?* — 2nX + 1. Donner un développement
asymptotique a deux termes de a,,.

X-ENS

Pour tout entier n > 4, on considere la fonction réelle f,, définie par :

falz) =2 —Vn -z + 1.

1. Montrer qu'il existe un unique x,, € [1;2] tel que f,(z,) =0.
2. Etudier la convergence de €, = x, — 1 et en déduire un équivalent de x,,.

3. Donner un équivalent asymptotique a trois termes de x,,.
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m Centrale PC 2015

On pose, pour tout x réel,

On pose, pour tout entier naturel n,

1. Montrer que la suite (u,)nen converge.

2. Calculer la limite de la suite (uy,)nen.
Etudier la nature de la série 3 u,,.

3. Montrer que pour tout entier naturel n,

+o00 (_1)knk
w, =23 "
2 Wk 1)

m Mines-Ponts
1

Soit (x,)nen la suite réelle définie par zop > 0 et x,11 = x, + —.
Tn
Donner un équivalent de x,,.

ENSAE 2013
Etudier la nature de la série Z 1 (\3/71 +1-— f’/ﬁ)

n>1

X MP
Soit f: [0;1] — [0;1] vérifiant |f(z) — f(y)| < |z — y| pour tout (z;y) € [0;1]2.
Soit (T )nen avec xg € [0;1] et zpq1 = f(xn).

1. Montrer que f admet un unique point fixe a.

2. Montrer que la suite (x,)n,en converge vers a.

Mines-Ponts PC 2013

Soit la suite (uy,)en+ telle que

1
— sl nest un carré
n
Uy =
r
— sinon
n

Quelle est la nature de la série > u, 7
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X PC 2019

Soit n € N* et P, le polynome défini par :
Py(X)=X"+X?—1.

1. Montrer que P, possede deux racines réelles de signes opposés.

2. On note r, la racine positive de P,. Démontrer que la suite (r,),>1 est bornée
et convergente. Déterminer sa limite.

Mines

Soit zy € R et pour tout n € N, z,41 = arctan(z,).
1. Etudier la monotonie et la convergence de la suite (2, )nen-

2. Donner un équivalent de x,, lorsque n tend vers +oo.

CCP 2015

Pour tout n € N*, soit
+o00 arctan (%)
0 x>+
1. Prouver l'existence de J,,.

2. Etudier les limites des suites (Jn)n>1 et (ndy)n>1.

Mines 2015

RIS | 1

Montrer que — o~ —
k%—l kb notoo (n+1)!

CCP 2015
i 1

Soit a € R. Pour tout n € N, on définit u,, =
2 oy
1. Calculer un équivalent de u,1 — u, quand n tend vers +oo.

— aln(n).

2. Déterminer « pour que la suite (u,),eny converge, et calculer alors sa limite.

CCP 2105

Montrer que pour tout entier n > 1, I'équation 2" + \/n - x = 1 admet une unique
solution appartenant a l'intervalle [0;1]. On note a, cette solution. Etudier la limite
de la suite (a,),>1 et la convergence de la série 3 ay,.

Centrale 2015

Soit P,(X) le polynome [[(X — k).

k=0
1. Montrer qu’il existe un unique réel u,, €]0;1[ tel que P/ (u,) = 0.
“ 1
2. Montrer que pour tout n > 0, Z ’ = 0.

k=0

3. En déduire liIP u, et déterminer un équivalent de u,, quand n tend vers 4o0.
n—-+0oo
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CCP 2015

+oo sin (%)
Pour tout n € N*, soit a,, = / —
1 (1 +1¢?)

Etudier la limite de la suite (ay)n>1 et en calculer un équivalent.

Mines 2015

n+1
Quelle est la nature de la série de terme général u,, = arcosh ( ) ?
n

CCP 2015

Soit n un entier naturel supérieur ou égal a 3. On définit P,(X) = X" —nX + 1.
1. Montrer que P, admet deux racines positives, a,, et b,.

2. Etudier les suites (an)ns3 €t (by)nss et leur rapidité de convergence.

CCP 2015

On considere la suite de terme général u,, = / (In(t))™ dt.
0

1. Pour quels n, u,, est-il défini?
2. Etudier la limite de la suite (u,)nen.

3. Etudier la convergence de la série Y u,,.

4. Déterminer le rayon de convergence de la série entiere Z —':C”.
n!

T u
5. Calculer S(z) = > —a".

|
(2

6. En déduire une expression de u,, pour tout n € N*.

Centrale 2015

On considére une suite (u,),eny de réels strictement positifs, et on suppose que
lim u, =0.On note J = {z € R | > u? converge}.

n—-+0o
1. Montrer que J est vide ou alors un intervalle de R* . (Illustrer par des exemples
concrets. )

2. On suppose que J # (), et on note :
fJ — R

+o0
n=0

Etudier la continuité de f et ses limites au bornes.

Centrale 2015

Pour tout n € N, on note a, le nombre de chiffres dans I'écriture décimale de 2™,
Quel est le rayon de convergence de la série entiere Y a,z" 7
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cor vr

1. On considere la série de terme général u,, = ———oun > 2 et a € R.
nln(n)®

(a) On suppose a < 0.

En utilisant une minoration tres simple de u,,, démontrer que la série diverge.
(b) On suppose a > 0.

Etudier la nature de la série.

Indication : on pourra utiliser la fonction f définie par f(x) =

(= (1+7))e
2. Déterminer la nature de la série Z 5 TR
n>2 (In(n? +n))

z(In(z))*

X PC 2019

Etudier la nature de la série de terme général

. sin(ln(n))‘

n

up, = (—1)

On pourra commencer par regarder le comportement de w,, + 1.

o Mp

On considere la série de fonctions de terme général wu,, définie par :

Vn e N Vo e [0;1], uy,(z) =In <1+ $> 7
n n

+oo
On pose, lorsque la série converge, S(z) = Z (ln (1 + x) — :E) )
n n

n=1

1. Démontrer que S est dérivable sur [0;1].
2. Calculer S’(1).

— 12

CCP 2015

Donner un développement en série entiére de la fonction f(z) = arctan (1

Mines-Télécom MP 2023

Etudier la nature de la série Z coS (7?\/ n?+n-+ 1).

Mines-Ponts

1. Montrer que ’équation x = tan(x) admet une unique solution x,, dans U'inter-
valle }—g +n7r;g+n7r[.

2. Donner un équivalent de x,, lorsque n tend vers +oc.

b
3. Déterminer les réels a et b tels que la série E Ty — NT — a+ — converge.
n
n=>1
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CCP MP
+o0 (2”)'

1. Montrer que la série Z 0224 (20 + 1)
(n!)224n(2n

On se propose de calculer la somme de cette série.

converge.

2. Donner le développement en série entiere en 0 de ¢ — en précisant le

1
V1—t
rayon de convergence.

Remarque : dans I'expression du développement, on utilisera la notation facto-

rielle.

3. En déduire le développement en série entiere en 0 de x +— arcsin (z) ainsi que
son rayon de convergence.

= (2n)!
4. En déduire la valeur de Z .
= (n!)2247(2n + 1)

o Mp

Soit F I'ensemble des suites réelles qui convergent vers 0.
1. Prouver que E est un sous-espace vectoriel de I’espace vectoriel des suites réelles.

2. On pose :
Vu = (up)neny € E, ||u]| = su§|un|.
ne

(a) Prouver que ||-|| est une norme sur E.

(b) Prouver que pour tout u = (u,)neny € E, la série Z converge.

2n +1
400 U,
(c) On pose, pour tout u = (Up)peny € E, f(u) = Z_:O STISE

Prouver que f est continue sur E.

cor vr

Soit (u,)neny une suite de réels strictement positifs et ¢ un réel positif strictement
inférieur a 1.

, . . Up+1 s .
1. Démontrer que si lim =/, alors la série Zun converge.

n—+00 U,

n!
2. Quelle est la nature de la série Z —7

n=1

CCP MP

1. Que peut-on dire du rayon de convergence de la somme de deux séries entieres ?
Le démontrer.

2. Développer en série entiere au voisinage de 0, en précisant le rayon de conver-
gence, la fonction f:z — In(1+ ) + In(1 — 2x).
1 1 1

La série obtenue converge-t-elle pour z = Z? r = 5? r= —5?
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cor vr

3r+7
On pose f(l') = m
1. Décomposer f(x) en éléments simples.

2. En déduire que f est développable en série entieére sur un intervalle du type
| —r;r] (our > 0). Préciser ce développement en série entiere et déterminer, en
le justifiant, le domaine de validité D de ce développement en série entiere.

3. (a) Soit > a,z™ une série entiere de rayon R > 0.
+o0

On pose, pour tout z €] — R; R[, g(z) = > a,z”.
n=0

Exprimer, pour tout entier p, en le prouvant, a, en fonction de g (0).
(b) En déduire le développement limité de f a 'ordre 3 au voisinage de 0.

ccP MP

1. Donner la définition du rayon de convergence d’une série entiere de la variable
complexe z.

2. Déterminer le rayon de convergence de chacune des séries entieres suivantes :

(n!)? 2n+1
@ 2 G

(¢) > cos(n)z"

Mines 2016

+oo
, . ;. . . nm
Déterminer le rayon de convergence de la série entiere E sin (2015> x" et calculer sa

n=0
somme.

CCP MP

a
Soit (ay)nen une suite complexe telle que la suite <| 1]

|an’

) admet une limite.
neN

1. Démontrer que les séries enticres Z anz" et Z(n—i— 1)an12"™ ont le méme rayon
de convergence. On le note R.
“+oo
2. Démontrer que la fonction z — Y a,z" est de classe C* sur I'intervalle |- R ; R|.

n=0

R

Pour chacune des séries entieres de la variable réelle suivantes, déterminer le rayon de
convergence et calculer la somme de la série entiere sur le disque ouvert de convergence :

3nl.2n
Ly
n=1 n

2. ) a,x" avec ag, = 4" et ag,41 = 5"
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cor vr

1. Soit (u)nen une suite décroissante positive de limite nulle.

a) Démontrer que la série -1 kuk est convergente.
q g
n

Indication : considérer (Sa,)nen €t (S2nt1)nen avec S, = Z(—l)kuk.

k=0
(b) Donner une majoration de la valeur absolue du reste de la série Y (—1)Fu,.
(_1)ne—nm
2. On pose : Yn € N* Vz € R, f,(z) = ——.
n

(a) Etudier la convergence simple sur R de la série de fonctions > fa
n=1

(b) Etudier la convergence uniforme sur [0; +oo[ de la série de fonctions Z I
n=>1

X-ENS 2015

On considére la suite (z,),en définie par la donnée des réels o > 0 et a > 0, et par la
relation de récurrence :

a
VneN, xp =2, +—.

n
Etudier la limite de cette suite, et donner un équivalent simple de z, quand n tend
vers +00.

cop P

Soit A une algebre de dimension finie admettant e pour élément unité et munie d’une
norme notée ||-||. On suppose que : V(u;v) € A%, ||uv|| < ||ulll]v]].

1. Soit u un élément de A tel que |Ju|| < 1.

2. (a) Démontrer que la série Y u" est convergente.

+oo
(b) Démontrer que e — u est inversible et que (e —u)™" =Y u™.
n=0

, L. u"
3. Démontrer que, pour tout u € A, la série Z — converge.
n!

CCP 2016
“+oo

On considére un entier m € N* et la série entiere » < )x", de somme S(z).
—, \m
n=m

Déterminer son rayon de convergence, et calculer sa somme sur son disque de conver-
gence.

Mines 2016

+oo "
Soit S(x) = _—
ot 5(@) = 2 i1

1. Calculer le rayon de convergence de la série S(x).

2. Calculer S(x) lorsque = > 0.
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CCP MP
Soit g € R.
On définit la suite (uy,),en par ug = xg et, pour tout n € N, u, 1 = arctan(uy,).

1. (a) Démontrer que la suite (u,)nen €st monotone et déterminer, en fonction de
la valeur de zy, le sens de variation de (u,)nen-

(b) Montrer que (u,)nen converge et déterminer sa limite.

2. Déterminer ’ensemble des fonctions A, continues sur R, telles que, pour tout
x € R, h(z) = h(arctan(z)).

CCP MP

1. Déterminer le rayon de convergence de la série entiere Z

n

(2n)!”

+00 "
On pose S(z) = .
(z) n;() (2n)!

2. Rappeler, sans démonstration, le développement en série entiere en 0 de la fonc-
tion x — cosh(zx) et préciser le rayon de convergence.

3. (a) Déterminer S(x).
(b) On considere la fonction f définie sur R par :

f(0)=1, f(x)=cosh(vz)siz >0, f(r)=-cos(v/—x)siz<D0.

Démontrer que f est de classe C'*° sur R.

CCP 2016

+oo —1)»
On rappelle que la série harmonique alternée converge et que Z (=1) = —1In(2).
n=1
1. Montrer quil existe a, b, ¢ tel ! Cy_ b L
. Montrer existe a els que = — )
FO AT eRte @, 0, C RO AN s X T X T 2X — 1 2X + 1
2. Mont f(l l)tf(l 1) ¢, calculer 1
. Montrer que —— e — — ) convergent, calculer leur
W2 Aor -1 2k) = \ak 1 % st
somie.
400
3. Montrer que Z 3 converge, calculer sa somme.
i 4k =k
+o0 1
4. L’intégrale impropre / 1w dx converge-t-elle 7 Si oui, la calculer.
1 x3 —

CCP 2016

Pour tout n € N*, on considére 'équation (E,) :x + 2>+ 23+ -+ 2" = 1.

1. Montrer que cette équation admet une unique solution dans R, que ’on notera
u,. Calculer u; et wus.

2. Montrer que la suite (u,)nen+ converge vers une limite ¢ que l'on calculera.
Trouver un équivalent de u,, — ¢ quand n tend vers +o0.
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Mines 2016

Déterminer le rayon de convergence de la série entiere

+00 22+l
= 2 ke 1)
Montrer que :
> i aeT — VO
T2k + 1) c2nl(2n+ 1)

Indication : on pourra utiliser une équation différentielle.

X-ENS 2016
n

1. Déterminer la limite de Z p—— quand n tend vers +oo0.
k=1

1
2. Déterminer la limite de Z In (1 + —i—k) quand n tend vers +o0.
k=1

ENSAM 2016
—+00

1
Pour tout n € N, on définit : a, = /
0o 2+t =0

1. Montrer que le rayon de convergence de R de la série entiere > a,x™ est supérieur
ou égal a 1.

2. Calculer f(z) pour |z| < 1.
3. Montrer que R = 1.

ENAC 2016

+o0 1
On pose ((z) = » —.
n=1 n*
1. Donner le domaine de définition de la fonction (.

2. Etudier la continuité et la dérivabilité de C.

+oo
3. Montrer que 'intégrale / (((x) — 1) dx est définie et est égale a la somme de
2

R
1a serie 7;2 m

Mines PSI 2016
+00 ( 1)n
On considere la fonction f : x +— Z _
“nl(z+n)
1. Montrer que f est définie et de classe C! sur ]0; +oo].
2. Etudier les variations de f et ses limites aux bornes.
1
3. Montrer que pour tout z > 0, zS(z) — S(x + 1) = —.

4. Trouver un équivalent de f en 0 et en +o0.
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Mines 2016

n
On considére une suite réelle (u,),en et on pose, pour tout n € N, s, = > w.
k=0

1. On suppose que la suite (u,)nen est bornée. Déterminer les rayons de conver-
gence des séries entieres

=u, =g,
Ulz)=> —a" et S(z)=>Y —a™
— n! = n!
2. Trouver une relation entre S, S’ et U’'.
3. On suppose que lim wu, = 0.
n—-+00
Montrer que lim U(x)e™ = 0.
T—+00

4. On suppose que la suite (u,),en converge vers une limite ¢ € R.

Déterminer lim U(z)e™ .
T—r+400

5. On suppose que la série Z u, converge.

+o0
Déterminer lim S(z)e™® en fonction de 0 = Y u,,.
T—+00 0

Mines 2016

Soit (u,)nen+ une suite réelle qui converge vers une limite ¢. On définit alors la suite
(Un)nen- telle que :

* 1 -
VnEN,vn:E;k‘uk.

Montrer que la suite (vy,),en+ converge et préciser sa limite.

Mines 2016

Pour tout n € N*, on définit :

n 1 +o0o
la somme harmonique H,, = Z — et la fonction f:z— Z H,x".
k=1 n=1

1. Déterminer le rayon de convergence de la somme f(z).

2. Déterminer le comportement de f(z) aux bornes du domaine de convergence.

CCP 2016

On consideére, pour n > 2 entier, I'équation (E,) : 2™ = x + n.
1. Montrer qu'il existe une unique solution u,, de (E,) dans U'intervalle R,.
2. Montrer que pour tout n >3 onal <u, < 2.
3. Etudier la convergence de la suite (i, )n>2 et sa limite £.

4. Calculer un équivalent de w,, — £.
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Mines 2016

On considere la suite (ay,)neny définie par :

a0:a1:1

Vn € N a1 = Z <Z> AkOn—k

k=0

Too g
On définit la fonction f : z +— Z —_
o

1. Montrer que le rayon de convergence de la série entiere f n’est pas nul.

2. Déterminer une équation différentielle vérifiée par f.
En déduire la fonction f et la suite (a,)nen-

Mines 2016

On considere une série Z u, a termes positifs, convergente.
Montrer que la série Z VUn Uy o cONVerge aussi.

CCP PSI 2019

+oo
1. Quel est le domaine de convergence D de la série de fonctions »  u,(z)
n=2
In(x
avec u, () = #?
™ In(n)
2. Montrer que cette série de fonctions ne converge pas normalement sur D.
+oo
3. Notons R,(z) = Y w(z).
k=n+1
Mont tout © € D, |R,(x)] < !
ontrer que, pour tout x | Re(2)] € ————
e p In(n + 1)

4. Montrer que la somme S associée a cette série est continue sur D.

5. Montrer que S est intégrable sur D.

ENSEA/ENSIIE 2024
Soit (U )nen et (Vn)nen deux suites positives telles que, pour tout n € N, u,, < v,.
1. Démontrer que si Z v, converge alors Z U, converge.
2. Démontrer que si Z u, diverge alors Z v, diverge.
3. Déterminer, par majoration ou minoration, la nature de Zun avec :
(a) u, = ntesn(®

(b) u, = cos2gn4)
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ENSIIE 2015

A quelle(s) condition(s) sur les réels a, b, ¢, la série de terme général
u, =aln(n) +bln(n + 1) + cln(n + 2)

converge-t-elle 7

Mines-Ponts 2015

Soit M (x¢; o) un point de la parabole B d’équation y? = 2pz. (p > 0)

On note M, la deuxiéme intersection entre la normale a la parabole en M,_; et la
parabole.

Etudier la convergence et la convergence absolue de la série de terme général —.
Yn

TPE/EIVP 2017

Pour tout n € N*, soit f,,(z) = na® + n?z — 2.
1. Montrer qu'il existe un unique réel u,, tel que f,(u,) = 0.
2. Déterminer la limite de la suite (uy,),en-

3. Pour quels nombres réels a la série Y _ug est-elle convergente ?

Centrale 2017
On considere, pour tout n € N, u,, = \ln—i— \/n— 1—|—\/---—|—\/1—|—\/ﬁ.

1. Etablir une relation simple entre u,, et wu,_1.

2. Donner un équivalent puis un développement a deux, puis a trois termes de u,,
quand n tend vers +oo.

ENSEA/ENSIIE PSI 2017

n
1. Montrer que P, = Z ¥ — 1 admet une unique racine z,, € R,.
k=1

2. Etudier la suite (2, )nen--

Mines 2012

. exp(z?) — 1
1. Montrer que la fonction f : z —

est prolongeable en une fonction
développable en série entiere.

2. Montrer que f est strictement croissante, et réalise une bijection entre deux
intervalles que l'on précisera.

3. Calculer le développement limité & l'ordre 3 de la fonction réciproque g = f~*
en 0.
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Mines 2012

On consideére deux suites (@, )nen €t (bn)nen a termes réels positifs.

1. Montrer que si lim b, = 400, alors la série Z converge.
—+0o0

n nbn

1
- _ _ - PR
2. Si nl_lgloo an, nl_lgloo b, = +00, la série Z —ann converge-t-elle 7

CCP 2012

On considere la suite réelle (u,),en définie par :

1 2u2
ug = -, u; =1 etpourtoutn €N, u,,o=—1
2 w,
1. Etudier la limite de la suite (ty,)nen-

2. Exprimer u,, en fonction de n.

X PSI

Soit (uy,)nen une suite réelle. On suppose que cette suite est décroissante et que la série

de terme général u,, converge. Montrer que lirE nu, = 0.
n——+0o0

[162] x pC

!
Soit f : R% — R* une fonction de classe C* telle que Em fz)

oo f(x)

1. Donner un exemple d’une telle fonction.
fln+1)

f(n)

3. Quelle est la nature de la série de terme général f(n)?

2. Montrer que la suite de terme général converge et déterminer sa limite.

[163] x pc

Soit (uy),>1 une suite de réels positifs telle que :

2n
Vne N, Y w <

k=n+1

n

S

k=1

S|

Montrer que la série de terme général u,, converge.

ENSEA /ENSIIE 2012

On considere une série réelle convergente Z U, et une suite (,),>1 & termes positifs
n=1
ou nuls, de limite nulle.

1. Montrer que si la série Zun converge absolument, alors la série Zenun
n>1 n=1
converge.
2. Trouver un contre-exemple si la série Z u, ne converge pas absolument.
n=>1
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CCP 2012
1

On consideére la suite (uy,)nen de terme général u,, = / t"v1 —t2dt.
0

1. Calculer ag et a;.
2. Etudier les variations et la limite de la suite (Un ) nen-

n+1 ;
ﬂun, €l que Up+41 n—;\—;-oo Up-
4. Montrer que la suite ((n+1)(n+2)(n+ 3)@nan4+1)nen est constante. En déduire

un équivalent de u,, et la nature de la série > u,,.

[1+4+1
5. Montrer que Z Uy = / dt et calculer cette somme.

3. Montrer que pour tout n € N, u,19 =

CCP 2012

Etudier le développement en série entiére de la fonction f : 2 — In(1+ z + 2?).

Centrale 2012

2n
On considere la série entiere f : z — E ( x".
n
n=0

1. Déterminer le rayon de convergence de f.
2. Calculer (1 —4x)f'(x) en fonction de f(x). En déduire f(z).
3. Montrer que pour tout n € N :

()0

ENS Rennes 2017

Soit (a;b) € R%2.

1. Mont /lt dt io(_l)n
. Montrer que = :
R = a+bn
Indication : on pourra développer en série entiere ﬁltb
+o0 (_1)n
2. Calculer :
nz:% 3n+1

CCP 2017
+oo n2+n+1

Déterminer le rayon de convergence de la série S(t) = Z 7|t" et calculer sa
n!
=0
somme. "

[170] ccp
™om?+3n+1

Montrer que la série ZO o
n=

converge et calculer sa somme.
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cor PO

Soit (un)nen la suite réelle définie par ug €]0; [ et pour tout n € N, u,11 = sin(uy).
1. Montrer que la suite (u,),en converge et préciser sa limite.
) Upp1 — U
2. Etudier la limite de #
un
En déduire la nature de la série de terme général u3.

3. En étudiant In (“2t1) montrer que la série de terme général u? diverge.
U ) n
n

Mines-Ponts MP 2023

Soit n € N. On pose :
I, = /4 tan"(z) dx.
0
1. Donner une relation de récurrence sur I,,.

2. Trouver un équivalent simple de [,, en +oc.

(=DF
3. (a) Montrer que Iy, = (—1)" :
gl 2k+1

(b) Exprimer I5,,; a aide d’une série.

Mines-Ponts PSI
Soit (ay)nen la suite réelle définie par ag > 0 et a, 1 =1 —e .
1. Etudier la limite de cette suite.
2. Déterminer la nature de la série de terme général (—1)"a,,.
3. Déterminer la nature de la série de terme général a?.
4.

Etudier la série de terme général In <M> En déduire la nature de la série de

an
terme général a,,.

Mines-Ponts PC 2023
(_1)n+1xn

+oo
1. Montrer que, pour tout z € [0;1], In(1+2) = >
n=1 n

+oo x2n+1 anrl
7;)(272—1—1 B 2n+2>

2. Montrer que la somme

converge uniformément sur [0; 1] et calculer sa somme.

3. La série de fonctions précédentes converge-t-elle uniformément sur [0;1] 7

Mines-Ponts MP

Soit n > 2 entier et P,(X) = [[(X — k).
k=0

1. Montrer que P! admet une unique racine dans |0; 1[, notée \,,.

2. Déterminer lim A,.
n—-+o0o

3. Trouver un équivalent de A,, pour n — +o00.
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Mines-Télécom MP 2023
(=1)"

———~- en fonction de o € R.
n2a + (_1)71

Etudier la convergence de la série Z

Mines-Télécom MP 2023

. +00 n -1 k—1
Etudier la convergence de la série Z Up, OU U, = H (1 + H)

n=1 k=1 \/E

p——
n+1 f(t)

Soit f € C(R,C) 1-périodique et, pour n € N*, u,, = / e dt.

1
Montrer que la série de terme général u,, converge si, et seulement si, / f(t)dt=0.
0

—

Soit, pour tout réel t > 1,

et, pour tout entier n > 1,

(n+1)m
U = /n F(t) sin(t) dt.

™

Etudier le sens de variation de la fonction f, préciser le sens de variation de la suite
(|tn])nen+ et la nature de la série Z Uy,

ENSAM PSI

n
Soit (@, )nen+ une suite réelle a termes positifs, avec a; > 1. On pose P, : x +— Z apzh.
k=1

1. Montrer qu’il existe un unique z,, € [0;1] tel que P,(x,) = 1.
2. Montrer que P,1(x,) > 1. En déduire que la suite (x,),en+ est décroissante et
qu’elle converge.

3. On note ¢ = liril T, et on suppose que £ > 0. Montrer que le rayon de conver-
n—-+0o0

gence de la série Y a,z™ est supérieur a /.

X ESPCI
2k —1

Soit ag = 1 et, pour tout n € N*, a,, = H
o 2k

1. Montrer que le rayon de convergence R de la série Z apx" vaut 1.

+o0
2. Pour tout z €] —1;1], soit f(x) = Z a,z". Trouver une équation différentielle
n=0

vérifiée par f sur | — 1;1][.

3. Calculer f(z) pour tout x €] — 1;1].
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CCP PSI
n

Déterminer, suivant a € R, le rayon de convergence de la série entiere Z arctan(n®)x".

Centrale PSI

Soit (d,)n=0 la suite définie par
dy=1,d, =0 et Vn eN, dn+2 = (7’L+ 1)(dn+1 + dn)

1. Calculer dy et d3. Montrer que, pour tout n > 2, %’ < d, < n! et en déduire le
rayon de convergence R de la série entiere de terme général ‘i—?x”.

+o0

dn
2. Pour tout z €] — R; R, on pose S(z) = ) ﬁx"

n=0 """

Montrer que pour tout z €| — R; R|, (1 — 2)S'(z) = 25(x).

3. En déduire une expression de S(x) en fonction de = et exprimer d,, comme une
somme en fonction de n.

Mines-Ponts PC 2011
On pose, pour tout entier n > 2,
n

un:H(Q—e%).

k=2

1. Quelle est la nature de la suite (uy,),>o 7
2. Quelle est la nature de la série Z Up !

CCP MP 2018

400
Soit ) _ a, une série absolument convergente a termes complexes. On pose M = > |a,|.
n=0
On pose encore :
ant™ _,
Vn e N, Vt € [0; +o0[, fult) = oy

1. (a) Justifier que la suite (a,)nen est bornée.

(b) Justifier que la série de fonctions »  f,, converge simplement sur [0; +ool.

+o0

On admettra, pour la suite de l'exercice, que f : t +— Z fn(t) est continue
n=0

sur [0;4o0].

2. (a) Justifier que, pour tout n € N, la fonction g, : t — t"e™" est intégrable sur

400
[0; +oo] et calculer / gn(t) dt.
0

'+OO
En déduire la convergence et la valeur de / | fn(t)] dt.
0

Clntn +00
e_t> dt = Z Q-
n=0

n!

—+00

(b) Prouver que /(:OO (Z

n=0
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CCP MP 2018

On considere, pour tout entier naturel n non nul, la fonction f, définie sur R par

x
A
1. (a) Prouver que »_ f, converge simplement sur R.

n=1
+o00
On pose alors, pour tout z € R, f(z) = Y _ fu(x).
n=1

(b) Soit (a;b) € R? avec 0 < a < b.

La série Y f,, converge-t-elle normalement sur [a;b] ? sur [a;+oco[?
n=1

(¢) La série Y _ f, converge-t-elle normalement sur [0; 400 ?
n=1

2. Prouver que f est continue sur R*.

3. Déterminer IEToof(x)

187 x

Soit 6 € [0;27] et t € [0;1[. On pose :

n

Sa(t) =Y " sin(ph).

p=1
1. Calculer S(t) = ngrfoo Sn(t).
+00 i I
2. En déduire la valeur de Z sin(n )
n=1

X MP 2019
+o0
1. Soit f: Ry — C de classe C, telle que / |f/(z)|dz < 4o0.
0

Montrer que
Zf(n) et /+Oo f(z)dx
n>0 0

sont de méme nature.

X cos(In(n))

?
“— In(n)

2. Quelle est la nature de la série

Centrale

: = 1

1. Démontrer que S est définie et continue sur RY.
2. Déterminer la limite de S en +oo, puis un équivalent de S en +oo.

3. Déterminer la limite de S en 0F.
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TPE/EIVP PC 2018

Posons, pour tout entier naturel n :

1
u, = arctan (> .
n?+3n+3

Montrer la convergence et donner la somme de la série de terme général w,,.
Indication : utiliser l'identité n* +3n +3 =1+ (n+1)(n + 2).

ENSAE MPI 2023

n 1
Pour tout n € N, soit S, = '
our tout n & N, soit Su = 2 7y

1. Montrer que la suite (S, ),en converge.

1
2. Montrer que »_ = In(n)+vy+o(1), ol v est une constante que I’on ne cherchera
k=1
pas a exprimer.

3. Calculer la limite de la suite (Sy,)nen-

CCINP MP 2024

1. Montrer que pour tout n > 3, on a :

/3” lnit) dt + lnéQ) < kz:; lnlik) < /3" lnlft) dt + lné2) n ln:())S)'

2. Montrer que

1
3. Pour tout n € N*, on pose u,, = ~3 (ln2(n) —In*(n — 1))
Montrer qu’il existe ¢ € R tel que
" In(k) In*(n)

= navec lim g, =0.
kz:; 2 9 +c+ &, av o

Mines-Télécom MP 2024

Considérons la suite (u,)nen définie par :

ug > 0
Vn € N, w1 = In(1 4 uy,)
1. Déterminer la limite éventuelle de la suite (uy,)nen.

2. Déterminer la limite de (ﬁ — ui) N
n n/n

3. En déduire un équivalent de la suite (u,)nen-
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Mines-Télécom MP 2025

Soit a € R%. Déterminer la nature de la série de terme général

u, = arctan(n + a) — arctan(n).

CCINP PSI 2024

I\ n
Calculer lim <(2n)> )

—_

n—-+o0o n' nm

CCINP PSI 2014

Résoudre 1’équation
Upiz = OUpo — 11upsq + 6u,

avec ug =0, up =1, ug = 5.

Mines-Ponts PC 2018

On note F' = {(un)neN ERY|Vn €N, Upy3 = tUpio + un} )

1. Montrer que F est un sous-espace vectoriel de dimension finie de RY. Préciser
la dimension de F'.

2. Pour tout entier p > 3, on note v, le nombre de parties de {0;1;...;p} telles
que I’écart entre deux éléments quelconques d'une de ces parties soit supérieur
ou égal a 3. Montrer que la suite (v,43)nen est élément de F.

TPE/EIVP PC 2019
Soit ug € Ry et, pour tout n € N, u, 1 = /1 + uy,.

Montrer que la suite (uy,)nen est bien définie et discuter la convergence de celle-ci en
fonction de la valeur de ug.

CCINP PSI 2024
2

x
On considere la série E )
= 3n+ 1)(3n+2)

1. Déterminer le rayon de convergence et le domaine de définition de cette série.

1
2. Calculer a, = / (1— 6)8 dt.
0
3. Calculer la somme o + oy + -+ - + ay—1 de deux manieres différentes.
N-1 1 11— t?)N

i o R

onrer Ane nz;; Gnt)Brnt2) Jo 1rtte

En déd S L l ! d

5. sdui - / ‘

H equire que§(3n+1)(3n+2) 0 T+ttt

1 1
6. Calculer / —dt.
o 1+t+41¢2
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ENSAE MP 2022

Pour tout n € N*, on note (E,) I’équation :
(Ep): > ah=1.
k=1

1. Montrer, pour tout n € N*, qu’il existe une unique solution x,, de (F,) sur Ry
et que z,, € [%;1]
2. Montrer que la suite (z,)nen+ converge.

3. Calculer la limite de la suite (x,)nens-

CCINP TSI 2019

Pour tout n € N, soit

[ ! dt et I ! dt
Uy, = _ e ap = , :
Jo 1+ (nm+ t)%sin?(t) o 1+ (nm)2sin?(t)

1. Montrer que pour tout ¢ € [0;7], sin(t) < t.

arctan(nm?)
2. Montrer que a,, > ——.
nmw

3. Montrer que a,1+1 < U, < ap.

4. Quelle est la nature de la série de terme général wu,, 7

Centrale-Supélec PC 2022

n
Pour tout n € N*, on définit le polynéme P, = —4 + Z X*.
k=1
1. Pour tout n € N*, montrer que P, posséde une unique racine dans ]0;+oo].
Cette racine est notée x,,.

2. Calculer z; et xo. Montrer que x5 < 1.

3. Quel est le signe de P,1(x,)? En déduire que la suite (x,),>1 est monotone
puis qu’elle converge. Sa limite est notée /.

4. Pour tout n € N*, montrer que "™ — 5z, + 4 = 0.

n+1

n tend vers 0 quand n tend vers +oo et en déduire la valeur de

5. Montrer que x

l.

6. Pour tout n € N*, on pose 9,, = x,, — L.
Vérifier 1'égalité 6, = 12! et en déduire que nd, tend vers 0 quand n tend

5%n
vers +00.

7. Trouver une constante K telle que §,, soit équivalent & K - /"*! quand n tend
vers —+00.

TPE/EIVP MP 2017

"k k
Calculer nggloo ,;1 2 exp <_n> .

44




Mines-Ponts MP 2017

1. Soit p € N. Montrer que kP~ )
p q ;;1 fo iy

2. Soit f:[0;1] — R continue et d € N*. Montrer que

]_ 1
Jim S f<n> =2 [ s

0<k<n
dlk

Mines-Télécom PSI 2021

Développer en série entiere la fonction f définie par :

s
2 — 52’

f(s) =

Mines-Ponts MP 2019
+o00 (_1)nx2n+1
Montrer que pour tout z € [—1;1], arctan(z) = Y  ~—————

= 2n+1
Mines-Ponts MP 2021
Soit z réel tel que |z| < 1. Montrer que :
+o0 2k: 2k
,;) 1+ 22" Z ’

Centrale-Supélec PSI 2018

Dans tout 'exercice, (a,)nen est une suite de réels non nuls. On lui associe la suite
(Pn)nen définie, pour n € N, par p, = [[)_, ax. On dira que [] a; converge si et seule-
ment si la suite (p,)nen converge vers une limite finie non nulle. On pose pour tout n,
Uy = Ay, — 1.

1. Prouver que, si [] a,, converge, alors la suite (a,),en converge vers 1. On suppose
dans toute la suite que (a,),en converge vers 1.

2. Montrer que la suite (In(1 4 u,))nen est bien définie & partir d’un certain rang.
Montrer que []a, converge si et seulement si la série > In(1 + u,,) converge.

3. On suppose maintenant que u, > 0 a partir d'un certain rang. Montrer que
ITa, et > u, sont de méme nature.

4. En étudiant directement la convergence de

H<1+1Jlrn>’

démontrer la divergence de la série harmonique.

Mines-Télécom MPI 2025

Soit k > 2 un entier. Calculer :

kn 1
lim Z -
n—-+4oo p=ntl p
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Mines-Télécom MP 2024

On consideére la suite (p,,)nen+ définie par :

U421+ 4 nl

Vn=>1, p,= ‘
n!

1. Trouver une relation de récurrence entre p, 1 et p,.
2. Montrer par récurrence que la suite est majorée par 2.

3. La suite (pp)nen+ converge-t-elle ?

Mines-Télécom MP 2025

Déterminer ’ensemble des suites réelles (u,),en qui vérifient :
Vn €N, upy = 2u, +2n* +2n + 1.

Indication : il pourra étre utile d’introduire I’endomorphisme S — 2Id, ou S est 'appli-
cation suivante :
S RN — RN
(Un)nGN — (Un+l)n€N

Mines-Télécom PSI 2023

1. Montrer que, pour tout n > 2, I’équation
l+In(x+n)==x

admet une unique solution dans R, . On note u,, cette solution.
2. Montrer que la suite (u,),>2 est croissante.

3. Montrer que, pour tout n > 2,
In(n) <wu, <n

et en déduire un équivalent de wu,,.

CCINP TSI 2022

On considere 1, = /e(ln(x))" dz.
1

1. (a) Vérifier que z +— zIn(x) —  est une primitive de In.
(b) En déduire la valeur de I;.
(c) Interpréter géométriquement ce calcul.
2. Proposer une méthode numérique permettant un calcul approché de I,,.

3. (a) Etudier les variations de la suite (I, )nen.
(b) Montrer que, pour tout n > 1, I, > 0. Que peut-on en déduire ?
4. (a) Soit n € N*. Montrer que I,11 =e— (n+ 1)I,.

(b) En déduire que (n+ 1)I, <e.

(¢) En déduire la limite de I,.
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TPE/EIVP MP 2018

Soit (U )nen une suite a valeurs dans Z et (v,)nen une suite a valeurs dans N* telle
que :

lim " =LeR\Q.

n—-+o0o Un

Montrer que |u,| et v, tendent forcément vers +oo quand n tend vers +oo.

Centrale-Supélec PC 2016

Soit (n)nen €t (Yn)nen deux suites & valeurs dans R telles que (zo;y0) = (0;0) et :

Tp4+1 = \/7_yn
Yn+1 = \/7+xn

1. Montrer que les suites (2, )nen €t (Yn)nen sont bien définies.

2. Calculer les premiers termes de chaque suite et conjecturer leur comportement.

3. On suppose que les deux suites convergent. Déterminer rigoureusement leur(s)
limite(s) possible(s).

4. Montrer que (2, — €)nen et (Tant1 — £)nen, ou £ est la limite de la suite (x,,)qen,
convergent vers 0. (On pourra pour cela majorer , 1 — £.)

5. Pour tout € > 0, il existe un rang ny tel que pour tout n > ng, ’écart entre vy,
et sa limite et celui entre x,, et sa limite est inférieur a €. Déterminer ce rang
pour € = 1073,

ENSEA /ENSIIE MP 2019

On considere, pour n > 1,

oo (1= o ()i (1 1))

1. Donner un équivalent simple de u,, quand n — 4o00.

2. En déduire la nature de la série de terme général wu,,.

CCINP MP 2025

Soit (an)n>1 une suite réelle. On pose :

Vn e N, S, = a;.

k=1
On suppose que lim a, - S, = 1.
n——+0o0o

1. Montrer que la suite (S,),>1 diverge (raisonner par I’absurde), puis en déduire

que lim a, =0.
n—-+0o

S Sn
2. Calculer lim 2%~ et lim 2 dt.
n——4o0o n n—+oo J§

1
3. Montrer que a,, ~ —= quand n — +o0.

V3n
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Mines-Télécom MP 2017

Soit (uy,)nen une suite décroissante de nombres réels strictement positifs tels que > u,
converge. Démontrer que la suite (nu,),en est convergente de limite nulle.

ENSEA /ENSIIE MPI 2025

Soit la série de terme général (n? +n + 1)z™.
Déterminer son rayon de convergence et calculer sa somme.

CCINP PC 2021

Pour tout entier n > 2, on pose :

n

un:g@—e) ot Un:1n<mfl%).

Montrer que la série Z v, converge, puis que la série Z u, diverge.
n=2 n=2

==

CCINP PC 2019

Pour tout entier n > 2, soit a,, = (_1)n.
NG

1. Etudier la nature de > In(1 + ay,).

n=>2

2. Calculer nl_l}r_{loo kl;[z(l + ag).

Mines-Ponts MP 2019

1. Existe-t-il une suite réelle (a,),en- telle que :

+oo
Vk e N*, Y af =k?

n=1

2. Existe-t-il une suite réelle (a,),en+ telle que :

+ook 1
VkeN,;an:ﬁ?

Mines-Ponts MP 2017

Soit a € R et (uy)nen une suite réelle périodique de période d. Etudier la convergence
de la série de terme général =

Mines-Ponts PC 2017

n )'rz In(n)

Soit a € R. Déterminer la nature de la série de terme général < n
n+ o
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Mines-Télécom MP 2025
Soit A € M,(R) telle que A3 = —A.
+00
Déterminer le rayon de convergence et la somme de la série entiere »  Tr(AF)z*.
k=0

ENSAE MP 2024

, . L. . n+1
Déterminer le rayon de convergence de la série entiere Z ( )zzn.
n>0

CCINP MP 2017
On définit la suite (J,)nen telle que :

+oo
VneN, J, = / e " sin*(z) dz.
0

1. Justifier la définition de (J,)nen-

2. Montrer que :
2n(2n — 1) 7

M N*, J, = 1
neN, 1+4n? !

3. En utilisant le résultat de la question 2, trouver la limite de la suite (J,)nen-

Mines-Ponts MP 2025

Montrer la convergence de la somme suivante et en calculer la valeur :

(1 &= (e
= (58 G5

n=1 k=n+1

Mines-Télécom MP 2019
. +OO 7t’n
On considere la suite de terme général u,, = / e " dt.
1

1. Etudier la convergence de la suite (Un ) nen-

c
2. Montrer 'existence de ¢ > 0 tel que u,, ~ — quand n — +o0.
n

3. Quel est le rayon de convergence R de la série entiere Z Upx™?

4. Etudier la convergence en R et en —R.

Mines-Ponts MP 2019

b+ )"

On considére la suite (uy,),>2, ou u, =
In(n)

1. Btudier la nature de cette suite.

, U, — 1
2. Etudier la nature de la série de terme général —
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Mines-Ponts PSI 2013

Etudier la convergence de la série de terme général

u, = arcosh(n) — arsinh(n).

Mines-Télécom MP 2022

Soit trois suites réelles (T, )nen, (Yn)nen €t (2n)nen, déterminées par leur premier terme
X0, Yo, 20 €t les relations de récurrence :

Tn Yn Zn

T = Y
Yn+1 = 4 9 4

Tn  Yn | Zn
=ty

Montrer que les trois suites sont toujours convergentes.

Mines-Télécom MP 2018

Montrer que :

too o1 1
Z/x”\/l—xdx:/ dr = 2.
=070 0 V1—ua
CCINP PSI 2019
0 30
Soit A= |1 0 1] et, pour tout n € N, u, = Tr(A").
1 0 0
1. Trouver une relation vérifiée par la suite (uy,)nen.
. 1
2. Etudier la série Z —.
Uy,
CCINP MP 2022
On pose :
1 2 1
Vn € N*, u,, = [1(3k —2) et Up = ——.
3mn! o /2
Un Up
1. Montrer que, pour tout n € N*, l > L

Unp Un

u
2. En étudiant la suite <n> , montrer que la série Z u, diverge.
Un neN*

3. On pose :

2 1 n
VneN*,wnzln<n+ )+ln<u+1>.
3 n Uy,

Montrer que la série Z w, converge.

C

4. En déduire qu'il existe deux réels a et C tels que u, ~ —.
n

20




Mines-Ponts MP 2014

2n — 3
2n+1
1. Etudier la suite (Un)n>1-

2. Etudier la série Z Uny.

n=1

On pose u; =1 et upq = Uy, pour n = 1.

CCINP PC 2024

us

On pose, pour tout n € N, u, = (—1)" /5 cos”(x) dx.
0

1. Montrer que la série Z U, converge.

2. Calculer Zun

CCINP MP 2022

1. Donner le développement en série de Taylor de 1’exponentielle sur [0;1].
1

2. On pose [, = / (1 — t)"e" dt. Montrer que la suite (I,,)nen converge et quelle
0

est de limite nulle.

3. Donner un équivalent de I,, en partant d’une intégration par parties.
: = 1 .
4. (a) Exprimer ;;) T fonction de I,,.

(b) Montrer la convergence de la suite (uy,),en définie par u,, = nsin(2wnle).

Mines-Télécom MP 2025

+oo 1
Calculer la somme nz::O m

Mines-Ponts MP 2025

Soit (uy)nen la suite telle que ug =1, uy =0 et :

U,
n+2

Vn eN, Upio = Upi1 +

Déterminer le rayon de convergence de la série entiere Z u,x" et calculer sa somme.
n=0

Mines-Ponts MP 2022

Soit u la suite réelle définie pour tout entier naturel n par :

vn!

U, = Vnl.

Trouver une suite v d’éléments de la forme n®(In(n))?, avec (o; §) € R?, tel que u — v
soit convergente.
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CCINP PSI 2019
t
1. Pour tout n € N*| soit g, la fonction définie par g,(t) = (1 — ) e'. Montrer
n
que :

el

t t\"
Vt € [0;1], Yn € N, |g;l(t)|<e— et ‘(1—) et—l‘g
n n

t
n
2. Montrer la convergence simple et la convergence uniforme de la suite (I, ),en+,
ou : ., ’
I, :x€[0;1] r—>/ (1—>etdt.
0

n

Centrale-Supélec PC 2016

Pour tout n € N, on pose :

1 n
u, = — [ exp(—t)t"dt.
n! Jo

1. Montrer que la suite (u,),en converge vers une limite £.

2. Montrer que ¢ < %

Mines-Télécom MP 2023

Soit la fonction f définie par :

1
1+2)2—2)

fz) =

1. La fonction f est-elle développable en série entiere au voisinage de 07 Si oui,
expliciter ce développement et donner son domaine d’existence.

2. Donner le développement limité de f a 'ordre 3 au voisinage de 0.

CCINP TSI 2024

On considere la fonction f donnée par :

_14—&3{:2
1+ bx2’

J(2) = cos(x)

Donner une condition sur a et b afin que le premier terme du développement limité de
f en 0 soit de degré maximal.

Mines-Télécom MP 2024
400 9

Soit f(z) = > ™.
n=1

1. Déterminer l'intervalle de définition de f.

2. Trouver un équivalent simple de f(x) quand z tend vers 1.

52




Mines-Télécom MP 2022

1. Montrer que :
Vn € N*, 3la € Ry, cos(x) = na.

2. On note (z,)nen+ la suite ainsi trouvée. Montrer une éventuelle monotonie et
une éventuelle limite de cette suite.

CCINP PC 2021

Pour tout n € N*, on pose :

et D, =ap1 — ay.

x| =

a, =—In(n)+ > _
k=1

Montrer que la série Z D,, converge.
n>1

Mines-Télécom MP 2022

Montrer la convergence et calculer la somme de la série

> ((%@_n&;)i 1)) |

n=1

CCINP MP 2023

On considere :
« ) a,a" série entitre de rayon R, de somme f(z),

« Y b,x" série entitre de rayon R', de somme g(z),

n
Z c,x" avec, pour tout n € N, ¢, = Z apbr—p.
p=0

—_

. Que dire du rayon de convergence de la série Z cpx”?
Que dire de la somme de la série ? (Aucune démonstration n’est exigée.)

[\

. Donner le rayon de convergence et la somme de la série suivante :

1 1
Z(1+2+~-+)x”.

n>1 n

Mines-Ponts MP 2022

Pour n > 1 entier et z > 0, on pose :
1+ 44 L
up(z) =a V2 Ve,

Etudier la convergence simple de la série Z Uy, puis étudier la continuité de sa somme.

Mines 2022

Soit P, @ € C[X] n'admettant aucune racine entiere.
P(n)

Qn)|

Déterminer la nature de la série Z In

93




Mines 2023

“+o00 400 1

Calculer Z Z

m=1n=1

m2n + n?m + 2mn’

Mines 2023

Soit f une fonction continue sur [0;7]. Pour n > 1 entier, on pose

I, = /O "sin(nt)|£(¢) dt

t+ km
n

1 n—1 T
1. Montrer que I, = — Z/ f ( > sin(t) dt.
n = Jo

2. Déterminer la limite de la suite (In)neN

Indication : on pourra étudier S,, = Z / (kﬂ> sin(t) dt.

Mines 2022

On fixe @ > 0 et on pose, pour n > 1 :

e [(1e2) e

1. Déterminer la limite et un équivalent de u,, lorsque a = 0.
2. Faire de méme lorsque o > 1.
3. A Paide du changement de variable z = ty/n, faire de méme lorsque o = 1.

4. En déduire la limite de u, lorsque a €]0;1].

Mines 2023

Soit b > 2. On note ¢(n) le nombre de chiffres dans 'écriture en base b de n. On pose

1
uy = 1 et, pour n > 2, u,, = nu,g,). Montrer que la série Z — diverge.
’VL

Mines 2024

1. Soit @ € R\ {—1}. Donner un équivalent de :

"1
_,;k:a‘

2. Calculer : .

R I Vs
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Mines 2024

On admet que ((2) = %2 et on pose :
n 1 n

1
Cln:Zﬁ et bn:Zm

k=1

: i
nl_lgloon (48 — anbn> :

Calculer :

X 2022
+oo

a
Soit a € CN. On note f(z) =Y —7:2”, et on note R le rayon de convergence de f.
n!
n=0
Montrer ’équivalence entre les assertions suivantes :

i) 3C >0, Ve > 0, Ing € N, |a,| < (C +¢)";
ii) R=+4oc0et 3C >0,Ve >0,3ry >0,Vz €C, 2| =10 = |f(2)] <el@+],

CCP 2023
k
1. Calculer lim —Zln 1—|—

n—+oo n,
1 k;
2. Montrer que lim — Zln 1 —|— =0.
n—+oo n, =0

3. Soit f une fonction continue sur [O; 1]. A T'aide de la continuité uniforme de f,
montrer que :

CCP 2024

Soit A > 0. Pour n € N et x € R, on pose :

T

) =T

1. Etudier la convergence simple de Z fn en fonction de .
2. Méme question pour la convergence uniforme.

3. On définit a présent :

1 n Ny
gn(x) = ﬁln(l + 2"z?) et G(z) = Z gn(2)
(a) Donner le domaine de définition de G.

(b) Donner le domaine de continuité de G.

(c¢) Donner le domaine de dérivabilité de G.
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Mines 2024

On pose ug = 0, u; = 1, et pour tout n € N :

Upt1 + (n+ Duy,
n—+ 2

Up42 =

Déterminer une expression explicite de u,, et calculer la limite de la suite (uy)nen.

Mines 2024

Etudier la série entiére :

+00 +o0 (] n
S(x) = Zu—x avec un:/o (;(j_))l dt.

|
nOn

Centrale 2023

n
Pour tout n > 1 entier, on pose H, Z

w\»—k

Soit encore : .
=Y In(n)z" et g(z ZH "
n=1

1. En utilisant la méthode des rectangles, montrer que H, = In(n) + O(1). En
déduire les rayons de convergence de f et g.

2. Donner une expression de g et en déduire un équivalent de f en 17.

3. En calculant (1 — z)f(x), montrer que f admet une limite finie en —1 et la
calculer.

Mines 2022
On pose f(x Z S

1. Donner le domalne de définition de f.

2. Donner le domaine de continuité de f.
3. Calculer xl—lgloo f(z).

4. Donner un équivalent de f en 0F.

Mines 2024

Soit A € S;FT(R), b € R et a > 0. On définit la suite :

xg € R
Tpr1 = Tp + (b — Axy,)

1. Donner une condition nécessaire et suffisante sur xy et a pour que la suite
() nen converge.

2. On pose e, = A~'b — a,,.

Trouver la constante optimale C' > 0 telle que ||e,,41]| < C||e,|| pour tout n € N.
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Centrale 2023

S0it (@p)nen €t (bn)nen deux suites réelles. On suppose que la suite (b, )nen est décrois-
sante et converge vers 0.

1. Montrer qu'une série (réelle ou complexe) absolument convergente est conver-
gente.

2. (a) On note S,, = ag + -+ + a, et on suppose que la suite (S,)nen est bornée.
Montrer que :

n n—1
Z akbk = Z Sk(bk+1 - bk) + Snbn
k=0 k=0

(b) En déduire que Z apb, converge.

3.(a) On pose f, : © +— sin(nz). Montrer que si Y b, f, converge uniformément
sur R, alors b,, = 0(%).

(b) Montrer la réciproque.

Centrale 2023

On fixe a > 0 et on pose :

+oo

f(z) = sin(nz) exp(—n?).

n=0
1. (a) Rappeler le théoreme de dérivation des séries de fonctions.
(b) Donner le domaine de définition de f. Montrer que f est de classe C'*°.

2. On suppose a > 0. Montrer que 7, : t — f(z + t) est développable en série
entiere au voisinage de 0.

3. Qu’en est-il lorsque a < 17

Mines 2022

Pour « € Ret n € N, on pose :

U —Jioil et v —ioi(_l)k
"= (k1) e (k1)

Discuter de la nature de Z Uy, et Z v, en fonction de «.

Mines 2023
Soit f: Ry — R telle que f(0) =0 et 1_131 f(z)=0.
1. Pour tout n € N, soit f, : z — f(nx).

(a) La suite (f,)nen converge-t-elle simplement sur R, ?
(b) La suite (fy)nen converge-t-elle uniformément sur tout compact ?

x
2. Mémes questions avec f, : x +— f ()
n
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Mines 2023
2
Pour tout z € C\ {1}, on pose f(z) = exp (1 >
-z

1. Montrer que f est développable en série entiere au voisinage de 0. Donner son
rayon de convergence.

2. Exprimer les coefficients a,, de cette série entiere sous forme d’'une somme.
3. Donner une relation de récurrence entre les a,,.

4. Effectuer un développement asymptotique de In(a,) a la précision O(In(n)).

Mines-Ponts MPI 2025

Soit (an)nen une suite réelle a valeurs dans [0; 1] et (by)nen telle que :

bnz/ol T1(1 = aut)dt.

k=1

1. Dans cette partie, on suppose que la suite (a,),en converge vers 1.

1
a) Démontrer que b, > .
(a) que On, = nt1
K - 7z 1 - e_UTL
(b) En utilisant o, = > a, démontrer que b, < ————
k=1 On

(¢) En déduire un équivalent de b, en +o0.

2. Dans cette partie, on suppose que (a,),en converge vers un réel de l'intervalle
10;1[. Soit v €] —1;0][.

(a) Démontrer que pour tout = € [0; /], il existe C' € R* tel que :
r—Cr?* <In(l+2) <z

(b) En déduire un équivalent de b, en +o0.

Mines-Ponts MP 2025
Pour tout n € N*, on définit :

2t

Up L — ————.
t2 + n?

1. Etudier les modes de convergence de Z Up.
2. On note g la fonction somme. Montrer sa continuité.
3. La fonction g est-elle de classe C'?

4. Etudier la limite de ¢ en +oo.

Mines-Télécom MP 2021
anQ\/ﬁ

Soit (a;b) € R* 2. lle est 1 ture de la série de t énéral u, = ———=7
oit (a;b) 17 Quelle est la nature de la série de terme général u b oV
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Mines-Télécom MP 2025

Pour tout entier n > 1, on pose :

1. Justifier I'existence de la suite (I,,)nen-

2. Déterminer la limite de la suite (I,,),en-

CCINP MP 2021

On pose, pour tout réel x :
Vn € N*, u,(z) = r™(e™ + e 1)

avec r un nombre réel fixé tel que |r| < 1.

1. Montrer que la série de fonctions Z u, converge normalement sur R.

+o0
2. Pour tout = € R, calculer P,(z) = ) u,(z).
n=0
27
3. Calculer / P, (z)dx.
0
4. Soit a € R.
+o0
Calculer > cos(na)z™ et préciser le rayon de convergence de cette série entiére.
n=0

Mines-Télécom MP 2021

1. Donner une condition nécessaire sur la suite (u,,),eny pour que la série numérique
> u, converge.

2. Cette condition est-elle suffisante ? Justifier.

3. Déterminer la nature de la série de terme général

Uy = Vn+avn+14+byvn+2

en fonction des réels a et b.

Mines-Ponts MP 2021
Soit a €]0;7[ et
fi R — R
2?2 +1

—
v 22 + 2cot(a)x — 1

Montrer que f admet un développement en série entiere au voisinage de 0 et le déter-
miner.

Mines-Ponts MP 2021

Calcul iok_nm
alculer _— .
2k + 1)
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Mines-Télécom 2021
+o0o

Soit f:z+— > —sin(nz)cos”(z).
n=1"

1. Justifier que f est définie sur R.
2. Etudier la parité et la périodicité de f.
3. Justifier que f est de classe C'* sur ]0; +oo[. Exprimer f’.

4. En déduire une expression de f.

CCINP MP 2021

A T’aide de séries entieres, calculer les sommes suivantes :

1. io (_i)n
+00 (_1)n

2. %

———— (sans utiliser 1.)
n=2 n(n - )

Mines-Télécom MP 2018

Pour tout entier n > 2 et pour tout x € [0; +o0o[, on pose u,(x)

Ie*’nl‘

" In(n)
Etudier les convergences simple, absolue, normale et uniforme de la série de fonctions
>, sur [0;400].

ENSEA/ENSIIE MP 2018

Trouver tous les polynomes P € R[X] tels que la série de terme général

U, =/ P(n) —n*—n+1

converge.

Mines-Télécom MP 2023

1. Montrer la relation :

1
Vo € RY, arctan(z) + arctan <) = g
x

2. On pose :
u,(z) = arctan(y/n + r) — arctan(v/n) et S(z) = i)un(x)

(a) Etudier la convergence simple, puis la convergence normale de S.
(b) Montrer que S est de classe C! et calculer S'.
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Mines-Télécom 2025

+00 1
Pour tout = > 0, on pose f(x) = .
pose f(z) nz::() nl(n + x)
1. Montrer que f existe.
' 9 ~a b 1
2. Trouver (a;b) € R* tel que f(x) e T + o +o0 (1_2 :
CCINP PSI 2025
efnx
Pour tout n € N*, on pose u,(z) = (—1)"
n
+oo
1. Déterminer le domaine de définition de la fonction somme S : x — Y u,(z).
n=1

Montrer que la fonction somme S est continue sur son domaine de définition.
Montrer qu’elle est de classe C* sur R* .

Pour tout  du domaine de définition, calculer explicitement la somme S(x).

AR A

Montrer que la fonction S est intégrable sur [0; +oo].
+oo 7'(2
6. Calculer I'intégrale / S(x)dz et montrer qu’elle vaut e
0

CCINP TSI 2025

Pour tout n € N*, on pose :

1

=1 n? tan? (%)

Déterminer la nature de la série de terme général u,,.

CCINP MP 2024

Soit p > 2 entier et (a,)nen la suite définie par :

1 sin=0 modp

a,=4—1 sin=1 modp
0 sinon
+oo
1. Déterminer le rayon de convergence R de la série entiere Z apx”.
n=0

2. Calculer la somme de la série f(x), et I’écrire sous une forme simplifiée.
3. La série converge-t-elle uniformément sur | — R; R[?

4. Décomposer f(zx) en éléments simples dans C, écrire les coefficients sous forme
trigonométrique.
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Mines-Ponts MP 2022

1
1. Soit (py)nen une suite croissante d’entiers avec p, > 2. Montrer que »
n>1 P1Pn

converge et que sa somme appartient a |0;1].
2. Soit x €]0;1]. Montrer qu’il existe une unique suite croissante (p,),en d’entiers

1
supérieurs ou égaux a 2 telle que x = Z e
n>1 pl . e pn

3. Montrer que z est rationnel si, et seulement si, (p,)nen est stationnaire.

Mines-Ponts MP 2018

010
Soit A=0 0 1| e Ms(R).
110

1. Montrer que Sp(A) = {p; z;Z} avec p > 1 et |2| < 1.

2. Pour tout n € N, on pose u,, = p" + 2" 4+ Z". Montrer que pour tout a € R, les
séries Y sin(au,) et Y sin(ap™) sont de méme nature.

TPE/EIVP MP 2015

1
1. Montrer que la série double de terme général u,, = ﬁ, avec p,q € N*,
pTq
diverge.
. 1
2. Etudier la convergence de la série double de terme général v, , = — g vee
prTq

p,q € N*.

Mines-Télécom PSI 2022

On considere la série de terme général u,, = (—1)

1. Soit f € C'([a;b],R). Montrer que :

lim /bf(t) cos(At) dt = 0.

A—~+00
2. Soitn e N*et t € [O; %} Montrer que :

(—=1)" cos((2n + 1)t) — cos(t)
2 cos(t) '

znj(—l)'C cos(2kt) =

k=1

1
3. Calculer / ’ cos(2kt) dt, puis en déduire que la série Zun converge et donner
sa somme.’

ENSEA /ENSIIE MP 2023
Donner le développement limité & I'ordre 5 en 0 de e®3(®),
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Mines-Ponts MP 2021
(=1)"
(2n)!

2. Proposer un encadrement de S avec ses sommes partielles.

1. Montrer que la série de terme général converge et calculer sa somme S.

3. Montrer que S est irrationnel.

Mines-Ponts PSI 2019

2

1. Donner le domaine de définition de f et donner une équation différentielle
d’ordre 2 vérifiée par f.

: o arcsin(t)
Soit f définie par f(t) = cos | ————|.

2. En déduire un développement en série entiere de f.

Mines-Ponts MP 2018
1

Quelle est la nature de la série de terme général (—1)" / cos(nt?) dt ?
0

CCINP PC 2022

Soit a > 0. On définit une suite réelle (u,),en en posant uy = a et
Vn €N, tpp1 = u, +ul.

On admet que tous les termes de cette suite sont strictement positifs et on pose :

1. Etudier la monotonie de la suite (Uun)nen et en déduire que cette suite tend vers
+00.

2. Pour tout (n;p) € N2, prouver 1'égalité

1 Un+p+1
v v = In
+p—1 = Untp =
n+p P T ontpt+l U%er

et en déduire ’encadrement

1 1
0 < Un—i—p—i—l — Un—‘,—p < Wln (]. + un) .

3. Prouver que la suite (v,)nen est convergente. Sa limite est notée £.
Pour tout n € N, on pose t,, = exp(2™/) et s, = t, — u,.

4. Montrer que u,, est équivalent a t,, quand n tend vers +oc.

5. Déterminer une relation entre s,.1, s, et u,.

6. En déduire que la suite (s, ),en est convergente.
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CCINP MP 2024

1. Déterminer le développement en série entiere de la fonction arcsin.

2. Jusitifier que la fonction f définie par
Vo €] —1;1], f(x) = (arcsin(z))?

admet un développement en série entiere.
3. Montrer que f est solution de I'équation différentielle (1 — z2)y” — xy’ = 2.

4. En déduire le développement en série entiere de f.

Mines-Ponts MP 2021

Soit (an)nen+ une suite réelle telle que :

a=1,Yn=>2 a,=2a,.
5]

Montrer que la suite (a,)nen+ est définie, puis que la série Za; 2 converge.

Mines-Ponts MP 2021

1. Soit (up)nen une suite numérique. Montrer que :

. . 1 n—1
lim u, =0 = lim —Zukzﬁ.
n—-+0oo n—-+0oo n, =0

2. Soit @ > 0, a > 1l et f:]0;a] — [0;a] continue admettant un développement
asymptotique en 0 de la forme :

f(z) =2 — x4 o(x®).

(a) Montrer qu'il existe e > 0 tel que 0 soit le seul point fixe de f dans [0;¢].
(b) On définit la suite (uy,)nen par :

Vn € N, upi1 = fluy).

Montrer que la suite (u,),en converge vers 0.
(c) Trouver un équivalent en 0 de (f(z))'™* — 2!~ quand = — 0.
(d) En déduire un équivalent de u,, quand n — +oc.
(e) Appliquer aux fonctions x — sin(x) et  — In(1 + ).

Mines-Télécom MP 2018

Déterminer si la série de terme général

1
In(n) In(cosh(n))

converge.
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Mines-Ponts MP 2023

On note p(n) le nombre de triplets (z;y;z) € N3 tels que x + 2y + 3z = n.
+00
On pose G(t) = Y _ p(n)t".
n=0
1. Montrer que G est définie pour |t| < 1 et qu’on a :

1

viEl- 1L 60 = sy ma )

2. En déduire un équivalent de p(n).

Mines-Ponts PC 2023

n

4 . . L _9k
Déterminer l_lglookl;[l (1 + 10 )

Mines-Télécom MP 2021

Soit n € N*. On considere I’équation :

1. Montrer qu'il existe des suites (uy)nens €t (Un)nen+ telles que u, et v, vérifient
(E,), et pour n assez grand, 0 < u, < e < v,.

2. La suite (u,)nen+ converge-t-elle 7 On note ¢ sa limite.

3. Trouver un équivalent de u,, — /.

CCINP PC 2021

Pour tout n € N*, on pose :

et D, =ap1 — ay,.

| =

ap = —In(n) + >
k=1

Montrer que la série Z D,, converge.
n=1

CCINP PC 2021

Soit (ay,)nen une suite réelle vérifiant ag > 0 et

1
VneN 0<api <2——.
Qp,

Montrer que la suite est décroissante, puis qu’elle converge. Quelle est sa limite ?

Mines-Télécom MP 2021

Déterminer le rayon de convergence et calculer la somme de la série suivante :

2 _
Zn +4n 1x”.

=0 (n+ 2)n!
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Mines-Ponts MP 2016

1. Montrer qu'il existe (a;b) € R? tel que :

™ 1
Vn € N, / (at® 4 bt) cos(nt) dt = —.
0

n2

2. Soit # € R\ 27Z. Montrer que, pour tout n € N*,

n sin ((n + %)9) 1
kzz:lcos(k@) = EEFNON (g) — 5

3. Soit f € C*([a;b],R). Montrer que :

lim ’ f(t)sin(At)dt = 0.

A——+o0 Ja

+oo 1
4. En déduire la valeur de Z

—-
n=1 n

Mines-Télécom MP 2017
nm
Soit S = Z tan () z".
n=0 5

. Donner le rayon de convergence R de cette série.

. Soit a = tan (%) Exprimer tan (%) en fonction de a, pour n € {2;3;4}.

1
2
3. Simplifier S5y (z) pour |z| < R.
4. Calculer S sur l'intervalle | — R; R|.

Mines-Ponts MP 2017
Pour tout n € N, on définit :

| 1
h:/ dt
RV —

1. Montrer que la suite (I,,),en converge vers une limite ¢ que 1'on calculera.

2. Trouver un équivalent de I,, — /.

X MP 2017

Soit (uy,)nen la suite réelle définie par ug = a (a € R) et u, 41 = tanh(uy,).
1. Etudier la limite de la suite (Un ) nen-

2. Trouver un équivalent de wu,,.

Mines-Ponts MP 2017

) 1 —u?
Etudier la suite réelle (u,)nen définie par ug = a (a € R) et u,11 = n

14 u2
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CCINP PSI 2019

1. Soit t € [—% ; %} Montrer que :
In(1+1) -t < 2%

2. Montrer la convergence simple et la convergence uniforme sur R de la série de
fonctions de terme général :

fa(z) =In (1 + Tm> (n € N).

CCINP PSI 2019

Pour n € N* et x € R, on pose :

T 1
Liw) = [ ——t
(@) o cosh”(t)
1. Montrer que I,, est bien définie.

2. Montrer que la suite (I, ),en converge simplement sur R. La convergence est-elle
uniforme ?

3. (a) Trouver une relation de récurrence entre I,, et I, 4.
(b) Utiliser cette relation pour calculer :

/1ﬂ(2) smh2 t)
cosh3 t)

Mines-Ponts MP 2019

Soit (uy,)nen une suite réelle telle que lim (u?
n——+0oo

Que peut-on dire des affirmations suivantes ?

—uy,) = 0.

1. Si lim w, # 0, alors lim u, = 1.
n—-+o0o n—-+00

2. La suite (uy)nen est bornée.

3. lim (u} —w,) =0

n—-+00 n

Mines-Ponts MP 2019
Soit (a;b) € R? et (2,)nen la suite réelle définie par xg = a, x1 = b et

Vn € N, .9 = min(3 — x,41; 2z, — 2).

1. Etudier la convergence de la suite (T )nen-
2. Montrer que la suite (x,),en possede au moins un terme négatif.

3. En déduire le caractére non borné de la suite (z,)nen-

Mines-Ponts MP 2019

+o0 400 2
Calculer nz% mz:o ()l
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Mines-Ponts MP 2012
nsin(n) ,n

Déterminer le rayon de convergence de la série entiere Z e 2"

Mines-Ponts MP 2014

Quelle est la nature de la série de terme général

1
U, = arccos ( 1-— ) ?
n3

Mines-Ponts MP 2014

Etudier la limite suivante :

“In(k) — In(n)
I — 0
LD Dy

Mines-Ponts MP 2015
Soit z € C. Montrer que pour tout n € N, il existe (a11;...;a,,) € R" tel que :

Z Z' — (1 + Z> = Zakmzk.
! n —o

0
En déduire que lim (1 + Z) =€,
n

n—-+oo

Mines-Ponts MP 2016

On considere la suite (U, )nen définie par :

Uy=Uy=1letVneN, Uyio =U,s1+ (n+ 1)U,.

On pose :
+00 "

1. Expliciter f et en déduire U, pour tout n.

2. Comparer U, et V,, = Card({oc € S, | ¢* = Id}), ou S, est I'ensemble des
permutations de {1;...;n}.

Mines-Ponts PSI 2016

Soit v € RYN. Montrer qu’il existe v € RY et w € RY respectivement croissante et
décroissante telles que u = v + w.

Mines-Ponts MP 2016

Calculer lim Z sin <k> sin < K >
-1

n—+oo i n n2
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Mines-Ponts MP 2016
Soit f:[0;1] — R, dérivable en 0 telle que f(0) = 0. Calculer :

i ()

Mines-Ponts MP

1. Soit (x,)nen une suite réelle, et (y,)nen une suite réelle strictement positive,
strictement croissante et non bornée. Montrer que si la suite (3“117:;6") . tend
n n/n
vers L € RU {—o0; +0o0}, alors (théoréme de Stolz) :

lim 2 = L.

n—-+o0o yn

2. Déduire, a partir du théoréme de Stolz, le lemme de Cesaro.

3. En utilisant le théoreme de Stolz, établir que :
"1
2:: % %Jroo n)
4. (a) Soit (an)nen une suite réelle telle que :

lim a — —a, = 0.
n——+o00 n+tl 2 n

Montrer que lim a, = 0.
n——+00

(b) Soit A €] —1;1[ et (an)nen une suite réelle telle que :

lim a —Xa, =a € R.
n—-+oo n+l n

. a
Montrer que nEIEOO a, = Y

Mines-Ponts MP 2022

Etudier les suites (Un )nen+ €t (Uy)pens vérifiant les conditions :

Upa1 = Uy, + arctan
(u1;v1) € R? et VnEN*,{ " " (

2
2
2
n2

)’Un
)

Un41 = Up — arctan (n Up,

X MP 2018

Soit 2 € [—7 ;7|. Montrer que

>y

T
>

5 cos(nx)
n

vaut x2.
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Mines-Ponts MP 2019

"1
Pour tout n € N*, soit H, = ) T On pose w(n) = min ({p € N* | H, > n}).
k=1
Donner une équivalent de w(n).

X ESPCI 2017

1. Trouver la limite de la suite (z,,),en oU, pour tout n € N, z,, 1 =
Ty € ]0 3 1[

2. Donner un équivalent de z,, — 1 quand n — 4o0.

1+x,
2

, avec

Mines-Télécom PSI 2023
“+o00
1. Soit @ €]0;7[ et f(z) = sin(k6)z".
k=0

Montrer par I’absurde que la suite (sin(nf)),en ne converge pas vers 0.

2. Déterminer le rayon de convergence de la série f(x).

3. Calculer f(z).

X PC 2019

Soit I un intervalle de R et (f,),en une suite de fonctions sur I a valeurs réelles, et
convergeant uniformément sur I. On pose :

fa
14 f2

9n

Montrer que la suite de fonctions (g, )nen converge uniformément sur I.

cor vp

Soit X une partie de R ou de C.
1. Soit Z fn un série de fonctions définies sur X a valeurs dans R ou C.
Rappeler la définition de la convergence normale de Z fn sur X, puis celle de
la convergence uniforme de Z fn sur X.

2. Démontrer que toute série de fonctions, a valeurs dans R ou C, normalement

convergente sur X est uniformément convergente sur X.
n2
3. La série de fonctions Z —'z” est-elle uniformément convergente sur le disque

fermé de centre 0 et de rayon R € Rz 7

ENSEA/ENSIIE MPI 2024

Donner le rayon de convergence de la série entiere Z
n=0

SR puis calculer sa somme
n

pour z = 0.
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CCP MP

1. Soit X une partie de R, (f,,)nen une suite de fonctions de X dans R convergeant
simplement vers une fonction f. On suppose qu’il existe une suite (z,,)pen d’élé-
ments de X telle que la suite ( f,,(z,) — f(2,))nen ne tende pas vers 0. Démontrer
que la suite de fonctions (f,,)n,en ne converge pas uniformément vers f sur X.

sin(nx)

2. Pour tout x € R, on pose f,(z) = T

(a) Etudier la convergence simple de la suite (f,)nen-

(b) Etudier la convergence uniforme de la suite (f,, )nen sur [a; +00| (avec a > 0),

puis sur |0 ; 400].

o Mp

1. Soit (gn)nen une suite de fonctions de X dans C, X désignant un ensemble non
vide quelconque. On suppose que, pour tout n € N, la fonction g, est bornée
et que la suite (g, )nen converge uniformément sur X vers g. Démontrer que la
fonction g est bornée.

2. Pour tout entier naturel n non nul, on considere la fonction f,, définie sur R

par :
nfz silz] <
- osilzl> o
T

Prouver que la suite de fonctions (f,,)nen converge simplement sur R. La conver-
gence est-elle uniforme sur R ?

R

1. Soit a et b deux nombres réels donnés avec a < b. Soit (f,)nen une suite de
fonctions continues sur [a;b], & valeurs réelles.

Démontrer que si la suite (f,),en converge uniformément sur [a; b vers f, alors

la suite (/b fu(z) dx) converge vers /b f(x)dx.

neN a
2. Justifier comment ce résultat peut étre utilisé dans le cas des séries de fonctions.
+00 1

1l /400
3. Démontrer que /2 <Z :B”) dr = .
0 n=0

—.
= n2

CCINP MP 2025

On pose f:x+— arcsin(z), ou = est un nombre réel.

1
V1—2a?
1. Déterminer le domaine de définition de f.

2. Déterminer une équation différentielle vérifiée par f avec la condition f(0) = 0.

3. Déterminer le développement en série entiere de f.
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cor vr

Soit A C C et (f,)nen une suite de fonctions de A dans C.

1. Démontrer I'implication :

la série de fonctions Z fn converge uniformément sur A

U
la suite de fonctions (f,,)nen converge uniformément vers 0 sur A
2. On pose : Vn € N,V € [0; +00], fo(z) = na?e V™.
(a) Prouver que Y _ f, converge simplement sur [0; +o0|.

(b) La série > f, converge-t-elle uniformément sur [0;+oco[? Justifier.

CCINP MP 2025

On pose dy =1, dy = % et pour tout n > 2 entier :

n 1

nt+l 1 00 0
/1
n+1

d, = 0 0

1

3

11

0 0 =3 2

1. Calculer dj et ds.

2. Montrer que, pour tout n > 2 :
(TZ + 1)dn = ndn_l — dn_g.
3. En déduire une information sur le rayon de convergence de Z d,x".

“+oo
4. On pose f(z) = Z d,z"™'. On admet que f vérifie ’équation :

n=0

(B): (1—a)f'(z) — af(x) = L

1—e%

Montrer que f(x) = . En déduire une expression de d,, en fonction de n.

Mines-Ponts MP 2025

1. Décomposer X* + 1 en polynéomes irréductibles dans R[X] en remarquant que
X' +1=(X?+1)%-2X2%
1
X441
3. Justifier 'existence puis calculer Jio (=" .
dn+1

2. Décomposer en éléments simples
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CCINP MP 2025

Soit (U )nen la suite définie par ug = 3 et :
" (n
Vn e N, up = Z UpUy— k-
izo \k

1. Montrer que, pour tout n € N, 0 < u,, < 4""n.

Montrer que f est solution de I’équation f’ = f? sur un intervalle & préciser.
3. Exprimer f a 'aide de fonctions usuelles.

4. Exprimer u, en fonction de n.

CCINP MP 2025

_1 n
1. Montrer que ) (=1) z" converge uniformément sur [0;1].
n>1 n

2. Soit Z a,x" une série entiere de rayon de convergence R > 1.
“+oo
On pose R, = Z aj et on suppose que Zan converge.
k=n+1
Montrer que, pour tout = € [0;1] :

+oo +oo
S g = Ry 4+ > Ry(aF —2b).
k=n-+1 k=n+1

3. En déduire que » _a,z" converge uniformément sur [0; 1.

Mines-Télécom MP 2025

Etudier la convergence simple, puis uniforme sur {O ; g} de la suite (f,)nen de fonctions
définie par :
Vn € N, Vo € R, f,(x) = n’ cos(x) sin"(z).

CCINP MP 2025

n—1
On pose ¢g = 0, ¢ = 1 et pour tout n > 2 entier, ¢, = Z CL * Cr—k-
k=1

+0o0
On pose f(l‘) = Z ckxk et on note R > 0 son rayon de convergemnce.
k=0

1. Montrer que pour tout = €] — R; R[, f?(x) = f(z) — z. Déterminer f(0).

1—-+v1—-4x

2. Montrer qu’au voisinage de 0, f(z) = — Préciser R.
3. Développer v/1 + z au voisinage de 0. En déduire que :
 (2n—2)!
\V/TL > ]_, Cp = m
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CCINP PSI 2017

On pose :
X arctan(nx)
n=1
) ' ) 400 1 7'('2
1. Déterminer xll)rfoo f(x) sachant que nz::l Rl

2. Montrer que f est de classe C! sur R*.
, . . /
3. Déterminer xgrfoof (x).

4. Que peut-on en déduire sur le graphe de f?

Centrale-Supélec MP 2017

1. Rappeler le théoreme d’interversion de lim et Y- pour les séries de fonctions (ou
théoreme de la double limite).

2. On admet que :
72

_1+Z

tan(wx xQ —n?

pour tout x € R\ Z. En déduire les valeurs de ((2) et ((4), ou ((a) = > —.

X MPI 2023

Soit f :[0;400[— [0;+oo[ continue strictement croissante. Montrer que :

Z f(ln) converge <= Z f‘;gn) converge.

Mines-Télécom MPI 2023

Soit (a,)nen une suite de réels qui converge vers £.

Soit f: x> Z anx

n=0

1. Donner le rayon de convergence de cette série.
2. Calculer lim e f(z).

T—r—+00

CCINP PSI 2024

Pour tout n € N, on considere :

fo 11 — R
x —  sin(na)e "

1. La suite (fy,)nen converge-t-elle simplement ?

2. Etudier la convergence uniforme de f sur [a; 1], ot w €]0; 1[, puis sur [0; 1].
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X MP 2017
% o(n)
n? -

+
Soit o une bijection de N* dans N*. Que dire de la série Z
n=1

Mines-Ponts PSI 2022

On pose :
400 1

Ve >0, S(x) = _—
(@) ;::1 n + n’y
1. Montrer que S est continue sur R?.
2. Déterminer la limite de S en +o00, puis déterminer un équivalent.

3. Déterminer la limite de S en 0.

CCINP PSI 2022

Soit o € R. Si n € N*  on pose f,(z) = z(1 + n“e ") pour tout z € R,.
1. Montrer que la suite (f,,)nen+ converge simplement vers une fonction f a préciser.

2. Déterminer les valeurs de a pour lesquelles il y a convergence uniforme.

3. Calculer hm / fol(z)de.

TPE/EIVP PC 2018

Trouver un équivalent de u,, = > _ In*(k)

CCINP PC 2024

Pour tout n € N*, on considere 1’équation :

(E.) : xm: 1.

1. Montrer que, pour tout n € N* I’équation (F,) admet une unique solution
strictement positive, notée x,,.

2. Montrer que la suite (x,),en+ st croissante.

Mines-Télécom MP 2024

+oo 1)
1. Démontrer que Z (=1) T

(2n+1 Ty

2. Donner une valeur approchée de 7 a 10719 pres.

Mines-Ponts MP 2022

Etudier la série de terme général :

= TR ().
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CCINP MP 2022

1. Rappeler I'inégalité de Taylor-Lagrange pour une fonction de classe C"1.

2. Pour tout n > 1, on pose :

n n

un:zn2+k2’

k=1

Montrer que la suite (u,)n,en+ converge et déterminer sa limite notée /.

3. Donner un équivalent simple de u,, — £.

Mines-Télécom MP 2022
Pour tout n € N, soit f, : z — 2™(1 — /).

1
1. Calculer/ fo(z)de.
0

+oo 1
2. En déduire la valeur de .
v nz:%(n—i-l)@n—i—?))

ENS MP 2021

Soit f une fonction continue de [0;1] dans R. On note (P, ),en la suite de polyndmes :

Py(X) = kgi:of (i) (Z) XE(1 - X)nk,

Montrer que la suite (P, )nen converge uniformément vers f sur [0;1].

Mines-Ponts MP 2021

Soit (uy)nen la suite définie par :

n 2
ug € Ry et Vn € N, un+1:\ll+ (Zuk> )
k=0

1. Montrer que :

T 1
v N, 316, 0; =, Upy1 = ———,
met © { 2] et sin(#,,)
puis que :
1 1

1
Vn e N - _ |
TN () tan(d,)  sin(d,)

2. Déterminer 6,, pour tout n € N, puis trouver un équivalent de u,,.

Mines-Télécom MP 2022

Etudier la nature de la série de terme général ~———.
n(n+1)
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CCINP PC 2024

On pose :
2

k2+1

1. Montrer que la série de Z fr converge simplement sur R,.

Vk e N, Vo € Ry, fi(z) = zexp(—kzx).

2. A-t-on convergence normale sur R ?

CCINP MP 2017

Soit (£,,)nen+ une suite convergeant vers 0.

1. Déterminer la convergence des séries suivantes :

I e e
» e yEE s Y

n=>1 n=>1 n n=>1 n n=>1

(=1)"
NG

On pose, pour tout n € N\ {0;1}, U, =1+ . On admet que :

V2k+1 -2k -1
Vi € N*, |In(Uspsr)| — [In(Usi)] = — In (1 + V2% ) .

V2kV2E F 1

2. Montrer que :

Vne N vVn+1—+yn<

N =

En déduire que :
Vk € N* |In(Uggy1)| — |In(Usg)| > 0.

3. La série Y In(U,) est-elle alternée ? Satisfait-elle les conditions permettant de
n=2
dire que la série converge ?

4. Donner le développement en série entiére de In(1 4+ z) a 'ordre 3 au voisinage
de 0. En déduire la nature de la série Y In(U,).

n=>2

Centrale-Supélec TSI 2023

Pour tout n € N, on pose u,, =

e "n""\/n U
7\/_ et v, =In ( nH).
n! Uy,

1. Etudier la nature de la série Z Uy

. *
2. Montrer que la suite (uy)neny converge vers une constante ¢ € R .

3. Déterminer un équivalent de n! lorsque n — +o00.

™

4. Déterminer la valeur de c, en utilisant w,, = / ’ cos” (t) dt.
0

366 x

Soit (uy,)nen une suite réelle décroissante telle que Y- u,, converge. Pour tout n € N, on
+o00

+oo
pose v, = n(un — un+1). Montrer que Z U converge et que Z Up = Z Up,.
n=1

n=1
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X MP MPI 2024

Soit (uy )nen+ une suite réelle majorée telle que :

1 2n
Vn € N*, u,, = — Z Up.
n

k=n+1

Montrer que la suite (u,,)nen+ st constante.

Mines-Télécom MP 2018

Soit (ay)n>0 une suite réelle bornée.
xn
1. Déterminer le rayon de convergence R de la série entiere Z a,—. On pose :

=0
+o0o "
Vee]—R;R|, f(x)= Z‘B%E'
2. M ar =3
. Montrer que / Hdt =y —> .
s /) 7; (n+1)!
Mines-Télécom MP 2017
11 1 L . X H,
On note H, =1+ -+ -+ ---— et on s’intéresse a S = —.
27 3 n L gn

Montrer I'existence de cette somme puis la calculer.
Indication : on pourra introduire une série entiere.

Mines-Ponts MP 2017
n
Soit n € N* et S, = > VEexp(VE).
k=1

Donner un développer;lent asymptotique a 2 termes de S,,.

Mines-Ponts MP 2019

Soit (u,),>1 une suite réelle bornée. On suppose que 1_131 U, + iunﬂ = 1. Montrer

que la suite (u,),>1 converge et déterminer sa limite.

Centrale
+oo

Soit (uy)nen une suite complexe telle que » _ u, converge.
" n=0
Montrer que kz:% kuy, = o(n).
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CCINP PC 2014
=1 2 In(1 —¢
On rappelle que Z — = T On pose 0(t) = g
n 6 t
1. Montrer que 6 est continue sur | — oo ; 1].
2. Soit x € [-1;1].

qu’on prolonge par 6(0) = 0.

400 tn
(a) Montrer que §(t) = — nz:% T
T +oo ,.n
(b) On note L(z) = / 6(t) dt. Montrer que L(z) = > x—z
0 —=n

3. (a) Montrer que L(z) + L(—x) = ;L(xQ).

00 (_1)n
(b) Calculer ) -
n=1

4. (a) Montrer que :
L(z)+ L(1 —x) = % —In(1 — x).
+0o0

(b) Calculer )

n=1

onp2’

Mines-Télécom MP 2017

X sin
Posons f(z) =) sin(nf)

n=1

", pour 6 réel fixé.

1. Démontrer que f est définie et de classe C*! sur R.
2. Calculer f’, en déduire f.

ENS MP 2017

Soit f € C*(R,R) qui s’annule au moins une fois sur R. Soit (X,,),en la suite définie

par :
f(Xn)
Xo€eR et X, 1=X,— :
0 T'L+1 n f/(Xn)
1. Si f est convexe, admet un unique zéro et f’ ne s’annule jamais, étudier la suite

(Xn)nEN‘
2. Si f(z) = 2? — a® ol a € R, étudier la suite (X,,)nen selon Xj.
3. Si f(z) = 2% — 2z + 2 et Xy = 0, étudier la suite (X,,)nen.

4. Toujours pour la fonction f de la question 3, montrer I'existence de deux inter-
valles tels que si X appartient a I'un de ces deux intervalles, alors (X,,),en ne
converge pas.
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ENS

1 n
Soit (ay)nen+ une suite dans R,. Si n € N* on pose b, = — E Q.
g

+o0 Too
On suppose que Z ai converge. Montrer que Z bi converge.

n=1 n=1

ENSEA/ENSIIE MP 2017

Pour x € R, et n € N*, on pose :

1 six=0

fn(z) =< nsin (%) ‘
————~2 sinon
z(1 4 2?)

1. Etudier la convergence uniforme de (f,),>1 sur tout segment inclus dans
[0 +o0].
400
2. On pose, pour tout n € N*, q,, = / fol(z)dz.
0
La suite (a,),>1 converge-t-elle ?

3. Utiliser une autre méthode pour montrer la convergence de la suite (a,),>1 et
calculer sa limite.

CCINP MP 2018

400 1
Soit S(x) = » ———.
oit 5(x) nZ=:1 n?z2+n

1. Donner I’ensemble de définition Dg de S.
2. Montrer que S est de classe C! sur Dg.
3. Déterminer lim S(z).

Tr—r+00
4.

Démontrer que, pour tout x > 0 :

1

In(1+2%) = In(2%) < S(z) <1 +2%) —Ina®) + 5.

5. Donner un équivalent de S(z) en 0%,

Mines-Ponts MP 2018
Soit o € ]% ; 1} et pour tout n € N* :

: w1 sin(vV
. — sin(y/nm) o v, = / sm(t\/_ﬂ) it
ne n «

1. Montrer que Zvn converge.

2. En déduire que Z u, converge.
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CCINP PC 2019

Soit F 'ensemble des suites de réels strictement positifs, vérifiant :

n A 1
u“:1++o(>.
Uy, n n

Notons :

. sin}l,vn:metvozl,

e sin =2, w, = et wg =wy; = 1.

nln(n)?
1. Montrer que (vy,)nen € Ep.
2. (a) Montrer que :

In(n) nln(n) nln(n)

(b) En déduire que la suite (w,),>2 € £ pour un certain A a préciser.
1

——dt

tIn(t)?

(b) Donner la nature de > wy,.

+oo
3. (a) Donner la nature de /
2

4. Soit A > —1 et (up)nen € Ex. On pose = —5 Montrer qu’il existe N € N
tel que, pour tout n > N :

Un+1 Un+1
> .
Up, Un

En déduire la nature de Z Up,.
5. Soit A < —1 et (up)nen € Ey. Déterminer la nature de (uy)n>1-

6. Que se passe-t-il pour A = —17

Mines-Ponts MP 2019
Pour tout n € N, soit (n) 'entier le plus proche de y/n. Calculer :

T 9ln) 4 90—(n)

>

n=1 2n
Mines-Ponts MP 2018
1 1
On note a :/ 7(125, n € N.
" Jo (24 2t

1. Donner le rayon de convergence de la série entiere Z apx".

2. Calculer la somme de cette série entiere sur son domaine de convergence.

Mines-Ponts MP 2018

Etudier la nature de la série Z Uy, O la suite (uy,),en est définie par :

=1 et wu,1 =In(e" —u,).
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CCINP PC 2018
+oo
Soit I, = / exp(—z") dx.
0
1. Soit n > 0. Montrer que I, existe.

2. Montrer que la suite (1,,),>¢ converge.

CCINP PC 2018

Pour tout n € N, on pose :

1 .92
sin?(nmx) 3 sin“(nwx
—/ ———=dx et vn:/ de.

0

tan mc T

o . ) +oo cos(u)
1. Montrer par une intégration par parties que / du converge.

™ u
2. Montrer que les intégrales u,, et v, convergent.

3. (a) Montrer que :

o — 1 /”3 sin?(t) di — b /m 1 — cos(u) du.
0 t 2m u

(b) Montrer que v,, ~ :
T
4. On définit la fonction f par :
1 1
: 02— ——v — —.
Jiwe } ’2{ tan(wx) wx

Montrer que f est prolongeable par continuité sur [O; %}

5. Donner un équivalent de u,,.

Mines-Télécom PC 2018

Calculer :
. nm . nmw n
lim <cos ( > + sin ( )) .
n—+00 3n+1 6n +1

Mines-Ponts PC 2018

Pour tout n € N, on pose :
1
I, :/ 2" tan(x) dx.
0

Déterminer la limite ¢ de la suite (I,,),en et donner un équivalent de I, — ¢.

Mines-Ponts MP 2018

Etudier la convergence de la série de terme général :

n(n+1)

(-1
%

Up =
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Mines

Soit a« > 0 et n € N. On pose :

™

wn(@) = /0 ? sin®(¢) cos™(t) dt.

1. Etudier la nature de > up,(a) en fonction de a.

—+00

+o0
2. Calculer > u,(2) et Y u,(3).
n=0

n=0

Mines-Ponts MP 2015

Soit f € C(R,R) telle que f est bornée sur R. On pose de plus, pour tout n € N,

n 1
On = P YR On pose alors, pour tout n € N et pour tout z € R :
0 n

—+00

ful(x) = _ flx +1)¢n(t) dt.

Montrer que la suite (f,,),en converge simplement sur R et qu’elle converge uniformé-
ment sur tout segment.

Mines-Ponts MP 2014

Calculer : ,
. In(k) —In(n)
ngrfoo kZ=1  k—n

CCINP PC 2016

Soit deux réels a et b tels que a < b et une suite de réels u,, strictement positifs tels
que :
U n+a
Vn e N, 2 — :
Uy, n+b

1. Donner, sous sa forme la plus simple possible, un équivalent de In (”—Jr“) au

n+b
voisinage de +00. Montrer que :

lim Zln (ukH) = —00
k=0

n—+00 — Uk

et en déduire que la suite (u,)nen converge vers 0.

2. On pose a = b — a, vy = ug et pour tout n € N*, v, = n®u,,. Montrer que

s ()

k>0 Uk

converge. Montrer qu’il existe un réel A tel que u,, ~ n% au voisinage de +o0.

Etudier la convergence de Z Up, -

3. On suppose que la série de terme général u,, converge. Montrer que sa somme

vau b—1—a
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Mines-Ponts MP 2015

Soit fp une fonction continue de R, dans R. On pose :
Vn e N, Vo e Ry, fon(z) = / Fult)dt.
0

Montrer que g = Z fn est définie sur R, et la calculer en fonction de fj.
n=0

CCINP MP 2023

Pour tout n € N*, on pose :

1. Montrer que :
" 1

Uy = .
’ ,;lmwze_l
V2n

2. En déduire que uo, e 5

3. Déterminer un équivalent simple de u,, quand n tend vers 4oc0.

4. Pour n € N*, on pose v, = U, + Upi1-
Justifier que la série Z(Un+1 — vy,) est convergente de somme strictement néga

n>1
tive.
1
5. Trouver la nature de Z —_
n=>1 Un

Centrale-Supélec MP 2023

1. Soit I un intervalle de R de longueur non nulle, et f : I — R une fonction.
Définir la continuité par morceaux de f sur [I.

2. Soit n € N* et

fn + R — R
1 T )
—(1—-- sio<z<n
r — n n
0 sinon

Dessiner le graphe de f,, pour un n choisi. Montrer que la suite (f,,),>1 converge
uniformément vers une certaine fonction g, mais que

im [ frt [ o
Ry Ry

n—-4o00

3. Enoncer le théoreme de la convergence dominée et le prouver avec 'hypothese
supplémentaire de convergence uniforme sur tout segment de I.
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Mines-Télécom MP 2017

Donner le rayon de convergence de la série entiere

:ii In (cosh (i)) x"

et la limite de sa somme aux bornes de ’ensemble de définition.

Mines-Ponts PC 2022

On définit une suite de fonctions (f,)nen sur Uintervalle [0;1], a valeurs réelles en
prenant fy : x — 0 puis

V€ N,V € [051], fur(2) = Fula) + 5o — fule)?).

1. Montrer que la suite de fonctions (f,,)nen converge simplement sur [0; 1] vers la
fonction f:z — /.

2. Pour tout n € N et tout = € [0; 1], prouver l'encadrement :

Oéf—fn(w)éx/%<1—‘f>n-

3. Montrer que la suite de fonctions (f,)nen converge uniformément sur [0; 1] vers
la fonction f.

CCINP MP 2023

n

1. Calculer Z(—l)kt?’k pour n € N et ¢t € [0; 1], puis démontrer que :
k=0

1 2f?m

lim ——dt =0.

n—+oo o 1+ ¢3

2. En déduire que :

+oo _1k 1 1
v D) - [
1+ 3k o 1+13

k=0
1 2% —1 +oo -1 k
3. Calculer / ti dt. En déduire la valeur de Z (=1) .
o 14+t+1¢2 = 1+ 3k

Mines-Ponts PSI 2015

Etudier la série de terme général :

ENS MP 2019

Existe-t-il une fonction f : R — R supérieure a toute série entiere réelle en +o00?
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Centrale-Supélec PSI 2013

Soit n > 2 un entier. On définit :

1
Up = .
ln(n)nln( )
pd +m
Etudier la convergence de la série Z Up, -
n=2

Mines-PSI 2016

On pose f,(x) = z|In(z)|" pour z €]1; 400 et n € N*.
1. Déterminer le domaine de convergence simple de la suite (f,,)nens-

2. Etudier la convergence uniforme.

Mines-Ponts PC 2017

Soit (uy,)nen une suite réelle positive de limite nulle. On note D I'ensemble des a > 0
tels que la série de terme général (u, )% .

1. Montrer que si D est non vide, alors c¢’est un intervalle de la forme [s;+oo[ ou
|s;+o0l.

2. Donner un exemple ot D est vide et un exemple ou D est de la forme |s; 400].

Mines-Ponts MP 2017

Soit (a,)n>2 une suite réelle telle que Z a,z" ait un rayon de convergence supérieur a

n=>2
+o0
un. On pose a; = 1 et on suppose que f(z) = Y a,2" est injective sur B(0,1).
n=1

1. Soit z € B(0,1). Montrer que z € R si et seulement si f(z) € R.
2. Soit z € B(0,1). On suppose que Im(z) > 0. Montrer que Im(f(z)) > 0.

Mines-Ponts MP 2015
On pose :

n

Vne N, Ve e Ry, fu(z) = %e_“”.

1. Montrer que la suite (f,,)nen converge uniformément sur [0 ; +oo[ vers une fonc-
tion f que 'on déterminera.

+oo
2. Calculer / fn(x) dz. Que constate-t-on ?
0

Centrale-Supélec MP 2016

On pose :
L i
Vn € N¥, z, = H (1—}—).
k=1 k
1. Rappeler le théoreme de sommation des relations de comparaison.
2. Montrer que la suite (|z,|)nen+ converge.

3. Déterminer ’ensemble des valeurs d’adhérence de la suite (2,)pens.
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Mines-Ponts MP 2021

s +m 1
Soit o € R. Etudier la convergence de » / cos(n®t?) dt.
n=1"0

Mines-Ponts PSI 2019

Soit a € R et (uy,)qen+ une série a termes strictement positifs telle que :

Posons, pour tout n € N* b, = In(n®u,,) et a,, = b,y1 — b,. Déterminer la nature de la
série Z a, et en déduire que :
neN*

NeRL, u, ~ i

n—+oo N )

Conclure sur la nature de la série de terme général w,.

Centrale-Supélec MP 2016
Soit f € CY([1;+o00[,R).
Pour tout n € N*, on définit :

fo ¢+ 1400 — R

)

1. Montrer la convergence simple de la suite (f,,)nen+-
2. On se place dans des cas particuliers.

(a) Cas f =In : montrer la convergence uniforme.

(b) Cas f = sin : montrer qu’il n’y a pas convergence uniforme.

3. (a) On suppose que f est de classe C? et que = — xf”(x) est bornée. Montrer
la convergence uniforme de la suite (f,,)nen:-

x
(b) On suppose que hr}rq M = ( et que la suite (f,),en+ converge uniformé-
r—+oo

ment. Que peut-on dire du comportement de f’ en +o0.

X-ENS

Soit a et x deux nombres réels. Calculer :

+00 3
sin(an
n=1 n
CCINP PSI 2017
2n
Donner un équivalent de Z —= lorsque n — +4o00.
k=n-+1

87




Mines-Télécom MP 2017

Etudier la convergence de la suite (In)nen définie par :

- /+°° sin*'(z)

Jo 2

X 2023

On pose ag =1, a1 =2, et pourn > 1 :

(p—1
n2

An4+1 = 2a, +

Trouver un équivalent de a,, et majorer la constante qui y apparait.

Mines-Ponts MP 2017

Soit a, b, ¢ trois nombres complexes et pour tout n € N, soit u,, = a™ + 0" + ¢". On
suppose que la suite (u,)n,en converge vers £. Montrer que ¢ € {0;1;2;3}.

Mines-Ponts MP 2018

Soit (@ )nen une suite de réels strictement positifs. On considére les deux propositions
suivantes :

e (P):a,= 0(%)
« (P): > a, converge

n>=0

Trouver les implications entre (Py) et (P).

Mines-Ponts MP 2018

On définit, pour n € N*| f,(z) = narctan (x)
n

Etudier cette suite de fonctions (convergence simple, convergence uniforme, conver-
gence uniforme sur tout segment).

Mines-Ponts PC 2022

Développer la fonction arccos en série entiere sur | — 1;1][.
Ce développement est-il valable sur [—1;1] 7

CCINP PSI 2022

Soit (f)nen la suite de fonctions sur [0; 1] définie par :
Vn € N*, Vo € [-1;1], fu(z) = sin (nxe_mz) :

1. Montrer que la suite (f,,)nen converge simplement vers une fonction F' que 1'on
exprimera.

2. Montrer que, pour tout a €]0; 1], la suite (f,)nen converge uniformément sur
I'intervalle [a;1].
3. Y a-t-il convergence uniforme sur [—1;1]7

4. Comparer éventuellement la limite de f, (%) en +oo et F'(0).
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Mines-Ponts MP 2019

On considere la fonction définie par :

o= S ()

n=0 n

1. Quel est le rayon de convergence de la série entiere dont f est la somme ?

2. Si existence, donner la valeur de f (i)

Mines-Télécom PSI 2019

Déterminer le rayon de convergence de la série entiére suivante :

—+00
Z mezn'
n=0
Mines-Télécom PSI 2019
1 gn
On pose, pour n € N, I, = / dx
o 1+

1. La suite (I,,)nen converge-t-elle 7 Si oui, calculer sa limite.

2. Calculer Iy, I, I, + I,11.
_1 n+1
3. Montrer que la série de terme général ———— converge et calculer sa somme.
n

Mines-Ponts MP 2019

n
x
On considere la série de fonctions de terme général u,(z) = z" (1 + ) . On note f
n

la somme de la série.
1. Donner le domaine de définition de f.
2. Montrer que f est de classe C?.

3. Donner un équivalent de f en 17.

CCINP PSI 2018

Soit n € N. On considere la suite f, : R — R telle que :

2

S1 T
fulwy = VEne T
" nad ,
m siz <0

1. Montrer que la suite (f,)nen converge uniformément sur R vers une fonction a

définir.

2. On considere la suite (f/)nen des dérivées. Montrer que cette suite converge
simplement sur R, mais qu’elle ne converge pas uniformément sur [—1;1].
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CCINP PSI 2015
In(1 + n?z?)
n?In(1+n)’

1. Quel est le domaine de convergence de la série des u,(z) ?

Soit u,(x) =

2. On note S(z) la somme. Montrer que la fonction S est de classe C*.

Mines-Ponts MP 2019
Soit (a,)nen une suite positive de limite nulle, telle qu’il existe A > 0 et o > 1 tels
que :
Api1 — Gp ~ —Aa,.
Etudier la convergence de la série Z G-

Indication : on pourra considérer ag 11 — aP pour B bien choisi.

Mines-Ponts MP 2022

Soit a = (ap)nez €t b = (by)nez deux familles sommables complexes, i.e. Z\an| < 400
neZ
(et de méme pour b).

1. On note

lally = 3_ax]

et pour tout n € Z :

(axb)(n) = arbn_r.

kEZ

Montrer que a x b est bien définie, sommable et que :
[lax bl < [lall[b]lx-

Montrer que F, est continue sur U.
2. Soit @ € C% sommable. On pose, pour z € U,

Fo(z) =) a,2".

ne”

Montrer que F, est continue sur U.
3. Montrer qu’il existe e € CZ telle que pour toute famille a € C%, axe = exa = a.

4. Soit a € C% sommable et inversible pour x. Montrer que F, ne s’annule jamais
sur U.

5. Soit @ = (ay)nez une famille a support fini et a valeurs complexes telle que F,
ne s’annule jamais sur U. Montrer que a est inversible pour .

Mines-Ponts MP 2015

Développer en série entiere en 0 la fonction ¢ — arctan(l + t).
Indication : considérer la dérivée, et passer dans C.
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Mines-Ponts PSI 2016

+o00 2nx2”71

1. Donner le domaine de définition de f.

Soit N un entier naturel et x un réel tel que |z| < 1.
N
2. Simplifier H (1 —i—aszn).
n=0

3. Expliciter f.

CCINP PC 2024
Soit (an)nen € RY et (by)nen € (RN,
On pose Aa,, = a,41 — ay, dite dérivée de la suite (a,)nen-

On admet que si (b,)nen est strictement croissante, divergente vers +oo, telle que

Aa a
"= ¢, alors lim — =/.
n—-+00 Abn n—+o0o 0,

On pose ag = 1 et a1 = ay, + exp(—ay,).

1. Montrer que la suite (a,)nen est monotone et qu’elle diverge vers +o0.

2. (a) Trouver un équivalent de exp(exp(—a,,)) — 1 puis déterminer la limite de
Aexp(ay).
(b) Montrer que exp(ay,) ~ n.

1
3. Montrer que la série Z — diverge.
a,

ENSEA /ENSIIE

On considere, pour tout n > 1 :

e (1)) (1 1),

1. Donner un équivalent simple de u,,.

2. En déduire la nature de la série de terme général wu,,.

Mines-Ponts MP 2024
Soit f € CY([1;+00[,R).
1. Montrer que si n € N*,

"y ar < L /
s = [T s al < 5 max ]
in(1
2. Quelle est la nature de Z M ?
n

n=1
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Centrale MP

Quelle est la nature de la série

X MP/PC 2024

Soit f € C'([1;+oc[,R) telle que :

+o0
/1 If'(z)| dz < +oo.

Montrer que

Zf(n) et /1+OO f(z)dz

ont méme nature.

Mines-Télécom PC 2017
Pour tout n € N et tout € R, on pose :

o
cosh(z™)’

fn(x) =

1. Etudier la convergence simple de la suite de fonctions (fn)nen-

2. La convergence est-elle uniforme ?

TPE/EIVP MP 2015

Soit (f)nen la suite de fonctions de R dans R qui a x associe

[ exp(2z)
sin [ ———— .
n + exp(x)
. Etudier la convergence simple de la suite sur R.

. Etudier la convergence uniforme de la suite sur R.

1
2
3. Etudier la convergence uniforme de la suite sur un segment [a; b].
4

. “+00
. Etudier la suite I,, = / fa(t) dt.
0

436 | Mines-Ponts MP 2015

1. Pour tout n € N, montrer 'existence de z,, € R tel que z,e™" = 1.
2. Etudier l'existence et la valeur de £ = lim z,,.
n——+00
+oo
3. La série Z x, est-elle convergente ?
n=0

4. Donner un équivalent de z,,.

92




ENS

Soi R*. Calealer 5~ | % 4 1
olt x € e acuerz_:obnﬂ—sz.

Mines-Ponts MP 2015

Etudier la convergence de la série

“+o0 n+1 nln(n)
> (o)

an +b

selon la valeur des réels strictement positifs a et b.

ENSEA/ENSIIE MP 2015

1. Montrer que, pour tout z € [—1;1],

/ 1—t JFXO:O z"
11— w3t3 = (Bn+1)(3n+2)

+oo 1
2. Calcul .
areuer nZ:%) (3n+1)(3n + 2)

Centrale-Supélec MP 2015

Soit (Uy )nen+ une suite de réels convergeant vers A € R.
n

Soit v, = — Z ug. Montrer que la suite (vy,)nen+ converge vers A.
k=1

TPE/EIVP MP 2018

Pour tout x €]0; 400, on pose :

+oco n

nUkO

1. Montrer que S est bien définie sur 0 ; +oo.
2. Déterminer une relation entre S(z) et S(x + 1).

3. Déterminer un équivalent de S en 400 et en 0.

Mines-Ponts MP 2015

Soit (uy)nen la suite définie par :

n m
Vn € N, - =1.
2w

1. En considérant la série entiere Z uyx", calculer w,,.
n=0

2. Etudier la convergence de la suite (Un ) nen-
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Mines-Ponts MP 2019

1. Soit (a,)nen une suite de réels positifs et (A, ),en la suite des sommes partielles

1
de Zan. On suppose que a, ~ —. Trouver un équivalent simple de A,.

N4
1
2. On suppose que A,, ~ 2y/n. A-t-on a,, ~ ﬁ?
3. On suppose en outre que la suite (a,),en est décroissante. Soit a et 5 des réels
tels que 0 < a < 1 < 3. Montrer que :

M <a, < M
|Bn] —n lan] —n

1
Conclure que a, ~ —.

vn

Mines-Ponts MP 2021
Soit deux suites (a,)nen €t (bp)nen convergeant respectivement vers a et b. Montrer
que :

. 1 &
lim
n—+oom 4+ 1 =

akbn_k = ab.
0

Centrale-Supélec MP 2014

On consideére une suite d’entiers (p,,)nen strictement croissante. Pour x réel convenable,

on introduit :
“+o00

f(z) = pr”.

n=0
1. Rappeler la définition du rayon de convergence d’une série entiere, puis donner
le domaine de définition de f.

2. Montrer que f est croissante sur [0; 1], puis montrer que lirq f(z) = +oo.
T—

3. On suppose dorénavant que lirf Pn _ +00. Soit A un réel strictement positif.
n—+oo n,

Montrer qu’il existe un entier ng tel que pour tout z € [0;1] :

no—1 Ang

0< f(:E) < Z P 4 1$
n=0 o

xA’

4. Avec la méme hypothese, prouver que :

lim(1 — x)f(z) = 0.

rz—1

]_ Pn
5. On suppose maintenant que lirr%(l—x)f(x) = 0. En étudiant (1 — ) , montrer
Tr—r n

que lim P _ ~+00.
n—-+oo n,
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446 x

Pour tout entier n > 2, on pose :

Montrer que :

Mines-Ponts MP 2016

On définit la suite (u,),en par récurrence :

ug >0 et Vn e N u, =+/n+u,_1.

1. Montrer que, pour tout n € N :

Uop

2. En déduire un équivalent v,, de u,,, puis un équivalent de u,, — v,.

448 x

Pour tout n € N*| soit :

fo @ Ini4oo] — R
"1
x — ,;x—k

Soit a > 0.

1. Montrer que, pour tout n € N*, il existe un unique nombre réel, noté z,,, tel que
fo(zn) = a.

2. Déterminer un équivalent de z,, quand n tend vers +oc.

Mines-Ponts PSI 2024
Soit § € R\ 27Z.

inf

e

1. Montrer que Z

n>1

converge et que la limite vaut :

. 1 1
e‘g/ —— dx.
0o 1— xel?
cos(nd)

2. En déduire que Z ———= converge et déterminer sa valeur.
n=1

sin(nd)

3. Méme question pour » lorsque 0 €]0; 7.

n=1
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comr

Pour tout n € N* et € R, on pose :

fa(z) = 2” exp <_Sin(‘”)> _

n
1. Etudier la convergence simple de la suite (fr)nens-
2. BEtudier la convergence uniforme de la suite (f,,)nens sur R.

3. Etudier la convergence uniforme de la suite (f,)nen+ sur tout segment de R.

Mines-Ponts MP 2025

Pour tout réel x, on pose |z] la partie entiere de x et {x} = 2 — | z], la partie décimale
de z.

1. Soit f € CY(R,R). Montrer que pour tout n € N* :

S = [ ayde+ 50 - s+ [ (1) - 5) f@)de
2. Pour tout n € N*, on pose :

1
U, = — Z eQUrln(k)'
=

La suite (u,),>1 converge-t-elle ?

CCINP MP 2017

Pour tout entier naturel n, on pose :
+oo
In = / e “(sin(z))*" dx.
0

1. Prouver que J, est bien définie pour tout n € N.

2. Démontrer que :
2n(2n — 1)

Vn e N, J, =
neny An? + 1

In—1.

3. En déduire la convergence de la suite (J,,)nen et préciser sa limite.

Mines-Télécom MP 2017

Pour tout n € N*, on pose :

Uy = /On (1 - z)ncos(a:) dz.

La suite (uy,)nen+ converge-t-elle 7 Si oui, trouver sa limite.
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CCINP PC 2014

Montrer que :

: "k (kK
g (2) -

TPE/EIVP MP 2017

Soit (uy)n>1 une suite a valeurs positives telle que » _ u, converge.
n>1
Montrer que :

1 U
r>- = E vy converge.
2 = nt

Donner un contre-exemple pour x = %

Mines-Télécom MP 2017
On définit la suite de fonctions (gn)nen de [0;1] dans R par :

go=1
Vn e N, Vo € [0;1], gpi1(x) = / gn(1 —t)dt
0

1. Montrer que pour tout n € N, g, est bornée et que :

. 1
Vn €N ) ||gn+1||oo < §||gn—1||00'

2. On pose :
+oo

G:z— ) gu(x).

n=0
Montrer que G est bien définie sur [0; 1] et déterminer une équation différentielle
vérifiée par G.

3. En déduire I'expression de G.

CCINP MP 2017

Soit f : [1;e[— R une fonction continue par morceaux et intégrable sur [1;e.
On définit une suite de fonctions (f,,)nen+ par :

i t f(t) s?te{l;(l%—;l){
0 31756{(1—1—%) ;e[

1. Montrer, en justifiant tres précisément, que la suite (f,),en+ converge simple-
ment sur [1 ;e[ vers une fonction que 1'on précisera.

2. Montrer que :
(1+3)"
lim

n—+oo Jq

mTILf(:B) dz = /16 f(x)dx.
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CCINP PSI 2017

On pose :
- n+2

Cn+1

- exp(—nz?).

Un ()

1. Etudier la convergence simple sur R de la suite de fonctions (U )nen-
2. BEtudier la convergence uniforme de la suite de fonctions (u,)nen

(a) sur [0;4o00[;

(b) sur [a;+oo[ avec a > 0.

CCINP PC 2017

SOlt a, une série a termes positifs convergente, et (b une suite d’entiers nat UI'GIS.
n ) n)neN
Notons :

+o0o
f(z) =" a, cos(2mb,z).
n=0
1. Montrer que la série définissant f converge normalement sur [0; 1].

2. Montrer que f est définie et continue sur [—1;1].

1

3. Calculer/ f(z)dz.
0

4. Montrer que

1k
N =" \n
converge et déterminer sa limite.

5. Montrer que
N-1 ( . E )
kz::[) exp | 2i "N
vaut IV si N divise b,, et 0 sinon.
Notons I,, = {n € N* | N divise b, }.
Montrer que Sy = Z Q.-

nelyn
.. 1
6. On choisit b, =n! et a, = —
2

n
Montrer que {n € N* | n > N} C Iy, puis que NliIJrrl NSy = +o0.
—+0o0

Mines-Ponts PC 2018
Pour tout entier n, on note p, le nombre de chiffres dans 1’écriture décimale de n.
Quelle est la nature de la série

—+00

S (10— nwn)?

n=0
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[461] x

Soit f € C([0;1],R). Déterminer la limite de la suite

<f01 t"f(t) dt)
Jotrdt ), o

CCINP MP 2018

Pour tout n € N, soit
fn . R+ — R
r — z(l4+em)

1. Vers quelle fonction la suite (f,,)nen converge-t-elle simplement ?
2. La suite (fy,)nen converge-t-elle uniformément sur R, 7

3. Déterminer : .

lim z(l+ e ™) dx.

n—+oo Jo

Mines-Ponts MP 2018

Donner un développement asymptotique a l'ordre 3 de la suite (u,),en définie par :

L |
Uy = dt.
o 1+1t"

CCINP PC 2021

On considere une application fy € C'(R,R) et I'on pose pour tout n € N :

Ve € R, fopi(z) = /0 ") dt.

1. Déterminer le rayon de convergence de la série entiere Z — et donner la valeur
= n!
de sa somme.

2. (a) Montrer que f; est de classe C' et déterminer f].
(b) Montrer que, pour tout n € N, f,, est de classe C™.

On admet provisoirement la propriété suivante :

Va>0,3dK e Ry, Vne N, Vx € [—a;al, |fo(z)] < i

n!

+o0o
3.(a) Soit F': x> > fu(z). Montrer que F' est définie et de classe C* sur R.
n=1

(b) Montrer que F' — F = fj.
4. Montrer que :
Yz € R, F(z) = e° / fo(t)et dt.
0

5. Prouver la propriété admise.
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Mines-Ponts MP 2018

Pour tout n € N, on pose :

+o0 e *
Uy = / — —dx
o (I+az)"

Déterminer le rayon de convergence de la série Z Upx".

CCINP MP 2018

| | " 1
Soit # € R. Pour tout n € N*, soit r, = g k=" et b, = —.
k=1 T'n

1. Déterminer le rayon de convergence R de la série entiere Z bpz".

2. Etudier la convergence de la série pour z = —R et = R.

X 2014

Soit (x,,)nen une suite réelle bornée telle que :

xn—&—l o 1

lim x, +
n—-+oo

Montrer la la suite (z,),en converge et déterminer sa limite.

TPE/EIVP PSI 2015
Soit .
I, = / (1 — )" du.
0

1. Montrer que la suite (/,),en converge et calculer sa limite.
2. Trouver une relation entre I, et [,,11.
3. Quelle est la limite de nl, lorsque n tend vers +oo ?

4. Trouver a,bet ctelsque I, = a+ 2+ % +o0 (%)
+OO n n n

Mines-Ponts MP 2018

Soit (@p)nen+ une suite a valeurs dans | — 1;4o00[. Démontrer I’équivalence entre les
propriétés :

)
i) e ~ (1 + C;:)

—0

Mines-Ponts MP 2018

Soit (2,)pen € CN une suite de nombres complexes non nuls qui converge vers 0.

+oo
1. Soit f(z) = Z a,z" de rayon de convergence R, telle que, pour tout p € N,
n=0
f(%,) = 0. Montrer que a, = 0 pour tout n € N.

2. Que dire de deux séries entieres f et g de méme rayon de convergence et telles
que f(z,) = g(z,) pour tout p?
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CCINP PC 2024

Soit (un)nen la suite définie par ug € [0; 1] fixé et pour tout n € N :

u? +1
5

Un1 =

1. La suite (uy,)nen converge-t-elle 7 Si oui, calculer sa limite.

2. (a) Rappeler le théoréme de Cesaro.
(b) Soit (wy)nen une suite réelle telle que :

ngrfoo(wnﬂ —w,) =X €R"

Montrer que w,, ~ An.
n—+oo

3. On pose v, =1 — u,.
1 1
(a) Calculer lim < - >
n—r+00 Un+1 Un,
(b) En déduire un équivalent simple de la suite (vy,)nen-

Centrale-Supélec 2012
Montrer que si (a,)nen est une suite réelle de limite nulle, alors les séries Zan et

Z(an + a,41) sont de méme nature. Est-ce encore vrai si 'on ne suppose pas que

lim a, =07
n——+oo

X 2011

Soit (uy )nen+ la suite définie par :

1
—1)™\ sin(mV1+n2)
un:<1+( )> .
n

Calculer la limite de cette suite.

Mines-Télécom PSI 2025
Etudier la nature de la série > sin(rvn?® +1).

ENS PC 2024

Soit (ap)nen €t (by)nen deux suites réelles. On suppose que la suite (b, ),en est a termes
strictement positifs et que la série de terme général b,, est convergente.

a
On suppose que la suite <n> converge et on note sa limite s.
neN

by

On pose A, = Zak et B, = Zbk'
k=0 k=0

. n
Montrer que la suite () converge vers S.
"/ neN
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CCINP MP 2024

Soit (an)neny une suite décroissante positive qui converge vers 0. Pour € [0;1], on
note u,(z) = a,x"(1 — x).

1. Justifier que la suite (a,)nen est bornée.

2. Etudier la convergence simple de la série Z uy, sur [0;1].

3. Etudier la convergence uniforme de la série.

Indication : on pourra majorer les restes en calculant la somme de k =n+1 a
+o00 de z*.

4. Calculer lim ( i ) .

n—+oo \ 1, + 1

5. Etudier la convergence normale de la série.

Indication : on pourra calculer la norme infinie de wu,,.

Mines-Télécom MP 2023

+oo 1
Calculer lim o)

a—0Tt notl ’

n=1

Mines-Ponts PSI 2025

Soit (2, )nen une suite de nombres complexes. On suppose que :
Vn #£m, |z, — z2m| = V2.
Soit A € R* . On note M(z,) = (zn; yn) POUr 2, = Ty, + iy, et
E={neN|M(z) e [-A; A?*}.

1. Montrer que & est fini.

2. En déduire que lim |z,| = 4o0.
n——+00

Centrale-Supélec PC 2023

Soit n € N*. Pour tout élément € = (go;...;¢,-1) de {0,1}", on pose :
n—1
(13(6) = Z €k2k.
k=0

1. Montrer que ® est injective et déterminer son image.

2. Pour tout n € N*, on définit sur R la fonction
n—1 X
Uy x— [] (1—|—x2 )
k=0

Montrer que la suite de fonctions (u,),>1 converge simplement sur | — 1;1] et
préciser sa limite simple.
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Mines-Télécom PSI 2023
Soit Z a,x" une série entiere dont le rayon de convergence est R.
On pose f,(x) = a,z".
1. Montrer la convergence normale de la série » _ f,, sur [—r ;7] pour 0 < r < R.

+o00
2. En déduire la continuité de = — Z anx”.
n=0
3. Rappeler le développement de la fonction arctan en 0.

Montrer qu’il reste valable en 1.

Mines-Ponts PC 2018

Pour tout n € N*, on pose v, = »_ In(k).
k=1

1. A l'aide d’intégrales, montrer que v, est équivalent & nln(n) quand n tend vers
+o00.

2. Pour tout n € N*| prouver 1’égalité :

In (”H/(n n 1)!) —In (Val) = ni1 (ln(n -ty m(k)) .

[t

. -1\
3. Etudier la convergence de la série Z (=1)

nx1 W

4. Démontrer la relation v, = nln(n) —n + o(n).

5. Etudier la convergence de la série de terme général

1

Mines-Ponts MP 2013

Soit (ay)nen une suite décroissante convergeant vers 0 et (z,),en une suite réelle telle
que Y _ a,x, converge.

1. On suppose, uniquement dans cette question, que (x,),en est a termes positifs.
Montrer que :

lim a, Zxk = 0.

%
n—-+o00 =1

2. Expliquer I'analogie entre transformation d’Abel et intégration par parties.

3. Montrer que :
lim a, Z x, = 0.

n—-+o0o el

(Dans le cas général cette fois.)

4. La décroissance de la suite (a,)nen est-elle nécessaire au résultat précédent ?
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CCINP PC 2019

Pour tout t € R, on pose :
+oo

f() = In(1+e™).

n=0
1. Quel est I'ensemble de définition de f?
2. Montrer que, pour tout réel z > —1, on a In(1 + z) < z.

3. Montrer que tl}r_n f(t) =1n(2).

ENSEA/ENSIIE MP 2022

Soit h € C ({O; g} ,R) et f, : h(x)sin™(z), pour n € N.
1. Etudier la convergence simple de la suite (f,)nen.

2. BEtudier de la convergence uniforme de la suite (f,)nen-

Centrale
On pose, pour tout n € N, u, = /n — [/n].

1. Etudier lim w,2y,.
n—-+o0o

En déduire que la suite (u,)meny n'a pas de limite.

2. Soit a € Net b € N* avec a < b.

Etudier lim wp2n2400n-
n—-+o0o

3. Montrer que tout élément de [0;1] est la limite d'une certaine sous-suite de
(un)nEN-

X-ENS

Soit (fn)nen une suite de fonctions croissantes toutes définies sur un méme intervalle
ouvert I, et a valeurs réelles. On suppose qu’il existe M € R tel que, pour tout = € [
et tout n € N, |f,,(z)] < M. Montrer qu’il existe une sous-suite de ( f,,)nen qui converge
simplement sur I vers une fonction f.

Centrale-Supélec PC 2023

! In(¢)
1+ ¢

1
Soit 1, :/ du pour tout n € N et J :/ do.
o 1+ur 0

1. Calculer ¢/ = lim I,.

n——+o00

2. Calculer J apres avoir montré son existence.

3. Trouver (a; 3) € R? tel que :

o 1
I, = é—f-—i—%—i—O(Q).
non n

—+oo
+oo 1 2
T
On donne : E — = —.
2 6
n=1 n
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Mines-Télécom MP 2022

+oo n
Soit la série entiere Z ()2 et f sa somme.
n!
n=0

1. Quel est le rayon de convergence de cette série?

2. Quel est le lien entre f et / 2 g2vasin(t) gy 7

_
2

CCINP PC 2018
sin?(nd)

On considere la série entiere Z —x".
n!
Déterminer le rayon de convergence et la somme de cette série entiere.

ENS MP Cachan/Rennes 2017

1. Montrer que pour tout x appartenant a [0; ] :

no
> <Ll
i BT g+ 1)sin (3)

2. Montrer qu’il existe C' appartenant a R tel que :

sin(kx)

xz

< C.

Vz e [0;m), Y
k=1

On pose pour tout x appartenant a [0;27] :

0u(z) = Z”: sing{:km)

k=1

et si k € N*, ng = 2% et finalement :

3. Montrer que S, converge vers une fonction f continue sur [0;7].

2
4. Montrer que pour tout p € N*, / cos(px) Sy, (x) dr admet une limite quand m
0
tend vers +oo, notée A(p).

5. Calculer A(p).

Mines-Ponts MP 2013

Soit a > 0. Etudier la convergence de la série :

0 1
Z aZk:l k.
n=1
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CCINP PC 2022

Soit f une fonction définie sur |0;+oo[, a valeurs réelles. Pour tout n € N*, on définit
la fonction suivante :

u, : ]0;400[ — R
x —  f(z+n)— f(n)

Pour z €1]0; +o0[, on pose F(z Z up, () lorsque Z un () converge.

1. Pour tout N € N*, montrer l’egahte ;

N
Z F(N+1)— f(1).
En déduire que lexistence de F(1) équivaut a la convergence de la suite
(f (n))neN*'
2. Dans cette question, on prend pour f la fonction

(i)
T — .
1+=z

3. Dans cette question, on prend pour f la fonction

Montrer que F(1) existe.

T — sin (mH— ;T\/E) :

Montrer que F(1) n’existe pas.
Indication : on pourra s’intéresser & f((2n + 1)?).

CCINP PSI 2018

Pour tout n € N* et x > 0, on pose :

1. Etudier la convergence de Z fn-

n>1
2. Montrer que la somme S est de classe C*.
3. Calculer S(1).

X 2013

Soit n € N.
1. Montrer qu’il existe un unique z,, réel qui est solution de I’équation xe® = n.
2. Etudier la convergence de la suite () nen-

3. Donner un équivalent de z,,.
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Mines-Ponts MP 2015

Soit s € N*. On consideére la série enticre Z ( >x”
S

n=s

1. Déterminer son rayon de convergence.

2. Calculer sa somme S(z).

comp

Soit (p;q) € N?. On pose :
1
L, :/ (1 — )7 dt.
0

1. Calculer, pour (p;q) € N?, I'intégrale I, .

“+oo
2. La série Z I, , est-elle convergente ou divergente ?
n=0
—+00
3. Donner le domaine de définition réel de la série entiere Z I n™.
n=0

ENS PC 2023

Soit o > 0. Etudier la nature de la série :

—+00

> (sin(2nler))*.

n=0

Mines-Ponts

On pose, pour tout z € C et tout n € N :

Pu(2) :zﬁo(l_;“)'

1. Montrer que, pour tout n € Net tout z € C, |P,(2)| < P,(—|2|). En introduisant

un logarithme, en déduire que la suite (P,(z))nen est bornée.

2. En étudiant la convergence de la série » | P,11(2) — Py, (z), établir la convergence

neN
de la suite (P, (2))nen. Soit :

f:z— lim P,(z).

n—-+4o0o

3. Montrer que f est continue en 0.

4. Montrer que f est 'unique fonction continue en 0 telle que :
VzeC, f(z) = (1—2)f <;> ot f(0) = 1.

5. Montrer que f est développable en série entiere.
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Mines-Ponts PC 2013

Etudier la nature de la série :

+oo n
> exp(—n3)/ exp(t?) dt.
n=0 0

X MP 2019

Pour tout x €] — 1;1[, on pose :

P(z) =]

_ yk
k:ll T

1. Montrer que P est bien définie.
2. Montrer que, pour tout x €| — 1;1],

+oo
P(z) =) p(n)a",
k=0
ou p(n) représente le nombre de fagons d’écrire n comme une somme d’entiers

naturels.

3. Montrer que pour = tendant vers 1 par valeurs négatives,

P = e (2201401,
N X1

Mines-Ponts MP 2025

Pour tout n € N* et pour tout x > 0, on pose :

hn(x):/om( !

m dt.
1. Montrer que h,, est dérivable sur R* et vérifie :
Vn € N* Vo >0, b (z)=—4nz’h,1(z).
2. Montrer qu’il existe une suite (a,),en+ telle que :
Vn € N, Vo >0, h,(z) = a,2®*".

3. En déduire h,(x) pour tout n € N* et pour tout = > 0.

Mines-Télécom PSI 2025

—+o00
Trouver la nature de la série Z sin (7r\/ n? + 1).
n=0
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Mines-Ponts MP 2025

A quelle condition nécessaire et suffisante portant sur ag, la suite définie par
n
Qi1 = 2" — Gy,

est-elle croissante ?

Mines-Ponts PC 2025
On fixe o > 0 et on pose I = {0 ; g} Pour tout n € N, on définit la fonction :

U, : I —> R
x +—— sin"(z)cos*(z)

1. Montrer que la série de fonctions Z u, converge simplement sur /.
n=0

2. Cette série de fonctions converge-t-elle normalement sur [ ?

3. Converge-t-elle uniformément sur 1?7

Mines-Ponts MP 2025
Sin € N* on définit f,, : [0;1] — R par :

_ Ja"In(z) siz€]0;1]
fula) = {O siz=0

Montrer que la suite (f,,)nen+ converge uniformément vers la fonction nulle.

Mines-Télécom MP 2022

400 1
Trouver la nature de la série Z cos <n27r In (1 — )>

n=2 n

CCINP PSI 2022

On définit la suite (uy,)nen par up = 1 et

1

Vn eN, u,1q1 = .
" tntt 1+ wu,

1. Montrer que la suite (u,)nen est bien définie, qu’elle est convergente, et déter-
miner sa limite.

2. Définir par récurrence deux suites de nombres naturels (p,)nen €t (¢n)nen telles

que :
Pn

dn
et en déduire que, pour tout n € N, u,, € Q.

Vn eN, u, =

3. Trouver une expression de u,, en fonction de n.
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Mines-Télécom MP 2022

Soit u la suite définie par :

" 1
Vn € N* u, = —_—.
kz::l (n+ k)
1. Montrer que, si o > 1, la suite (u,)nen+ converge vers 0.

2. Que peut-on dire de la suite (u,)pen+ si v =17

Mines-Ponts PSI 2013
Soit a € R. Pour tout n € N, on pose :

1"
un:arccos<\é§—|—( ) >—g

nOé

Quelle est la nature de la série Z Up ?

Mines-Télécom MP 2017

. -1
Etudier la nature de la série Z #
sint cos(n)

1. a l’aide d’un développement limité ;

2. en étudiant la série Z ( (=1) — (=1) ) ;

=1 \n +cos(n) n

3. en montrant que le critere des séries alternées s’applique.

X MP 2017

On admet ’énoncé suivant :

En

dn

Pour tout réel o, s’il existe une suite de rationnels <pn> telle que 0 < ‘a — fl’—: <
"/ neN

avec £, = 0(1), alors « est irrationnel.

+00
Soit la suite de terme général F,, = 2%" + 1. Montrer que » o est irrationnel.
n=0""n

CCINP PSI 2016

+oo

1. Calculer Z 2% pour tout x € R,
n=1

72

dx.
e —1 v

“+oc0o
2. Montrer 'existence de J = /
0

400 2
3. Montrer que J = 2_: =
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Mines-Télécom MP 2016
+o00 2
Soit n € N* et [,, = / e sin”(x) dx.
0
1. Montrer que I, est bien définie pour tout n € N*.

2. Etudier la convergence de la suite (I,,)nens-

Mines-Télécom 2024
Soit f:x— Z eV,

n>0

Déterminer Dy.
Montrer que f est continue, puis qu’elle est C'*°.

Etudier la croissance de f.
Calculer xli%a f(z) et IEIPOO f(z).

SANEE e

Trouver un équivalent simple de f en 0.

Mines-Télécom MP 2019

1
1. (a) Mont / "(1-2)de= [ dz.
(a) onrerquez z)dr = T3
+o00 (_1)k+1
(b) En déduire la valeur de Z . On pourra regrouper les termes deux a
k=1

deux dans la somme partielle.
+00 1
2. Calculer de deux manieres différentes » (—1)" / 2*"(1 — z)dx et en déduire
n=0 0
+oo —1)"
la valeur de Z (=1) .

ENS MP 2014

On note D le disque unité de C. Soit f une fonction de D dans C telle que f(0) =0 et
f ne s’annule en aucun autre point. Soit (P,),en une suite de polynémes a coefficients
complexes qui converge uniformément vers f. Montrer que pour tout réel r strictement
compris entre 0 et 1, il existe un entier N tel que pour tout entier n supérieur a N, le
polynéme P, admet une racine dans B(0,r).

ENS MP 2028

On admet le développement asymptotique suivant :

>y =m0 (1),
Montrer que : " (—1)F | In(k)
= kz::l k Ln(?)J
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CCINP PC 2013

Soit I =]0; 4o00[. Pour tout entier naturel n, on pose :

x—1
n+1)(n+z)

1. Montrer que la série Zun converge simplement sur /. On note S la somme
associée.

2. (a) Soit (a;b) € R? avec 0 < a < b. Montrer que la série converge normalement
sur [a;bl.
(b) En déduire la continuité de S.

3. Montrer que S est dérivable sur I, et que l'on a :

! = 1
S () =S -~
4. (a) Montrer que :
p-1 1 1
(n+(n+p) n+l n+p
p—1 1
(b) En déduire que S(p) = » —.
=

5. Calculer lim S(z).

T——+00

X-ENS Cachan PSI 2019

Soit (uy,)nen une suite de réels strictement positifs, de limite nulle, et a > 1.

On suppose que :

. Up — Up+1
lim ——= =/ e R~
n—+o00 u%

L’objectif est de montrer que la série de terme général u,, converge si et seulement si
a < 2.

1. Montrer que la suite (u,)nen est strictement décroissante a partir d'un certain
rang N.

2. Soit a < 2.
A Taide de I'inégalité suivante (que I'on justifiera) :

Uy — Upt1 Un ]
ug/ A
U

U%fl _— tafl

s s Un, 1 , .
montrer que la série de terme général converge. En déduire la conver-

gence de la série de terme général u,,.

3. Soit o > 2.

— Un+1

a—1
n
série de terme général u,, diverge également.

Montrer que la série de terme général — diverge et en déduire que la
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Mines-Ponts MP 2015

Pour tout n € N, on considere le polynome :

R (e N (R ]
21 2n +1 2n + 1

1. Déterminer les racines de @,,.

2. Démontrer alors que celui-ci s’écrit :

n X2
Qn:Xkll (1_ (2n—i—1)2tan( s ))

2n+1

3. En déduire que, pour tout x réel,

sin(z) = x:f[j (1 o ) .

m2n?

Mines-Télécom MP 2024

Pour n > 3 entier, on considere ’équation suivante :
(E,) :e* =a™

1. Montrer que (E,) admet deux solutions «, < 3.
2. Trouver la limite de la suite (/3,,)n>3.
3. Donner un équivalent de j3,.

4. Donne un développement a deux termes de [3,.

Centrale
Soit n € N. On pose u,, = /n — [/n].

La suite (uy,)neny admet-elle une limite ?

X ESPCI PC 2017

On considére une suite (A, ),en décroissante positive. Montrer que :

Z A, converge <= A, =o0 (%) et Zn(An — A,11) converge.

X MP 2022

Soit f la fonction définie par :

f(x): m

On sait que f est développable en série entiére et on peut écrire f(z) = chx”.
3
e4

v

Montrer que ¢, ~
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Centrale-Supélec PC 2019
Soit g € R. On pose :

vneN, S, = cos(k).
k=0

1. (a) Montrer que :

"cos(k) S, R 1 1
2 _5+,§Sk<k/3 (k+1)ﬂ) L

k=1 n

cos(n)
nps

2. Soit a > 0. Trouver une condition nécessaire et suffisante pour que la série de

terme général
(63
V, = /n*+cos(n) —n2

(b) Montrer que la série de terme général U, = converge.

converge.

CCINP MP 2023

Pour tout n > 2 entier, on pose :

1. Montrer que »  u,, diverge.

2. Montrer que pour tout n > 2 entier :

[t <u, < | " ()2 dt.

x
3. Pour x > 1, calculer / (In(t))? dt et en trouver un équivalent en +oo en fonction

de z + z(In(x))%

1 1
4. Déterminer un équivalent de <> et en déduire la nature de Z —.
Unp, n>2 Up,
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2 Continuité et dérivabilité

Mines-Ponts

Soit P € R[X] scindé sur R. Montrer que pour tout réel «, le polynéme P’ + aP est
lui aussi scindé sur R.

ENS Ul

Soit P € R[X] tel que P > 0 sur R. On pose Q = P+ P’ + P" + --- + P™ avec
n = deg(P). Montrer que @ > 0 sur R.

Mines-Ponts

Soit f :[0;1] — [0; 1] une fonction dérivable telle que f(0) =0 et f(1) = 1.

Montrer qu'il existe z; < - -+ <z, tels que Y f'(zy) = n.
k=1

X PC 2020

Soit f: R — R de classe C? sur R. On suppose f/ > 0et 0 < f” < f.
Montrer que f' < f.

Mines-Ponts MP

Soit a < b deux nombres réels et ( f,,),en une suite de fonctions définies et continues sur
[a; b]. On suppose que la suite (f,,)nen converge uniformément sur [a; b] vers une fonc-
tion f. Montrer que (min(f,))nen converge vers min(f) et que (max(f,)),en converge
vers max(f).

Mines-Ponts PC 2023

3
Soit f:x —

1 arctan(x).

1. La fonction f admet-elle une asymptote en +oo? Le cas échéant, donner une
équation de cette droite.

2. Etudier les variations de f.

Mines-Ponts

Soit a €]0;1] et f: R — R dérivable telle que, pour tout € R, f'(z) = f(ax).
1. Montrer que f est égale a sa série de Taylor sur R.

2. Déterminer toutes les fonctions g : R — R dérivables telles que, pour tout x € R,
9'(z) = g(az).

Mines-Télécom MP

1. Soit f une fonction continue de [0;1] dans R telle que f(0) = f(1). Montrer
quil existe z € [0; 3] tel que f(z + 3) = f(x).

2. Soit f : [0;1] — [0;1] croissante. Montrer que la fonction f admet un point
fixe, c’est-a-dire qu’il existe x € [0;1] tel que f(z) = z.

Indication : on pourra considérer I'ensemble A = {x € [0;1] | f(x) < x}.
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Mines-Télécom MP
Soit f et g deux fonctions de [0;1] dans [0; 1], continues et vérifiant fog=go f.
1. Montrer quil existe a € [0;1] tel que g(a) = a.
2. Supposons que pour tout = € [0; 1], f(x) > g(x).
Montrer que la suite (f"(a)),en est croissante.

3. Montrer qu’il existe ¢ € [0;1] tel que f(c) = g(c).

Mines-Ponts PC 2023

Soit f et g deux fonctions appartenant & C(R,R) telles que f o g est strictement
décroissante.

1. Montrer que f o g admet un unique point fixe.

2. Montrer que g o f admet un unique point fixe.

—

Soit f : R — R une fonction telle que pour tout segment [a;b] C R, f([a;b]) est un
segment, et f~*({x}) est un fermé pour tout x € R. Montrer que f est continue.

cop

1. Soit (fy)nen une suite d’applications de [a;b] dans R. On suppose que la suite
(fn)nen converge uniformément sur [a;b] vers une application f, et que, pour
tout n € N, f,, est continue en z, avec xy € [a;b]. Montrer que f est continue
en .

2. On pose, pour tout z € [0;1], g,(x) = a™. La suite (g,)nen converge-t-elle
uniformément sur [0;1]?

cop

1. Enoncer le théoréeme des accroissements finis.

2. Soit f : [a;b] — R. On suppose que f est continue sur [a;b] et que f est
dérivable sur |a;zo[ et sur |xg;b[. Démontrer que si la fonction f admet une
limite en xg, alors la fonction f est dérivable en xq et f'(zq) = lim f'(x).

0

3. Prouver que I'implication
f dérivable en 7y = f’ admet une limite finie en

est fausse.
Indication : on pourra considérer la fonction g définie par g(z) = x?sin (%) si
z#0et g(0)=0.

X PC 2009

Soit f : R, — R continue et surjective. Montrer que l’ensemble des zéros de f est
infini.
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[541] ccp

1. On pose g(z) = e** et h(z) =

1+
Calculer, pour tout entier naturel k, la dérivée d’ordre k des fonctions g et h
sur leurs ensembles de définition respectifs.

62:1:

2. On pose f(z) = .

pose f(z) = ;o —
En utilisant la formule de Leibniz concernant la dérivée n®™° d’un produit de
fonctions, déterminer pour tout entier naturel n et pour tout z € R\ {—1}, la

valeur de £ (z).

3. Démontrer, dans le cas général, la formule de Leibniz utilisée dans la question
précédente.

X PC 2019

Soit f une fonction continue et périodique de R dans R, ¢ un nombre réel. Montrer
qu’il existe un nombre réel z tel que f(x +t) = f(x).

X-ENS 2015

1
Montrer que la fonction x — 2%sin | — | est prolongeable en une fonction f continue
x

sur R. La fonction f est-elle C*, C?,...7

Petites Mines 2015
1
Soit f € C([0;1],R) telle que / flx)dz = f(1).
0
Montrer qu’il existe ¢ €]0; 1] tel que f'(¢) = 0.

X-ENS 2015

Montrer que la fonction x — est prolongeable en une fonction f, C* sur R, et

que les coefficients de la série de Taylor de f sont des nombres rationnels.

CCP 2015

_ 1 — cos(x)
Montrer que la fonction x

2
C* sur R. Calculer f™(0) pour tout entier n.

est prolongeable en une fonction f de classe

Centrale 2015
Soit f € C([0:1],R).

1
1. Montrer que si / f(t)dt = 0, alors f s’annule au moins une fois sur |0; 1.
0

1 1
2. Montrer que si / f(t)dt = 3 alors f admet au moins un point fixe sur |0; 1[.
0
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cor vr

On désigne par C'([0; 1], R) Iespace vectoriel des fonctions continues sur [0; 1] & valeurs
dans R. Soit f € C([0;1],R) telle que

1
Vn € N, / £ F(t) dt = 0.
0

1. Enoncer le théoreme de Weierstrass d’approximation par des fonctions polyno-
miales.

2. Soit (P,)nen une suite de fonctions polynomiales convergeant uniformément sur
le segment [0; 1] vers f.

(a) Montrer que la suite de fonctions (P, f)nen converge uniformément sur [0; 1]
vers f2.

(b) Démontrer que [ "P@ydi= tim [ PO f()dt.

n—-+4o0 Jo

(c) Calculer /01 P,(t)f(t)dt.

3. En déduire que f est nulle sur 'intervalle [0; 1].

cop 2010
+oo

Soit f(z)=> In(l+e™ ™).
n=0

1. Déterminer le domaine de définition D de la fonction f.
2. Etudier la continuité de f.
3. Préciser xll)rlloof(a:) et f(D).

ENS Ulm

Pour tout n € N, soit f,, : R — R dérivable et telle que || f!|l« < 1. On suppose que la
suite (f,)nen converge simplement vers une fonction g. Montrer que g est continue.

Mines-Ponts PSI 2019
Soit n € N* et M : R — M,(R), une application dérivable sur R.
1. Montrer que l'application f : R — M, (R) définie par :

Vo € R, f(z) = M(z)" M(x)

est dérivable sur R et donner I'expression de f'(z) pour z € R.

2. Soit A : R — A,(R) une application continue et M : R — M, (R) de classe
C', solution de I'équation différentielle M'(x) = A(x)M(x). On suppose que
M(0) € SO,(R). Montrer que :

Ve € R, M(x) € SO,(R).
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—

1. Soit f une fonction a valeurs réelles, définie, continue et injective sur un intervalle
I de R. On note T = {(z;y) € I’ | z < y}. On considére deux couples (z1;y;)
et (z2;y2) appartenant a 7. Pour ¢ € [0;1], on pose u(t) = (1 — t)z1 + tzy et
o(t) = (1 = t)yr + tye.

Montrer que, pour tout ¢t € [0;1], (u(t);v(t)) € T, et en déduire que f est
strictement monotone.

2. Soit f dérivable sur I telle quil existe (a;b) € I? vérifiant f'(a)f'(b) < 0. A
'aide de la question précédente, montrer qu’il existe ¢ € |a; b[ tel que f'(c) = 0.
Quel théoréme peut-on ainsi montrer ?

3. Déterminer les fonctions f deux fois dérivables sur R, ne s’annulant pas, telles

que [f"| = f.

CCP 2017

T
Soit f la fonction définie par f(x) = arcsin | ——|.

1. Donner le domaine de définition de f et celui de f’.
2. Calculer f’(z). Conclure.

Mines-Ponts PSI

Soit £ = C([0;1],R) muni de la norme ||-||oo-
1

Soit e € EetT,: f e E>—>/ e(t)f(t) dt € R.
0

Montrer que T, est une forme linéaire continue et calculer [|7¢||s, la norme de T,
subordonnée a ||| -

Indication : considérer f. : t +— ﬁ, oue > 0.

ENS MP MPI

Soit f la fonction de R% vers R nulle sur R\ Q et définie par f (g) = ]ﬁq sipeNet
g € N* sont premiers entre eux.
Quels sont les points de continuité de f 7

cop

+o0 T
0 idere la série de foncti S(z) = -
1 considere la serie ae ronctions (IE) n;l n(l + ’I’LZ’Z)

1. Etudier le domaine de définition de la fonction S et sa continuité.

2. Montrer que la fonction S est dérivable sur R*.

TPE/EIVP
Soit (a;b) € C%, n € N* et P = (X —a)"(X — b)". Donner une expression de la dérivée
n®me de P et en déduire » (n

)
) en fonction de n.
i=0

]
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Mines-Ponts PSI

2x
Pour tout n € N*, on pose f, : 2 € R — 5
ze+n
+oo
1. Montrer que la fonction f: 2 — Y fu(x) est définie sur R.
n=1

2. Etudier la limite de f en 400 et en —oc.

3. Montrer que la fonction f est continue mais que la série de fonctions Z fn ne
converge pas uniformément sur R.

Centrale PC
: — L - ; — /1L 2 —
Soit £ =C ([Oal]vR) Si f S E7 on note ||fH2 - fO f et ||f||00 _ Supt€[0;1]|f(t)|' On

fixe un réel o dans [0; 1].
1

\/1 x—a)Z'

Montrer que la suite (|| f,.||2)nen converge vers zéro.

1. Pour tout n € N, on pose f, : x € [0;1]

2. L’application ® : f € E'+— f(«a) € R est-elle continue pour la norme ||-||2?
3. Existe-t-il un nombre réel C' > 0 tel que, pour tout f € E, || flloc < C||f|l27
4. Soit n € N. Existe-t-il C' > 0 tel que, pour tout P € R,,[X], ||Pllc < C|| P27

[560] x

Existe-t-il une injection continue de [0;1]* dans [0;1] 7

Mines-Ponts MP 2024
sin (2"x
Soit f:x — Z ( )
n=0
1. Montrer que f est bien définie.

2. Montrer que f n’est pas dérivable en 0.

Mines-Télécom PC 2022

En appliquant le théoréme des accroissements finis, prouver ’encadrement :

Vr €]0;+00], —— <arctan(z) < .

1+z

ENS MP 2017

Soit f: R — R dérivable sur R telle que f" = 0. Pourquoi a-t-on f constante sur R?

Mines-Télécom MP 2025

cos(x) — 1‘

Soit k : z — 5

x
1. Montrer que k est prolongeable par continuité en 0.

2. La fonction k est-elle dérivable en 0? de classe C' en 07

3. A-t-on d’autres informations sur k ?
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Mines-Ponts MP 2019

On pose, pour tout n € N, f,, : x — In (1 ++V1+ x").
Montrer que pour tout n € N, f,, est dérivable une infinité de fois en 0, et donner les
expressions de ses dérivées successives en 0.

Mines-Ponts MP 2019

Soit f une fonction dérivable de [0; 1] dans R non identiquement nulle telle que :
I € R,V € 051], f(2)] < MIf()]

Montrer que f ne s’annule pas sur [0;1].

Centrale-Supélec

Existe-t-il une fonction continue de [0;1] dans R telle que f soit non monotone sur
tout segment de [0;1] 7

CCINP PC 2018
Soit
f: R — R

T o Ty /% — EJ
1. Déterminer ’ensemble de définition de f.

2. Montrer que, pour tout x € R*, |f(x)| < |z|.

La fonction f est-elle prolongeable par continuité en 07 Si oui, on désigne par
g son prolongement.

3. Posons Ty(z) = Jix) pour z > 0. La fonction T a-t-elle une limite quand x
T
tend vers 07

1

Indication : utiliser les suites définies par x,, = ﬁ et Yp = 5.

4. La fonction g est-elle dérivable en 07

5. Soit k € N\ {0;1}. La fonction f est-elle continue en 4 ?
Indication : prendre I = L%H’ H et J = H, ﬁ {
, 1

6. Etudier I'existence et la valeur de / f(z)dz.

1

2

Mines-Télécom MP 2025

Soit h la fonction définie par :

In(l+2z)—x
2 '

h(z) =

Montrer que la fonction h est prolongeable en une fonction de classe C! en 0.
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Mines-Ponts MP 2015
Soit

f(x) = { sinh(z) sin(z) stz €]0;m|

0 siz=20

1. Montrer que f est de classe C'* sur [0;7[. Calculer f(0).
2. La fonction f est-elle de classe C*° sur [0;7[? Calculer f”(0) .

Mines-Ponts MP 2015

Soit f: R, — R uniformément continue.
Montrer qu'il existe (a;b) € R? tel que, pour tout z € Ry, f(x) < az +b.

Mines 2023

Soit f € C*(R,R) telle que f(0) =0.
f(@)

1. Montrer que g : x — est de classe C'*°.

2. On suppose que f(x) > 0si x # 0, et que f”(0) # 0.
Montrer qu'il existe h € C*(R, R) telle que h? = f.

Mines 2023

Soit f € C?*(R,R,).
1. Donner une condition nécessaire et suffisante pour que /f soit dérivable sur R.

2. On suppose que f(0) = f/(0) = f”(0) = 0 et on considere o > 0. Montrer que
pour tout z € [—a;q] :

['(@)* <2f(x)M(a) avec M(a)= sup |f"(1)].

[t|<2c

3. Ecrire une condition nécessaire et suffisante pour que la fonction /f soit de
classe C! sur R.

Mines-Ponts MP 2021
Soit n € N*. Soit f : [-1;1] — R de classe C"*! telle que f(0) = 0.

1. Montrer que :
1
Vz # 0, ff) :/ [ (xt) dt.
0

2. Montrer que :

(k) 1
e ooty (121) - 270

Mines-Ponts MP 2018

Soit f : [a;b] — R une fonction croissante. On note ® ’ensemble de ses points de

discontinuité. Montrer que I'on a ® = U 9, avec D, fini pour tout n € N.
neN
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X MP 2017

On dit qu’une fonction f : C — C est C-dérivable en zy € C s'il existe £ € C tel que

o 1) = £(0)

Z—20 z — ZO

= /.

1. Montrer que z — 2% et z — e* sont C-dérivables.
2. Montrer que z — Z ne l'est pas.
3. Soit f: C — C. On pose f : R? — R? définie par :

;) = (fu(@;9); folwsy) = (Re(f(w + iy)); Im(f (« + iy)) ).
Montrer que f est C-dérivable en zy = xq + iyg si et seulement si :

f est dérivable en zg = ¢ + iyo,

0 0 0 0
a];l(xo;yo) = af(xo;yo) et E)fyl(xo;yo) = —af;(xo;yo)'

Mines-Ponts MP 2021

Soit f € CYR,R) et £ € R. On suppose que f vérifie :

lim (f(z)+ f'(z)) = L.

r—r—+00

Montrer que lim f(z) = /.

T—-+00

ENS Lyon MP 2016

Déterminer les fonctions f continues de R dans R telles que :

Yz €R, lim_ (f(z+h)+ f(x —h) = 2f(x)) = 0.

Centrale-Supélec TSI 2023

On définit la fonction f par :

1 .
exp(;) siz>0
oy = {0 )
0 sizx <0
1. Tracer 'allure de f.
2. Montrer que f est de classe C*° sur R7.
3. Pour tout N € N, montrer qu’il existe un polynéme Py tel que pour tout x > 0 :

o= (o)

X

4. Montrer que f est de classe C* sur R,.

5. Montrer que f n’est pas développable en série entiere autour de 0.
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ENS MP 2022

Soit a et b deux réels tels que 0 <a < 1,b>1et ab > 1. On pose :
+00
Vz € R, fop(z) =D a" cos(b"mz).

n=1

1. Montrer que f,; est bien définie, qu’elle est continue sur R et qu’elle est bornée.

In(a)
2. On pose o = — . Montrer que :
In(b)
+oo
Vo € R, fop(z) =) b cos(b"mz).
n=1

3. Montrer que f,; est a-holdérienne, c’est-a-dire :

iC > Oa V(x,y) € Rz? |fa,b(x) - fa,b(y)‘ < C‘l’ - y‘a'

4. Soit x € R et N, m deux entiers naturels non nuls. On pose h = o
Calculer :

z+h
/7h fap(t) cos(b™nt) dt.

5. Montrer que :
z+h
[ fuslty cos(pmaty dt < Ca.
x—h

6. Montrer qu’il existe un réel x,, tel que 'on ait :

Ca™

‘fa,b(wm) - fa,b(x)‘ < 9

7. Que peut-on dire d’une fonction a-holdérienne avec av > 17

8. Montrer que f,; est nulle part dérivable.

Centrale-Supélec MP 2023

Pour o € N, avec av > 2 et 5 €]1;400], on pose :

fus(ty = 3 S5ETO)

neN Bn

1. Donner les théorémes de continuité et de dérivabilité des séries de fonctions.
2. On suppose que a < 3. Montrer que f, g est continue et dérivable sur R.

3. On suppose que a > 3. Montrer que f, g n’est pas dérivable en 0.

En déduire une condition pour que f, g soit de classe C*, mais non de classe
C*1 sur R.
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ENSEA/ENSIIE MP 2025

Soit une fonction f : Ry — R continue et dérivable en 0 telle que f/(0) = f(0) = 0.
1 T

On définit la fonction ¢ telle que g(0) =0 et g(z) = —/ f(t) dt pour tout x > 0.
x Jo

1. Montrer que g est continue en 0.

2. Montrer que g est dérivable et calculer sa dérivée.

ENSEA/ENSIIE MP 2018

On considere la fonction : .
ey
f(w) = nz:‘; 3n+1°
1. Donner le domaine de définition Dy de la fonction f.
2. Etudier la continuité de f sur D Iz

3. Calculer lim f(z).
z——11

4. Etudier la dérivabilité de f sur 'intérieur de Dy.

5. Trouver une équation différentielle vérifiée par f.

Mines-Ponts

On dit qu’une fonction f : [0;1] — R admet une corde horizontale de longueur ¢ € R
si:
dr € [0;1] tel que tel que z+ £ € [0;1] et f(x+¢) = f(x),

c’est-a-dire si la corde reliant les points (z; f(z)) et (z + ¢; f(x + £)) de la courbe
représentative de f est horizontale.

1. Soit f : [0;1] — R, continue, telle que f(0) = f(1). Montrer que f admet,
pour tout n € N*, une corde horizontale de longueur % (théoréme de la corde
universelle).

2. Si pour tout n € N*, £ # %, montrer qu’il existe une fonction f : [0;1] — R,
continue, telle que f(0) = f(1) et n'admettant pas de corde horizontale de
longueur ¢.

3. Soit f : [0;1] — R, continue, telle que f(0) = f(1). Prouver que, pour tout
n € N*, f admet au moins n cordes horizontales de longueur multiple de %

4. Soit f :[0;1] — R, continue, telle que f(0) = f(1) et g : [0;1] — R une fonction
continue et strictement monotone. On pose L = g(1) —¢g(0). Montrer qu’il existe
n paires {T;; T/} C [0;1] telles que :

S(T) = J(T!) et 3k €N, lo(Ty) — o(T)] = k| |

5. Montrer qu’une courbe fermée du plan, continue, et tournant de facon monotone
n fois autour d’un point, se recoupe au moins n — 1 fois.
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TPE/EIVP MP 2019

Soit f : R — R une fonction continue vérifiant :

V(z;y) € R? [ f(x) — fy)| = |z —yl.

Montrer que f est bijective.

Mines-Ponts PC 2015

Un marcheur parcourt (contintiment) 6 kilometres en une heure. Montrer qu'il existe
une demi-heure durant laquelle il parcourt exactement 3 kilometres.

Mines-Ponts

Soit I un intervalle et f : I — R. On dit que f est uniformément continue sur I si :
Ve e Ry, B R V(miy) € I o —y| <6 — |f(x) - fly)l< =

1. Soit (a;b) € R? avec a < b. Soit f une fonction continue sur [a;b] et & valeurs
réelles. Montrer qu’alors f est uniformément continue. (théoréme de Heine)

2. Une fonction continue sur R est-elle nécessairement uniformément continue ?
3. Soit f une fonction continue sur [0;1] & valeurs réelles.

(a) Montrer que :
lim — ST(=1)Ff <k> = 0.

(b) Montrer que :

Mines-Ponts PC 2024

Déterminer une fonction f de classe C* sur | — oo ; 1] telle que :

)

o €l0: 1L, f(a) = o (

Mines-Ponts PC 2024

Soit f : [0;1] — R une fonction dérivable différente de la fonction nulle. On suppose
qu’il existe M > 0 tel que :

vz € [0;1], |f'(2)] < M|f(z)].

Montrer que la fonction f ne s’annule en aucun point de [0;1].

Mines-Télécom PC 2019
1

On définit f: R — R par f(0) =0 et f(z) = 2*sin <) six # 0.
x

Déterminer un développement limité de f en 0 a un ordre le plus grand possible.
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X MP 2022

Soit f une fonction continue de [a;b] dans R, telle que f(a) = f(b).

1. Pour n entier supérieur a 2, montrer qu’il existe (a';¥’) € [a;b]? tel que :

Fld) = f¥) et H—d =22

n

2. En supposant de plus f dérivable sur |a;b[, en déduire le théoréme de Rolle.

3. Application : soit f : x e~**. Déterminer le nombre de points d’annulation
de f™.

Centrale-Supéléc MP 2017

Soit
fla) = :i(—l)”ln (1 + @) .

1. Montrer que f est définie et continue sur R.
2. Montrer que f est de classe C! sur R.

3. Déterminer xl_l}gloo f(z).

Centrale-Supélec PSI 2015

On définit g sur |0; 1] telle que g(z) = ™.
1. Trouver « réel tel que, en posant ¢g(0) = «, g soit continue sur [0;1].
. Donner la représentation graphique de g.

2
3. Expliciter I'allure de g en 0 et donner son minimum.
4

1
. Donner une valeur approchée de / g(x)dz.
0

1 +oo
5. Trouver une suite (a,),en telle que / g(z)dz = > a,, puis donner la valeur
0

n=0
1
de/ g(x)dx.
0

ENSAM PSI 2017

On note D = {z € C| |z| < 1}. Soit f définie sur D par :
Vz € D, f(2) = |cos(2) .

1. Montrer que f est bornée sur D.
2. Exprimer f(z) en fonction de Re(z) et de Im(z).
On rappelle que cos(z) = $(e”* + 7).

3. Déterminer le maximum et le minimum de f sur D.

127




CCINP PC 2016
Soit ¢(z) = exp(exp(z) — 1). On admet le développement suivant :

o(x) =1+ +2* + 22° + o(a?).

1. Calculer ¢™(0) pour n € {0;1;2;3}.

2. On définit, par récurrence la suite (P,),en, par :

PO =letVne N, Pn+1 = Z <Z>Pk
k=0

Calculer Py, P, et Ps.
3. Montrer que P, < n!.

+o0 P
4. Soit f(z) =Y —Tm” Montrer que le rayon de convergence de f est différent
n

de 0. =
5. Prouver que f'(z) = exp(z) f(x).

6. En déduire le développement en série entiere de ¢.

CCINP PSI 2017

Montrer que la fonction
+00
x
T Y =
/ nX::o n(1 + nx?)

est définie sur R et dérivable sur R*.

Centrale-Supélec PSI 2013

Soit f € C'(R,R). Etudier les implications entre les propositions suivantes :
i) lim f(z) =400

T—r+00

ii) lim f'(z)=+oc0

T—+00

iii) La fonction f est strictement croissante au voisinage de +o0.

X PC 2008
Calculer :
tan(sin(x + 3y/x))

50 sinh(tanh(2z + sin(z))

Mines-Télécom PC 2019
Montrer que arccos(1l — ) ~ v/2x quand = — 0.

(600 ccinp pst 2015
Soit f une fonction dérivable sur [0;1] telle que f(0) = f(1) = f’(0) = 0. On définit la
f()

fonction g qui a z associe
x

1. Montrer que g admet un prolongement par continuité en 0.

2. Montrer que f admet une tangente passant par 1’origine.

128




CCINP PC 2015

On considere la fonction f définie sur |0; 1] par

1=
=—

f(t)

1. Calculer f’. En déduire que f réalise une bijection de |0 ;1] vers [0; +o00].

2. On pose u la bijection réciproque de f. Montrer que, pour tout z > 0 :
(u(z))® + zu(z) — 1 =0.
3. Montrer que u est dérivable sur |0; 400 et que, pour tout z > 0 :

—u(x)

U/(;p) = —3(u(w))2 T o

1
4. Montrer que u(1) > 3 a l'aide de 2, puis que |[v/| < 30
u

1
5. Montrer que u(z) est équivalent en +o00 a —.

T
+o00 1

6. Montrer l'existence de / — —u(x)dz.
0 T

Mines PC 2022

Existe-t-il une fonction continue et surjective de F vers F' si
1. E=[0;1] et F=]0;1[7
2. E=10;1]et F=[0;1]7

Mines-Ponts PC 2022
Soit f € C([0;b],R) telle que f(0) =a >0 et

Va € [0;0], f'(z) = f3(2).

1
Montrer que b < —.
2a?

ENS MP 2017

Soit ¢ € C'(R%,R%). On suppose que :

fim <w’(9€)

T—+00 gp(x)

)zﬁeR’;.

1. Montrer que :

YA >0, lim (SDW)) — A\
e \ o)

2. On suppose désormais que ¢’ est croissante. Montrer la réciproque.
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Mines-Télécom MP 2018

Soit f une fonction dérivable sur R. On suppose qu’elle admet une limite en +o00, une
limite en —oo et qu’elles sont égales. Montrer qu’il existe ¢ € R tel que f’(c) = 0.

m Mines-Ponts MP 2018

1. Soit f et g deux fonctions continues sur [a ;0] telles que f < g. Prouver qu’il
existe un polynome P tel que f < P < g.

2. Soit n € N*. On suppose f et g de classe n et pour tout k € [1;n], f® < g,
Prouver qu’il existe un polynoéme P tel que pour tout k € [1;n] :

F0) < ph) < g8,

Mines-Télécom PSI 2018

Lorsque cela est possible, on pose :
+oo T
f@) =Y (~1)"In <1 + n) .
n=1

1. Donner le domaine de définition de f.

2. La fonction f est-elle continue sur son domaine de définition ? Est-elle de classe
C'! sur son domaine de définition ?

X MP 2021

Soit f une fonction de R dans R. On dit que f est semi-continue inférieurement (s.c.i.)
si, pour tout @ € R, f7!(] — 00;al) est fermé dans R.

1. Montrer que, si f est continue, alors f est s.c.i.
2. Donner un exemple de fonction f s.c.i. mais non continue.

3. Montrer que f est s.c.i. si et seulement si, pour tout z € R et tout ¢ € R7, il

existe un voisinage V' de x dans R tel que, pour tout y € V| f(y) > f(z) —e.

[609] x MP 2021

Soit C' € R% et f: R — R telle que v — f(x) +CT“”2 et x — —f(x) + %‘”2 soient
convexes.

1. Montrer que f est dérivable.
2. Montrer que f n’est pas nécessairement deux fois dérivable.

3. Montrer que f est de classe C!.

CCINP PC 2021

1y

P —1; = :

our x €] — 1;+00[, on pose f(x) ;n+x
1. Montrer que f est définie et de classe C! sur | — 1;+o0].

2. Déterminer les limites de f en —1 et en +oc.
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X PC 2025
Soit P, @ € R[X] tels que P — P’ = . On suppose que @ est positif sur R. Montrer
que P est positif sur R.

CCINP PSI 2018

Montrer que la fonction
400 T
frar— Y —————
n=1 n(l + n2l'2)

est définie sur R et dérivable sur R*.

X MP 2017

Soit f une fonction de [0;1] dans R.

1. On suppose que la fonction f vérifie la propriété suivante :
V(a;b) € [051]%, 3(c;d) € R?, f(la3b]) = [e;d].

(a) La fonction f est-elle continue ?

(b) On suppose de plus que, pour tout y € R, f~'({y}) est fermé. Montrer que
f est continue.

2. On suppose que f est une dérivée. Montrer qu’elle vérifie la premiere propriété.

ENS Ulm MP 2019

Soit f : H : 1} — R une fonction vérifiant 27 = f(z) pour tout x € H ; 1}.
Montrer que f est uniformément continue.

Mines-ponts MP 2025
Soit f € C([0;1],R). Etudier la continuité de la fonction F définie sur [0;1] par :

1o f(t)
F(”’")‘ﬁfom

dt.

ENS MP 2015

Soit F' une fonction continue croissante de R dans R telle que :
Ve eR, F(x +1) = F(z) + 1.

Montrer que :
F'(x)—=x
lim =T,
n—-+00 n

ou F™ désigne l'itéré n®™e de F, et £ € R.

Question subsidiaire : montrer que £ est réel et indépendant de x.

Mines-Ponts PC 2025

Soit I un intervalle de R et soit f : I — R continue et injective.
Montrer que f est strictement monotone.
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CCINP MP 2018

1. Soit f, : [a;b] — R convergeant uniformément vers f telle que pour tout n, la
fonction f,, est continue en zg € [a;b]. Montrer que f est continue en z.

2. Soit g,, définie sur [0; 1] par g(z) = a™.

La suite (gn)nen converge-t-elle uniformément sur [0;1] 7

X MP 2017

Soit Z a,, une série a termes positifs convergente, et (a,)nen € [0;1]Y une suite injec-
n=0
tive dense dans [0; 1]. On pose :

fl)y= >  an

neN, ap, <z

Déterminer les points de continuité et les points de discontinuité de f.

Mines-Ponts MP 2017

Soit la suite réelle (a,)nen+ définie par :

Vn >0, a, =

+eo tanh(t)
|

+o0
Soit la série entitre f associée & cette suite, i.e. f(z) =Y a,z™.
n=0

1. Quel est le domaine de définition de f 7
2. La fonction f est-elle continue en —17

3. La fonction f est-elle continue a gauche en 17

Mines-Ponts MP 2018

Soit P € R[X] scindé dans R[X].
1. Montrer que toute racine multiple de P’ est aussi racine de P.
2. Déterminer le signe de PP" — (P")? sur R.

Mines-Ponts MP 2025

Soit P € C[X] non constant et H un demi-plan de C contenant une racine de P’.
1. Montrer que Zp: C conv(Zp).
2. Montrer que H contient une racine de de P.
3. En déduire que P(H) = C.

Mines-Télécom MP 2019
Soit P(X) scindé simple dans R[X], avec deg(P) > 2.
1. Montrer que P’ est aussi scindé simple dans R[X].

2. Comparer les moyennes arithmétiques des racines de P et de P’.
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CCINP PSI 2021

+oo
cos(nx
Soit x +—> Z 5 ( 3 .
et n
1. Montrer que f est bien définie sur R.

2. Montrer que f est C! sur R\ 27Z.

133



3 Calcul intégral

—

Etudier la suite (Un)nen définie par :

1
Uy, :/ z"e” dx.
0

En déduire que le nombre d’Euler est irrationnel.

ENS Lyon

Pour tout n € N, on considere I'intégrale suivante :

1
I=—
n!

/OW:L‘”(W — x)"sin(x) dz.

1. Montrer que I,, est un polynoéme a coefficients entiers en m, de degré inférieur
ou égal a n.

2. En déduire que 7 est irrationnel.

Mines PC

Calculer

ou |a| désigne la partie entiere de a.

[628] x

Déterminer un équivalent lorsque n tend vers +oo de

I ) g
=1 () dt.
| (=)

X PC 2019

On suppose que le graphe d’un polynome de degré 6 est tangent a une droite en trois
points A, B, C' avec B le milieu de AC. Montrer que les aires délimitées par les segments
AB, BC' et la courbe sont égales.

ENSEA/ENSIIE MP 2023

Justifier I'existence puis calculer la valeur de

/0 e ) o)

1+ ¢
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ENS PC 2024

Soit P € R[X]. Pour tout nombre réel x, on pose :

Qz) = e " /0 " P(t)et dt.

+o0
Montrer que @ est polynomiale si et seulement si Y _(—1)*P®*)(0) = 0.
k=0

XENS
Soit A € M,(C).
Calculer, pour r € R’ suffisamment grand,

2 . R .
/ re'? det(rel’I, — A) - (re?1, — A)7' d,
0

de deux manieres différentes. En déduire le théoréeme de Cayley-Hamilton.

cop P

Pour tout n € N*, on pose f,,(z) = (2> + 1)

ne’ + xe *
n+xr
1. Démontrer que la suite de fonctions (f;,)nen+ converge uniformément sur [0;1].

1
2. Calculer nl_l}I_{loo /o ful(z)da.

X PC 2021

Calculer, pour n € N, I,, = /7r cos(nt) cos”(t) dt.
0

Mines-Ponts

+oo
Soit f: R, — R uniformément continue telle que / f(x)dx converge.
0

Montrer que mgr&o f(z) =0.

Mines-Télécom
Soit n € N. Calculer I'intégrale

I _/3 sin”(x) 4o
" Jo sin™(z) 4 cosn(z)

Mines-Ponts MP 2021

Soit f: [0;1] — R continue telle que, pour tout = € [0;1],

1 — a2
5

IRELE

1 1
Montrer que / f(t)*dt > 3
0
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Mines-Ponts MP
Soit a € R avec |a| # 1.

n

—

1
k
1. Montrer que a*” —1 = (a? — 1) <a2 — 2a cos <F> + 1>.
n
1

s

2. En déduire la valeur de I(a) = | In(a® —2acos(t) + 1)dt.
0

=
Il

Mines-Télécom

Calculer : . )
0)=|"
(6) /0 1 + cos(t) cos(6)

dt, 0€0;n].

Mines-Ponts MP 2023

Etudier la convergence de

=/
00 1+l’6

Si 'intégrale converge, calculer sa valeur.

Mines-Ponts MP 2023
Soit @ > 0 et b > 0. Etudier la convergence de

40 e—at o e—bt
T
0 t

Si 'intégrale converge, calculer sa valeur.

Mines-Ponts MP 2023

Soit @ > 0. Etudier la convergence de

+oo arctan(ax) + arctan (£
I :/ (a> dz.
0

1+ a2

Si I'intégrale converge, calculer sa valeur.

[643] x e

L’objectif est de montrer que 7 ¢ Q.
A tout polynome f € R[X], on associe F' = > (—1)*f2h),
keN

1. Calculer /7r f(t)sin(t) dt en fonction de F(0) et F(r).
0

On suppose que 7 =

@‘@\_/

avec (a;b) € N*? et on pose pour n € N* :

x™(a — bx)"

Vo € [0;7], fu(z) = o

2. Tracer le graphe de f, sur [0;7].
3. Montrer que / fn(t)sin(t) dt € N* et en déduire que m ¢ Q.
0
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Mines-Ponts PC 2022

In(x)

x—1

1. Montrer que f est prolongeable par continuité en 1.

Soit f:x—

1
2. Montrer que [ = / f(z) dz est convergente.
0

3. Montrer que f est développable en série entiere.
4. Calculer I.

X-ENS
Soit F'={f € C*([0;1],R) | f(0) =0, f(1) = 1}.

Déterminer :

it ['17/2) — f(2)ldz.

fer

646 ] x

Calculer :
/+<>° In(1+¢t) &t
o 1+t

Mines-Ponts PSI 2023

On définit
t2—1

1+2)VIte

fiteR—

et .
F:x€R+l—>/ f(t)de.
0

1. Donner le développement limité d’ordre 3 en 0 de F'.

+oo
2. Calculer, si existence, / f(t)dt.
0

648 ] x

Soit (u;v) € R* et r € R\ {Jul;|v|}. Calculer :

2 1
I(u:v) = / _ __ 4.
(u;v) 0o (u—ref)(v—reb)

Mines

Pour tout x € [2;+00[, on pose :
+oo ]
Li(z) = /z () dt.  (logarithme intégral)

Trouver un développement asymptotique a n termes lorsque z — +o0.
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—

1. Soit P, @ appartenant C[X] avec deg(P) < deg(Q) — 2. On suppose de plus que
() ne s’annule pas sur R. Montrer que

[ G de= 3 et

ae)

P
ou €2 est I’ensemble des poles de @, e(a) le signe de la partie imaginaire de « et

1
p(a) le coefficient de e dans la décomposition en éléments simples de F'.

—

2. Appl leaer [T 4

. icati : / — dt.
pplca 1011 calculer o 1+t4

—

1. Démontrer 'existence ou la non-existence d'une fonction f continue et bornée
de R, dans R telle que :

xT e_t2
Vo >0, f(z) =1 .
v2 0. f@) =1+ | T

2. Etudier la suite de fonctions f, : R, — R définie par fo(z) = 0 et pour tout
(n;z) appartenant a N x R, par :

frnl@) =1+ [ =t

Mines-Ponts PC 2024

1. Soit n € N. Calculer J, = /Z tan™(z) dz.

2. Etudier la convergence de la série Z )" J, et calculer sa somme de plusieurs
n=0
manieres différentes.

Mines-Télécom PSI 2019

too (14t
Montrer que l'intégrale / In ( 2 ) dt converge et calculer sa valeur.
0

ENS PSI 2023
+oo 2 a2
Pour tout a € R, on pose I(a) = / e " e dx.
0

Montrer que l'intégrale I(a) converge et calculer sa valeur.

Mines-Ponts PSI 2019
+00 eltw -1

Soit T : x> / e tdt.

Montrer que 7" est deﬁnle sur R et calculer T'(x) pour tout x € R.

138




cor vr

Soit « et 8 deux nombres réels. Posons

o B e
! 0 P 2 0 P ’

1. Pour quelles valeurs de « et § l'intégrale I est-elle convergente ?

2. Méme question pour l'intégrale Is.

Mines

400 .
Pour tout n € N, soit I, = / et .
0
1. Montrer I'existence de I,, et exprimer I,, en fonction de n.
+oo

2. En déduire la valeur de / et sin (ti) t" dt.

0
Mines-Ponts

Soit f : [0;4+00[— R une fonction continue et sy € R tels que

+o0
/ f(t)e ot dt
0
converge.

1. Soit F une primitive de ¢t — f(t)e " sur R,.

Démontrer que F' est bornée sur R, .

“+o0o
2. En déduire que pour tout s > s, f(t)e " dt converge.
0

3. Sur le méme modele, démontrer que si g : [1;400[ — R est une fonction telle

oo oo g(t)
que / g(t) dt converge, alors / " dt converge.
1 1

Centrale
Soit f € C'([0;1],R) vérifiant f(1) = 0.

Montrer que /01 At dt < ;/Ol(fl(t))2 dt.

[660] x mP
Soit £ = {f € C'([0;1],R) | f(0) = f(1) = 0}.
1. Montrer que

I - /1 F@) f (@) cot(rt) dt et I = /1 O
0 0 tan®(7t)
existent. Comparer I et I.
2. Montrer que pour tout f € F, /1(f'(t))2 dt > 7? /1 FA(t) de.
(Inégalité de Wirtinger) i ’

3. Caractériser le cas d’égalité de I'inégalité de Wirtinger.
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Mines-Ponts PSI 2019

Soit n € N*. Pour tout x € R, on note

un(x)z\/2+\/2+\/2+---+m,

ou 'on a n racines carrées. Calculer :

L1
lim ——dx.
n—+o00 Jo Unp, <x>

662] x

Calculer :

+o0 1
A
o (1+1?)

Centrale

Soit (p;q) € N%. Donner un algorithme permettant de calculer I'intégrale suivante :

[ “+o0 tp d
pa /0 (1 + 2)

cop

Soit a et b deux réels tels que a < b.
b .
1. Soit f € C*'([a;b],R). Montrer que AhIJP / f(t)erdt = 0.
—+00 Ja

2. Reprendre la question précédente en supposant que f € C([a;b],R).

665] x mp

Soit f € CY(R,C) une fonction 27-périodique ne s’annulant pas sur R. On consideére :

1 ()
I(f)=— dt.
(f) 2w Jo - f(t)
1. En considérant I'application ¢ : ¢t — exp ( I J;/((g)) d9), montrer que I(f) est un

entier. (On appelle I(f) V'indice de f.)

Soit P € C[X]. On note fp(t) = P(e?).

On admet le théoreme de d’Alembert-Gauss en deuxieme question, mais pas en
troisieme question.

2. Caractériser I(fp) a l'aide des zéros de P.

3. En utilisant P(re') pour r variable, donner une démonstration du théoréme de
d’Alembert-Gauss.
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1666 x-ENS

1. Soit P € R[X] de degré m. Considérons, pour ¢t € R,

I(t) = /Ot e~ P(u) du.

Montrer que :

I(t) = > PY0) - > PU®).
=0 j=0
2. Soit n € N* et qq, ..., q, des entiers naturels avec ¢y # 0.
Soit encore @ = > g, X"
k=0

On suppose que Q(e) = 0.
Pour p € N, on pose :

P(X)= X1 (X - 1)P(X —2)P--- (X —n)~.

Soit encore

Montrer que J € N. De plus, montrer que (p — 1)! divise J, et que pour tout p
suffisamment grand, J # 0.

3. Montrer qu’il existe C' € R tel que, pour tout p € N, |J| < CP.

Trouver une minoration de |J|. Conclure que e est un nombre transcendant,

c’est-a-dire que e ne peut pas étre racine d'un polynéome non nul a coefficients
dans Q.

Mines-Ponts MP 2024

Montrer existence de

~+00  p+00 gf
I= / / SO 41 dg
0 T t

et calculer la valeur de I.

Mines-Ponts PC 2023

Pour tout entier n > 2, on pose :

oo 1
I”:/o (t+1)---(t+n)dt'

Montrer I'existence de I,,, puis calculer I,,.

1669 ENS

+oo sin(x)

1. Calculer F(s) = / e **dx.
0 x
+00 gj
2. En déduire / sin(z) dz.
0 x
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Centrale PC 2005

1. Justifier I'existence de

400 ain3d 400 ain3d
J = / S 4 er T (z) = / S gy
0 12 T 12

pour r € R7.

2. Déterminer deux réels o et 3 tels que, pour x € R :

o0 sin(t o0 sin (3¢
1) =a [ Si‘g)dtw / Smt(f)dt.

3. En déduire que, pour tout z € R :

3z 3sin(t
I(z) = / o ) at.

4. Montrer que

3T« 3z 1
lim < / Sin(t) 4, / dt) —0
z—0t T t2 z t

et en déduire la valeur de J.

5. Montrer que I peut se prolonger en une application dérivable sur R, et préciser
la dérivée en 0.

Mines-Télécom MP 2024
+oo e_t

Soit f:x— /
o x+t

1. Donner le domaine de définition de f.

2. La fonction f est-elle

dt.

(a) continue?

(b) de classe C'?
3. Etudier la croissance de f. Calculer les limites au bord du domaine de définition.
4. Donner un équivalent de f en +oc.

5. Donner un équivalent de f en 0.

ENS Lyon MP 2024

Trouver un équivalent de la suite récurrente (x,)nen définie par :

130:1

+00 g2
Tpi1 = Tp + / e " dt
Tn
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cop

Etudier lintégrabilité de

sur Uintervalle |1 ; +o0].

cop

1. Démontrer que pour tout n € N, la fonction

1

t— —————
1+ t2 4 tre?

est intégrable sur [0;+oo.

2. On pose :
/+oo 1 &t
Tl T2 et

Calculer lim u,,.
n—-+o0o

Mines-Ponts

Pour tout t > 0, calculer :

+oo t
/ cos(tx) .
o 1+a?

X PC 2019

Déterminer la limite de

P S
quand n tend vers +oo.
cop 2015
Soit @ € R. On considere la fonction
1

fite— cosh(t) + cosh(a)

“+o00

Montrer que f est intégrable sur R, et calculer / f(t)dt.
0

Indication : on pourra faire le changement de variable u = e,

Mines 2015

+oo gin (¢
Justifier I'existence de I'intégrale I = in(?) dt

77

En écrivant I comme somme d’une série alternée, déterminer le signe de 1.

Centrale 2015

1
Soit f € C'([0;1],R). Donner une condition simple pour que Iintégrale /
converge. 0

t
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CCP 2015
Soit z € [0;1], p € N* et n € N.
1+ (_1)nxp(n+1)

1. Mont —1)F P =
ontrer que » (—1)"z T

k=0

1)k 1 1 " 1 xp(n+1)
2. Endedunrequez:1_i_p]€ /0 1—|—xpdx+(_1> /0 a7 dx

(—1)* L1
3. Montrer quezl+pk /o 5

CCP 2015

Justifier I'existence puis calculer la valeur de

400 —t< _l 1 )
/0 e ' In(?) t+1—e*t dt.

Petites Mines

1 1—t
On considere la fonction f : ¢ +— —1In ()
t 1+1¢

1. La fonction f est-elle intégrable sur | —1;1[7
2. Développer en série entiere la fonction ¢ +— In(1 — ) — In(1 + ¢).
1 2

3. Calculer / f(t) dt sachant que ((2) = e
-1

cor vr

1. Prouver que, pour tout entier naturel n, f, : ¢ — t" In(t) est intégrable sur |0 ;1]

1
et calculer [, = / t" In(t) dt.
0
2. Prouver que f : ¢+ e'In(t) est intégrable sur |0;1] et que
1 oo 9
/ dfn(t)dt = —-) —.
0

|
i nn!

Indication : utiliser le développement en série entiere de la fonction exponentielle.

CCP MP

On pose, pour tout z €]0; 400 et pour tout t €]0; +oo|, f(x;t) = e 1oL,
1. Démontrer que, pour tout x € ]0;+o0], la fonction t — f(x;t) est intégrable sur
105 400l
On pose alors, pour tout z € |0; 00|, I'(z) = /;OO e T dt.
2. Pour tout x €]0;+o00], exprimer I'(x + 1) en fonction de I'(x).

3. Démontrer que T' est de classe C! sur ]0;+oo[ et exprimer I'(x) sous forme
d’intégrale.
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CCP MP

400 67215
On considere la fonction F': x +—> /
0

T+t
1. Prouver que F est définie et continue sur |0; +o00.

dt.

2. Prouver que z — zF(x) admet une limite en +oo et déterminer la valeur de
cette limite.

3. Déterminer un équivalent, au voisinage de +oo, de F'(x).

CCP 2016

1. Résoudre dans R I'équation (E) : e* —e™® = 2.
2. On pose : Vn € N, J,, = / (sinh(t))"dt ot a = In(1 + /2).
0

Montrer que J, est bien définie, et calculer lim .J,.
n—-+4o0o

3. Trouver une relation liant J,,», J, et V2.
En déduire un équivalent de J,, quand n tend vers +oo.

2

CcCP MP
xT

1
On considere la fonction H définie sur |1; +oo] par H(x) = / ——dt.

1. Montrer que H est C' sur |1;+o0[ et calculer sa dérivée.
1 1
2. Montrer que la fonction u définie par u(z) = — admet une limite
In(z) x-1

finie en z = 1.

3. En utilisant la fonction u de la question 2, calculer la limite en 17 de H.

ENS 2016

+00 1
On considere la fonction f : x +— /
0

m dt

1. Déterminer le domaine de définition (réel) de f.

2. Montrer que f est continue sur son domaine de définition.
3. Trouver un équivalent de f en 0.
4

. Montrer que le graphe de f admet pour axe de symétrie la droite A d’équation
1

5. Déterminer la borne inférieure de f.

Petites Mines 2016

Soit f € C(R;,R). On suppose que la fonction g : x / f(t) dt est bornée sur R,.
1

e oo f(t)
Montrer que l'intégrale / — dt est convergente.
1
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m Mines 2016

2z 1
On considere la fonction f : x +— /
x

o dt.
1. Quel est le domaine de définition de f? Peut-on réduire son domaine d’étude ?
2. Montrer que f est de classe C. Etudier ses variations.
3. Etudier la limite de f en 4o00. Calculer un équivalent de f en +oc.
4. Etudier la limite de f en 0.

Peut-on prolonger f en une fonction continue sur R?

+oo
L’intégrale / f(z) dx est-elle définie ? Si oui, la calculer.
0

CCP 2016
1. Montrer I'existence de [ = / B cos(u)
-7 /4 — 3sin? (u)

du.

2. Calculer 1.

Mines 2016

, t
z e
On considere la fonction f : x +— /
0

r+t
1. Montrer que f est définie sur ]0; +oo.

dt.

2. Etudier ses limites au bornes.

3. Trouver un équivalent de f(z) quand x tend vers +oo.

cop 2016

+oo sin® (¢
1. Montrer que l'intégrale / ®)
0

2 dt est définie.

2. Montrer que :
5 L. . .
sin’(t) = T (sin(5t) — 5sin(3t) + 10sin(t)) .

3. Montrer que pour tout a > 0 :

400 ain® 5a i 3a qj
/ sin®(t) & — 5 / sin(u) du + 10 sin(u) du
a 3

t2 - 16 a U2 Y E a U2
00 Qi ® t
En déduire la valeur de / sn;( ) dt.
0

ENSAM 2016

Lgr —1
On considere la fonction f: z — /
0

In(t)
1. Déterminer le domaine de définition de cette fonction.
2. Etudier la dérivabilité de f. En déduire f'(x) puis f(x).
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Mines 2016

+o0 arctan ( ¥ ¢ In(t
Montrer que pour tout x > 0, / J dt = / & dt.
0 0

1+ t2 2 —a

[696] cop 2010
Soit f € C([0; +oo[, R).
On suppose qu'il existe ¢ > 0 et a € R tels que, pour tout ¢ € [0; +ool, |f(t)| < ce™.

+oo
On considere U'intégrale F'(x) = / f(t)e "t dt.
0
1. Montrer que F'(z) est définie pour tout = > a.

2. On suppose dans toute cette question que a < 0.

Calculer 1_1}111 xF(z) et en déduire un équivalent de F' en +o0.
On suppose de plus que l—lgl f(z)=1L.

Montrer que 1_1}111 zF(x) = L et en déduire un équivalent de F' en 0.

X-ENS PSI 2017

1
1. Montrer 'existence et calculer 'intégrale / z" In(x) dz pour tout n entier na-
0

turel.
1 = 1
2. Montrer que J = /0 In(z)In(1 - z)dr = T; m

3. Déterminer trois réels a, b et ¢ tels que

b e b e
r(z+1)?2 = x+1  (z+1)2

et donner la valeur de J.
2

T
On admettra que ((2) = I

Centrale PSI 2017

Pour tout x € R*, on pose : f(x

dt

— * 1
)= /—w L+ 12)(22 - 12)
Démontrer que U'intégrale f(x) converge pour tout x € R*.
Etudier la parité de f.
La fonction f admet-elle une limite en 07

La fonction f admet-elle une limite en +00? Si oui, la calculer.

AR BRI

Développer f en série entiere en précisant le domaine de validité de ce dévelop-
pement.
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(699 | coINp 2024
—T

e
1. La fonction x — ————= est-elle intégrable sur |2;+oo|?

2. Soit a un réel strictement positif.
In(x)
V1 + a2

La fonction = +— est-elle intégrable sur |0 ; +o00| 7

TPE/EIVP 2012

400 "
Calculer lim ——dx.
n——+o00 Jo 1+ gnt2

Mines-Ponts 2012
Déterminer les polynémes P € R, [X] tels que :

n+1
Vn € N, P(t)dt =n*+ 1.

Mines-Ponts 2012

1n(1 D
Calculer / n(+z+ +2?)
0 T

dx.

[703] x pc

Soit f € C(R4, R, ) intégrable sur R,.
1 T
Montrer que lim —/ tf(t)dt =0.
0

r—+00

cor 2017

Déterminer la nature des intégrales :

+o0 gsin(t) +o0 1
A :/ dt et B :/ sin(t) sin () dt.
1 t 0 t

CCP PSI 2021

1. Prouver que, pour tout n € N*, 'intégrale

+o0 /N sin (3%/71)
W=

est convergente.

+o00 t
2. Montrer que la suite des réels J,, converge vers le réel K = / 156 dt.
0
N +oo
3. A T'aide d’un changement de variable, prouver que K = / e
0

déduire la valeur du réel K.
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cor par

“+o0o
Calculer, si existence, / ze " d.
0

Centrale PSI

+00 sinh(t
On considere la fonction F': x — / e . (*)
0

t
1. Déterminer ’ensemble de définition de F'.

—x

dt.

2. Déterminer la limite de F' en +oo.

cop psi

1
Pour tout n € N, on pose U,, = /
0

In(2)
Montrer que U,, ~ .

n—-+o0o n

< dzx
1+ am

[709] ccp
oo ] — et

On considere la fonction f : x — / —Fdt.
0

tvt
1. Etudier le domaine de définition D; de f.
2. Etudier la dérivabilité de f sur Dy. Expliciter f'(z).

3. En déduire un équivalent de f en 4o0.

ENSAM PSI

Soit deux fonctions f € C([0;1],R) et g continue et intégrable sur R . Montrer que :

1

lim 'ﬂwg@ﬂdt:fﬂnﬂﬂmﬂﬂdt

n—+oo 0

TPE/EIVP PSI

Apres avoir justifié I'existence de l'intégrale, montrer que :

+o00 733 \/_ d +00 1y n!
e “cos(vx)dr = —1)"——.
/ (V) de = 3 (1" g
X FUF 2024
Soit n € N*. On pose :
1 2n 1 2n—1
L= [ —de et g= [
o 1I+an o 1+an

1. Calculer lim 1I,.
n—-+00

1
2. Montrer que, pour tout n > 1, |1, — J,,| < —.

n2
3. Calculer J,.

4. En déduire un équivalent simple de I,,.
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X FUF 2024

Soit f € CY(R4,RY) telle que :

f'(z) 2
f(x) +oo
Montrer que/ f(t)dt ~ Lf(z)
0 +0o0 3
Mines-Télécom 2022
0 RY F e e
: tout = € R* = / t.
n pose, pour tout x %, F(x) . 11

1. Montrer l'existence de F'.

2. Montrer que F est classe C? sur R

3. Montrer que F' est solution de y" +y = (E).

1
x
4. Montrer que F' est la seule solution de (F) de limite nulle en +oc.

CCINP MP 2025

On considere 'intégrale suivante :

[ /7r sin(t) it
0

t

1. Montrer que I est bien définie.

2. Estimer I & 1072 prés. (On pourra développer I sous forme d’une série entiere.)

CCINP PSI 2024
+oo
1. Soit f(x) :/ te~"t dt.
0

(a) Vérifier que f est bien définie sur [0;+oo].
(b) Montrer que f est continue sur [0;4o00].
(¢) Montrer que, pour tout x > 1, f(z) = xf(z — 1).

xT

2. Soit V, = /nlln(f(u))du ot é(z) :/ In(f(w) du.
(a) Montrer que ¢ est dérivable et calculer ¢'.
(b) Montrer que, pour tout z > 1, ¢'(x) = In(z).

(¢) En déduire la limite de ¢ en +oc0.
| (-1
Va

(d) En déduire la nature de la série Z

Mines-Ponts PC 2024

Montrer la convergence des deux intégrales suivantes et les calculer :

[ +o00 €x d J +oo €x d
= t = .
/0 sinh(z) v ¢ /0 cosh(z) v
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Mines-Télécom MP 2024

, +oo
Etudier la convergence de / 23 sin(2%) da.
0

Mines-Ponts MP 2024

Etudier la convergence de

+eo gin(x)
/0 m dx.

CCINP PC 2024

+oo
Soit f une fonction de classe C! sur [1;+o00] telle que / |f'(t)| dt converge.
1

N aln(t
1. Soit @ > 1. A l'aide du changement de variable ¢t = e”, calculer / ni) dt.
1
2. Soit n € N*. Montrer que :

n+1 n+1

fOdt =)+ [ 1=
En déduire que :

[ rwa- o < [Tirwla

n

n+1
3. Sin € N*, on pose vn:/ f&)dt — f(n).
Etudier la nature de la série _|v,].

En déduire que Y _ f(n) converge si et seulement si ( / f(t) dt) converge.
1

n=1 n>1

+e0 cos(t)

4. (a) Montrer que /
1

dt converge.

(b) En utilisant les mémes procédés qu’auparavant, prouver que

5 eos(VD)

n=1 n

converge.

5. Montrer qu’il existe ¢ € R tel que :

" (k) 1,
. fgln(n)+€+0(1).

k=1

CCINP MP 2022

e In(t)
Pour tout t > 0, on définit f(t) =

(1+1t)>
1. Montrer que f est intégrable sur |0; 1], puis sur [1;+ool.

2. Calculer /0 ") dt et /1 " fe) dt.
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CCINP MP 2022

1. Montrer que, pour tout u € R, |arctan(u)| < |ul.
+00

2. On pose F(x) = /o azzﬁlg;)

(a) Quel est le domaine de définition de F' 7

(b) Quel est le domaine de continuité de F'?

(¢) Quel est le domaine de dérivabilité de F'?

(d) Déterminer F”.

)

(e) En déduire F.

CCINP PC 2023

Trouver une primitive de
f 1051 — R

r  — —In(l—2?)

CCINP MP 2021

2x 1
On pose, pour = dans R, f(x) = /

3+t

dt.

Montrer que f est de classe C1.
Donner le tableau de variations de f.
Calculer la limite de f en 0F.

Calculer la limite de f en 4o00.

MR e

Tracer la courbe représentative de f.

TPE/EIVP MP 2017

Soit f de classe C? sur R, telle qu'il existe a > 0 tel que, pour tout x > 0, f”(x) > a.
Montrer que

g : Ry — R
1

r — ——

L+ [f(z)|

est intégrable sur R, .

X MP 2018

Montrer que, pour tout a > 2,

)

(ME]

cos(az) (cos(z))** dz = 0.

TPE/EIVP MP 2016
Etudier 'existence de

(o))

3
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Mines-Ponts PC 2024

Soit f € CY(R,,R) telle que :

+o0o +00
/ (f'(t)%dt < +o0 et / £2f2(t) dt < +o0.
0 0

Montrer que
'+OO
/ A1) dt < +oo
0

et que

“+o0o +oo +o0o
/ fA(t)dt < 2\// (f'(t))%dt \// t2f2(t)dt. (Inégalité de Heisenberg)
0 0 0

CCINP MP 2024

On définit une suite (u,),>2 de fonctions en posant :

n—1
Vn > 2, Vt €]0;1], u,(t) = tnln(t)

1. Calculer ||up]|s-

_ In(t) - In(1 —¢)
2. Montrer que la fonction f :t +—

est intégrable sur |0; 1.

+<>01

>

1
3. En déduire que / F(t)dt =
0 k=1

CCINP PC 2022

+o0 1
Soit T = / In (1 n 2) dt.
0 t

Montrer la convergence de [ et calculer I.

Mines-Ponts MP 2024
Soit r €] — 1;1[. Montrer I'existence de f € C*(R,R) telle que :

27
VneN, r" = / f(t) cos(nt) dt.
0

Mines-Ponts MPI 2024

Soit f: Ry — R une fonction de classe C* telle que (f’)? soit intégrable.
2

Montrer que t +—

v est intégrable sur [1;4o00].

Mines-Ponts MP 2017

1 +oo (_1)7171
Montrer que / ¥ dr = Z —_—
0 1 n"
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CCINP PSI 2023

+oo  gj
Soit 1 = | sinlt)_ g,
o  sinh(#)

1. Montrer que I converge.

2. Soit ¢t €]0;+o00|. Vérifier que :

sin(t)
sinh(?)

+o0
=2e 'sin(t) Y e
n=0

3. Montrer que :
2

+00
I = _
7;) 2n+1)2+1
4. En déduire que :

T T
—<I<1l+-.
4 Jr4

CCINP MP 2024

1. Soit (a;b) € R%?. Calculer / du.

au? +b
t

2. Soit t tel que cos(;

fonction de w.

3. On définit :

) ne s’annule pas. On pose u = tan(%). Déterminer cos(t) en

f @ Jli4oo] — R
x Co /Oln(a:+cos(t))dt

Montrer que f est de classe C! sur |1; 400[, puis montrer que :

vz €]1;4ool, f(2) = —me.
x?—1
Mines-Ponts MP 2019
u 1
Soit A > 0. O [:/ ——F——df.
o HPOSE A 0 A2+ cos?(0)
1. Calculer cette intégrale.
0
. i e
2. Pour tout n € N, soit u,(\) = /0 N T co(nd) dé.

Prouver que la suite (u,()))nen converge et calculer sa limite.

Mines-Télécom PC 2022

1
1. Montrer I'existence de I'intégrale / 2V® dz. Sa valeur est notée I.
0

2. Montrer 1’égalité :
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Mines-Télécom MP 2023

Montrer que
b 1 2"
[ e ~ 15
a 2"+ (1—2)"  notoo 4 n

Indication : on pourra effectuer le changement de variable x = %(1 + %)

Centrale-Supélec PC 2017

Montrer que
I(z) = /2 In(cos?(t) + 2 sin®(t)) dt
0

est définie pour tout x € R%.. Calculer cette intégrale.

Mines-Télécom MP 2022

Etudier I'existence et la valeur de :

400 F00 (_1>n i@

-/ —
0 nZ::llﬁ—n%2

Mines-Ponts MP 2016

dt.

. L ) — sin(t
L. Etudier la convergence de / 7 In(cos(?) —sin(t))
0 1412

2. Soit F(r) = /0 : ln(cos(ltzr—;iﬂ(t))

(a) Donner le domaine de définition de F'.

dt.

(b) Etudier la continuité de cette fonction.

Mines-Télécom MP 2023
+o0
Soit F(z) = / In(t)e " dt.
0
1. Déterminer le domaine de définition de F'.

2. Montrer que F est de classe C! sur R%.

3. Déterminer une équation différentielle dont /" est solution sur R , puis résoudre
cette équation différentielle.

CCINP PC 2022
Soit
cos(x) sin(x)

3 3
= (sin(z) + cos(@))? & J (sin(2) + cos(z))?
1. Montrer que I et J existent.
2. Montrer que [ = J.
3. Calculer I et J.

dzx.
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ENS MP 2019

Soit f: {—%; %} — R une fonction continue. Montrer que :

/g rf(32% — 22°) d = 2/01 rf (32 — 22°) dz.

1
2

TPE/EIVP PC 2018

Soit
I—/+OO L oy et J—/W Py
o 144 ¢ “Jo 1xe"

1. En utilisant le changement de variable u = %, montrer que I = J.
2. Calculer I.
Indication : on remarquera que [ = %, et on utilisera le changement de variable

—¢_ 1
r =1t -

Mines-Ponts PSI 2017

Justifier la convergence et calculer :

I= /og \/tan(t) dt.

CCINP PSI 2022

Soit F(x):—/oxln(lt_t)

1. Déterminer le domaine de définition de F'.

dt.

2. Montrer que :
—+00 xn
Ve e [-1; 1], F(x) = Z —-
n=1 n
3. Montrer la relation :

Vo €0;1], Flx)+ F(1 —x) = 7;2 — In(z) In(1 — x).

Mines-Ponts MP 2016

Soit P un polyndéme réel de degré supérieur ou égal a 2.

+oo
1. Déterminer la nature de I = / cos(P(x)) dx.
0

+oo
2. Déterminer la nature de J = / ‘ cos(P(x)). dz.
0

3. Déterminer le signe de I pour P = X2,
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Mines-Télécom MP 2023

Justifier la convergence de l'intégrale

+oo 1
/ (1 — tarctan ()) dt,
0 t

puis calculer sa valeur.

CCINP PSI 2024

Soit b > 0. Pour = > 0, on pose :

I(z) = — et
(z) A

1. La fonction [ est-elle bien définie ? continue ?

2. Montrer que I est de classe C' sur R* .

3. Montrer que pour z > 0 :

x

+0o0 s b2 “+oo e
I(z) = 2/ e wZe " du, I'(x) = / —2—— du.
0 0
4. Montrer, a I'aide d’un changement de variable judicieux, que :

Ve >0, I'(z) = — 2[(3:)

5. En déduire 'expression de I.

CCINP MP 2024

Soit £ > 0 et !
f:xGRn—)/ tk sin(xt) dt.
0

1. Montrer que f est définie et continue sur R.

2. Montrer que f est dérivable sur R, puis prouver que f vérifie la relation :
Ve e R, zf'(x) + (k+ 1) f(x) = sin(x).

3. Déterminer le développement en série entiere de y : R — R telle que, pour tout
r € R, zy/(x) + (k + 1)y(z) = sin(x). Donner ensuite le rayon de convergence
du développement en série entiere d’une telle fonction y.

Mines-Ponts MP 2024

Donner les deux premiers termes du développement asymptotique de :

+oo
I, = / e "In(n + z)dz.
0
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CCINP PC 2022

Déterminer la nature de 'intégrale

/+°0 In(x) e

l.n

selon la valeur de I'entier n et calculer cette intégrale quand elle existe.

CCINP MP 2023

On pose :

1 e_m2(1+t2) x 2
Vo € [0;+oo], F(x) :/0 Wdt et G(u)= ./0 e " du.

1. Montrer que F est de classe C! sur [0; +oo| et exprimer F'(x).
2. Montrer que G*(z) = —% — F(x).
+oo 2

3. En déduire la valeur de / e du,
0

Mines 2024

Montrer que :

/0er Vsin(2z) dz < v/2 — %

CCP 2024

Soit a €]0;1].
o ax—In(l —x)
1. Montrer que U'intégrale I(a) = / ————5— dx converge.
0 x
“+oo am
2. Montrer que I(a) = — _.
4 (a) 7; n(n+ 1)

1y —In(l —
3. En déduire la valeur de / w dzx.

0 T

Mines 2022

+oo rsin(z + t)
P R - / rsin{w +1)
our z € R, on pose f(x) ; T+ (21)?

1. Montrer que f possede une limite en +oc.

2. Donner un équivalent de f(x) lorsque x — +00.

Mines 2023

Soit f € C(R,R;) telle que :

Vi € R, f(m)—Q/Om\/mdt.

1. Montrer que f est croissante sur R et nulle sur R_.

2. Montrer qu'il existe ¢ € R tel que, pour tout x € [c; 400, f(z) = (v — ¢)%.
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Mines 2022

+o0 gin(t
Pour z > 0, on pose s(x) = / sin(t)
0

et — 1
1. Développer s en série de fractions rationnelles.

dt.

2. En déduire un équivalent de s(z) lorsque x — 0.

CCP 2023

+oo tsin(t
%m]:/ sin(t) 4
0 241

1. Justifier 'existence de I.

2. Pour x € R, on pose J(z) = /
0

@ ¢]sin(t)]
t2+1

dt. Montrer que :

J(n) Z/ (u+ km) sm(u) du

(u+ km)?

3. L’intégrale I est-elle absolument convergente ?

Centrale 2023

1. Donner une condition nécessaire et suffisante sur « et 5 pour que les intégrales

suivantes convergent :
1 1 —+00 1
/ —dz et / — dz.
0 ¢ 1 P

2. (a) Donner le domaine de définition (réel) D de la fonction gamma I' définie
par :

+oo
[(z) = / t" et dt.
0

Montrer que pour tout z € D, I'(x) > 0.

(b) Montrer que I' est I'unique fonction f : D — R vérifiant :
- f(1)=1;
s fle+l) =af(x);

e Inof est convexe.

Mines-Télécom MP 2022

Pour tout n € N, on pose :

+00 efttn
h:/ dt.
0 Vi

1. Montrer que I,, est bien définie.
2. Calculer I,,.

Mines-Ponts MP 2021

+oo
Donner le domaine de définition de f: x +—> / sin(t") dt.
0
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Mines-Télécom MP 2023
soit
dzx

I /+00 tanh(3z) — tanh(2x)
o x
et

F(t) = /+°° tanh(x) — tanh(tx) e
0 x
1. Montrer que I est bien définie.

2. Montrer que F est de classe C* sur [2;3].

CCINP MP 2022
+o0o
Soit I'(z) = / t" et dt.
0
1. Montrer que I est définie sur |0 ; +oo].

2. Montrer que T est de classe C! sur |0; +oo[ et donner I".

3. Montrer que :

+oo pr—le—t X AT ()
Vo >1,¥Ae]l-1;1 / Tt = 2 gy
x> 1, G] ) [7 0 1 — et TLZ::O(TL—Fl)I

Centrale-Supélec PC 2017

Montrer que
I(z) = / ? In(cos(t) + 22 sin(t)) dt
0

est définie pour tout x € R%. Calculer cette intégrale.

Mines-Télécom MP 2018

Justifier 'existence de :

T 1+t
/ LR
V11—t

Calculer cette intégrale.

Mines-Ponts MP 2021

+oo
Soit f(z) = e / e~ dt. Trouver un équivalent de f en +oo.
x

ENS MP 2019

Soit f € C(Ry,R) de carré intégrable. Déterminer lim e~ / ")t dt.
0

r—r-+00

Mines-Télécom MP 2018

1
Soit f(z) = / ™ dt.
0
1. Quel est I’ensemble de définition de f 7

2. Déterminer le développement en série entiere de f en 0.
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Mines-Télécom MP 2023

1 xt
On considere : f: ¢t — / —du.
f 0 v1—2a2
1. Donner Dy.
2. Montrer que f est continue sur [0;4o00].

3. Trouver une relation entre f(¢) et f(t —2), en supposant que t et ¢t — 2 sont tous
deux dans Dy.

Mines-Télécom PSI 2023

Soit F' la fonction définie par :

+oo ]
n(t) dt.
12 4+ 22

Vo € RY, F(z) = /
0

Montrer que F est de classe C*.

Mines-Ponts MP 2022
1
On note f(x;y) = / In(¢* +¢¥) dt.
0
1. Donner I’ensemble de définition de f.

2. La fonction f admet-elle des extrema ?

Mines-Télécom MP 2025
On définit :
In (1 + %)

1. Montrer que f, est intégrable sur |0 ; +o0].
+o00o
2. Calculer lim fo(z) d.

n—-+4o00 Jo
+o0o

3. Calculer lim n fo() dz.

n—+o00 0

Mines-Télécom PSI 2018

Montrer que pour tout a > 0 :

1 1 +oo (_1)k
dt = )
/0 14te l;)ka—kl

CCINP MP 2013

Calculer :

I(a;b) = /Owln <“_C°S($)> dz,

b — cos(x)

ou a,be|l;+oo.
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Mines-Ponts PC 2023

Soit n € N et i
Jp 1T —> / cos(nt — xsin(t)) dt.
0
1. Donner la parité de J, en fonction de n.
2. Montrer que J, est de classe C'™° sur R.

3. Montrer que :

Ve eR, J,(z) =
(z) pz;)p!(n—l—p)!

X (=1)Pr <;‘>2p+” '

4. Déterminer p, € Ry[X] tel que J, vérifie 'équation différentielle suivante :

2?y" + xy + pa(x)y = 0.

Mines-Télécom MP 2023

1. Montrer que, pour tout z € R, e* > 1 + x.

En déduite que :
1

1+ ¢2

VieR 1-2<et <

Soit n € N. On pose :

400 2 1 n 400 1
I:/ e " dt, hz/ﬂ—ﬁwh %:/ - dt.
0 0 o (1+1¢?)

2. Justifier 'existence de ces intégrales et montrer que :

Vn €N, I, < I

! <
N
Pour tout n € N, on pose :

W, = /E cos”(t) dt.
0

Soit n € N*. Montrer que I,, = Ws,, 11 et J, = W, .
Déterminer une relation de récurrence entre W, .o et W),.

En déduire que la suite ((n + 1)W, 1 W, )nen est constante.

A A

Montrer que W,, 1 ~ W,, et en déduire la valeur de I.

Mines-Ponts MP 2016

Calculer :
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ENSEA/ENSIIE MP 2022

Soit F' la fonction définie par :
400
F(z) = / cos(zt?)e " dt.
0

1. Montrer que F' est définie sur R.
2. Montrer que F € C*(R,R).

3. Pour tout k € N, calculer F*) (0) puis donner, si possible, le développement en
série entiere de F'.

CCINP MP 2021
Soit f(a) = [ end
oit f(x) = / —e"" dt.
o Vi
1. Montrer que f est de classe C! sur R.

2. Déterminer une équation différentielle vérifiée par f.

3. Calculer f a I'aide de fonctions usuelles.

400 VLS

On admet que / e duy = Y-
0 2
CCINP PSI 2021
+o0o teftx
Soitf::z:E]R»—>/ - dt.
o e —1

Donner le domaine de définition de f.
Déterminer la limite de f en +oo.
Pour tout z > 0, calculer f(z — 1) — f(z).

En déduire une expression de f sous la forme d’une série de fonctions.

Gk W N

Proposer une autre méthode pour décomposer f(z) a 'aide d’une série.
Obtient-on la méme série ?

Mines-Ponts MP 2014

Pour tout n € N et pour tout x € R, on considere I'intégrale :

To(z) = [ @ -y

TL' —x

1. Montrer que J,, peut s’écrire :
In(2) = An(z)e” + Bn(x)e™,

ou A, et B, sont des polynomes de degré au plus n.
2. Montrer que e” ¢ Q si r € Q.
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Mines-Ponts MP 2018

Soit f(z) = /0E In(1 4 2 cos*(6)) d6.
1. Déterminer ’ensemble de définition de f.
2. Montrer que f est dérivable sur | — 1;+o0].
3. Déterminer f(z).

Mines-Ponts MP 2021

1. Pour ¢ réel, linéariser sin®(¢).

2. Montrer la convergence et calculer :

400 gin®
/ sin®(t) dt.
0 t

Mines-Télécom 2019

On considere l'intégrale :

1] —¢2
/ n(1 t)dt
0 12

Justifier son existence et la calculer.
Indication : on pourra effectuer une intégration par parties.

Mines-Ponts MP 2018

On considere l'intégrale :
'+OO
/ Isin(£)|e dt.

0
1. Etudier I'existence de cette intégrale.

2. Si existence il y a, calculer cette intégrale.

X MP 2018

—+o0
1. Calculer/ z"e " dx.
0

n n!
2. Montrer que / e fdx < 5
0

ntl n!
3. Montrer que / e dx > 5
0

Mines-Télécom MP 2023

Montrer que :

Mines-Télécom PC 2022

Lt n(t)
1—1t2

1. Exprimer [,, comme somme d’une série.

Pour tout n € N, soit [,, = / dt.
0

2. Trouver un équivalent de I,,.
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CCINP PSI 2021

Soit ¢ : R — R continue. On suppose qu’il existe C' € R tel que :

C
Vo € R, |p(z)| < T2
On pose :
Ve e R, f(x —|—Z (x+n)+o(x—n)).

1. Montrer que f est définie et continue sur R.
2. Montrer que f est 1-périodique.

3. Soit g une fonction 1-périodique continue de R dans R. Montrer que g est
intégrable sur R et que :

[ st~ [ o

ENS PC 2025
On pose :

1
Vn e N, Vt e R, A,(t) = / sin?(2xt)z" 2 dz.
0

Donner un équivalent de A, (t) quand ¢t — +oc.

CCINP PC 2022

1. Montrer que, pour tout z €1]0;4o00] :

tan(z) + arct <1) u
arctan(x arctan ( — | = —.
T 2

2. Soit f:x+— /E arctan(z tan(6)) d6.
0

(a) Montrer que f est définie et impaire sur R.
(b) Montrer que f est continue sur [0;+o0].

)

(¢) Montrer que f est croissante sur R, .

a) Montrer que f est dérivable sur R, et donner la dérivée de f.
)

3. (
(

b) En posant u = x tan(f), montrer que :

g
T 4 Jo u?+x

4. Montrer que
2

@5 (3) =

et en déduire lim f(x).

T——+00
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CCINP PSI 2017

On considere, pour n € N*, I’application :

x —

1
1. Montrer l'existence de I,, = / fu(z) de.
0

2. Montrer que lim I, =
n—-+00

+oo 1
kR

CCINP PC 2018

Soit f(z) :/

1.

4z gin(t)
z 1+t
Donner ’ensemble de définition de f.

dt.

2. Montrer que f y est de classe C! et préciser un équivalent en 0.

Mines-Ponts MP 2015

Soit f(z) = /0+Oo e~ sinh(zv/1) dt.

1.

Donner I'ensemble de définition de f.

2. Donner un développement en série entiere de f.

3. Exprimer f a 'aide de fonctions usuelles.

Mines-Ponts

1.

Soit f : [a;b] — R une fonction deux fois dérivable, dont la dérivée seconde
est intégrable, et h : [a;b] — R une fonction deux fois dérivable de dérivée
intégrable. On pose, pour = € [a;b], H(z) = [ h(t) dt. Montrer que :

[ Fem e e~ ek = [ @ a - [ OR

. On suppose que, pour tout = € [a;b], |f"(x)] < M. Montrer I’approzimation

par la méthode des trapézes :

(b —a)

(b—a) 5

<M

b fla) + f(b)
/a f(z)dz — T

Que devient 1'égalité de la question 1 s’il existe ¢ €a;b[ tel que lim h(x) et
Tr—Cc

lim, h(z) existent, mais sont différentes ?
Tr—cC

On suppose de nouveau que, pour tout = €la;bl, |f"(x)] < M. Montrer
I’approxzimation par la méthode du point milieu :

[ 1= (45 0=

(b—ap

<M
24
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Mines-Ponts

/
Soit f € C'(R4,R%). On suppose qu’il existe a < 0 tel que Il_lgloo J;Cg))

Montrer que les fonctions f et f’ sont intégrables.

Mines-Télécom MP 2025
Soit # €0 ; m[. Calculer :

27 1
10) = /0 1 + cos(z) cos(6) de.

Mines

Soit a € Ret f: [a;+00[— R que I'on suppose intégrable sur [a; 4+00].
1. Montrer que si f admet une limite en +00, alors celle-ci est nécessairement nulle.

2. Montrer que si la fonction f est uniformément continue sur [a;+oo[, alors f
admet nécessairement une limite nulle en 4-o00.

3. Le résultat de la question précédente est-il vrai si 'on suppose que f est sim-
plement continue ?

801 | CCINP MP 2025

—_

. Rappeler la formule de Stirling.

2. Pour tout n € N, on pose u,, = /2 cos®™ T tdt. Calculer w.
0

3. Trouver une relation de récurrence vérifiée par (u uis exprimer u,, & ['aide
n)neN, n

de factorielles.
2

4. Sur [0;+o0[, on pose f, : x (1 - :zc) si 0 < z < y/n et 0 sinon. Montrer
n

que :
+o0 2

“+oo
lim folz)do :/ e dz.

n—-+4o00 Jo 0

NG
5. Montrer que / fo(z)dz = V/nu,.
0

+oo 9
En déduire la valeur de / e dux.
0

Mines-Télécom MP 2025

Soit f: x> In(1 4+ tan(z)).

1. Donner le domaine de définition de f et montrer que le graphe de f admet un
point de symétrie.

2. Justifier 'existence et calculer :

INE]

[ f(z)dx.

ENE]
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Mines-Télécom MP 2018

1. Pour tout n € N, calculer :
I, = /5 sin?"*1(t) dt.
Jo

2. Calculer la somme de la série de terme général :

22" (n — 1)!n!
Ay = ————.
(2n +1)!

Mines-Ponts PSI 2023
+o0 2

Soit f:x e R— / e " cos(2xt) dt.
0

1. Montrer que f est définie et de classe C* sur R.

2. Trouver une relation entre f et f.

3. Sachant que f(0) = 5 déterminer f et donner sa limite en 4o00.

Mines-Ponts MP 2023
Soit f € C(RT,R™) décroissante et intégrable sur son intervalle de définition.

1. Montrer que :):EIEOO zf(x) =0.

2. La réciproque est-elle vraie ?

X ESPCI 2017

1. Soit z € R. Etudier la convergence de

+00 3
I(x) = / cos ( + xt) dt.
0 3

2. Btudier la dérivabilité de 1.

Mines-Télécom MP 2024

Donner une condition nécessaire et suffisante d’existence de

+oo 1
/ < (l—eﬁ> dz
0

quand « € R.

Mines-Ponts MP 2024

Soit f € C([0;7],R) telle que :
Vn e N, /7T cos(nt) f(t)dt = 0.
0

Que dire de f7
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ENS MP 2024

Soit P € C[X] avec P(0) # 0. Montrer que :
1 2 0 r
Vr > 0, f/ In|P(re?)df = In|P(0)| + 3 multp(a) - In | —
21 Jo el ||

oul, ={aeC|Pla)=0et |a] <r} et multp(a) est la multiplicité de o en tant que
racine de P.

Mines-Ponts MP 2019

Montrer que x — exp(z?) n’admet pas de primitive de la forme z — F(z) exp(2?), ot
F est une fraction rationnelle.

CCINP MP 2018

Soit £ € R et f: R — R une fonction continue, intégrable sur [0;+oo| et ayant pour
limite £ en —oo. Soit a et b deux nombres réels tels que a < b. Pour tout u € R, on
pose :

1w = [ (flatw) = fb+2) do

1. Montrer que, pour tout v € R, I(u) est bien définie et vaut [°F" f(t) dt.

a+u
2. On prend ici f :
12 siz <1
X +— 20

1+ a2

siz>1
Calculer lim I(u).
U——00

3. On revient au cas général. Calculer lim [I(u) si I'on suppose que ¢ = 0.

U—r—00
4. Déduire l_1)m I(u) dans le cas ou ¢ est quelconque.
u — 00

5. Soit a’ et b’ deux nombres réels tels que 0 < a’ < b'. Trouver « et 3 tels que :

X B Q n 15}
1+aX)1+VX) 14+aX 1+0X’

puis simplifier I’expression

ex

(1+ae?)(1+ber)

6. Déduire des questions précédentes :

+o00 e’

li d
w0 u (14 ae?) (14 Ve?) v

Mines-Ponts MP 2021

dt.

2z sin™(t
Soit (m;n) € N2. Déterminer lim ®)
r—0t x tn
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Mines-Ponts PSI 2021

Soit f une fonction continue de R, dans R, et ¢ un nombre réel strictement positif.
On suppose que :

lim f(z /f £ydt = 1.

T—>+00
1. Si f admet une limite en 400, que vaut-elle ?
2. Donner un exemple de fonction f vérifiant la condition de I’énoncé.

3. Calculer un équivalent de f(z) en +oc.

Centrale PC 2024
Soit
+00
E = {UEC’R+, ’/ )dx<+oo}
1. Montrer que E est un espace vectoriel réel.

2. Soit f € C*(R,,R) telle que f et f” soient dans E. Montrer que [’ est aussi
dans E.

3. Montrer que :

J s J /O+°°<f<x>>2dx¢ [z s

et préciser le cas d’égalité en supposant f(0) = 0.

Mines-Télécom MP 2019
1
(x —1)?(x? — 2z +5)

1. Décomposer en éléments simples.

2. Calculer dt.

@ 1
/o (t—1)2(¢2 — 2t + 5)

CCINP PSI 2023
1

Soit 1, :/ In(1 + ") dt.
0

1. Déterminer lim I,.
n——+0oo

Lln(1
2. Montrer que I, N—/ Mdu.

nJo u

+<>01 7T2
3. On admet — = —.
n adme quekX::lW 6

2

Montrer que [, ~ —
12n

Mines-Ponts MPI 2023

soit s [
oit f: @ 1= ot + ot
1. Déterminer ’ensemble de définition de f.

2. Déterminer un développement en série entiere de f avec les coefficients explicités.
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CCINP MP 2023

Soit F' la fonction définie par :

F(z) = ; mdt

1. Montrer que F est définie sur [0; +ool, de classe C' sur |0; 4o0].
2. Calculer F(0).

0 7o
Montrer que F vérifie ’équation différentielle 3/ —y = —\l/y_.
x
T efu
b) Montrer que F'(x) = me® — em/ — du.
(b) que F(x) ) e

(c) En déduire la valeur de .

CCINP PSI 2025

1
SoitF:x»—>/ ln(ljmt)
0

Montrer que | — 1;1[C Dp.

dt.

Montrer que F' est développable en série entiere et exprimer ce développement.
Justifier la dérivabilité de F' sur |0;1][.

Déterminer F’ sous une forme simple.

MR e

Trouver F' a l'aide d’une autre méthode.

Mines-Télécom PSI 2019

Pour tout x réel, on pose :
+o0 5 +00 )
S(x) :/ sin(zt)e™” dt et C(x) :/ t cos(xt)e™" dt.
0 0

1. Montrer que C' et S sont bien définies sur R. Sont-elles continues ?
2. Montrer que S est dérivable. Exprimer S’(x) au moyen de C(x).
3. Montrer que :

vz € R, O(z) = ; - 25().

4. En déduire S(z) et C(x), exprimées au moyen d’une intégrale.

Centrale-Supélec MP
Soit
f(z) = /Ie_t2 dt et g(z)= /1 ﬂdt
0 o 14+t '
1. Quelles sont les propriétés de f et g7

2. Montrer que f2 + g est constante. Quelle est sa valeur ?

—&-00_2
e dx.

3. En déduire la valeur de /
0
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Mines-Télécom PC 2019

Soit p € N* et on pose pour = dans R :
+o00 400
I(z) = / cos(zt)e P dt et J,(x)= / sin(zt)e " dt.
0 0

Montrer que I, et J, sont définies sur R.
Montrer que I, est dérivable sur R.

Soit x € R. Calculer lim I,(x).
p—+0o0

Exprimer J,(x) en fonction de = pour tout = € R.

AN

Soit a € R. Pour quelles valeurs de a, la série Z Jp(a”) converge-t-elle ?
p=1

Mines-Télécom MP 2017

1. Enoncer soigneusement le théoréme de continuité des intégrales a parametre.

2. Démontrer que la fonction
+o0 9
f:x r—>/ cos(zt)e™" dt

est continue sur R.

Mines-Télécom PC 2019
Soit
+o0o a2
F(z) :/ g(xt)e ™" dt,
0
ou ¢ une fonction bornée, impaire et continue.

. +oo
1. Etudier la convergence de / e~ dt en fonction du réel a.
0

2. (a) Montrer que F' est définie sur R.
b) Quelle est la parité de F'?

-
(
3. (a) Enoncer le théoréme de continuité d'une intégrale & parametre.
(b) La fonction F' est-elle continue sur R ?
4. On pose g = sin.
(a) Calculer F.
(b) Montrer que F' est de classe C*° sur R*.

ENSEA/ENSIIE MP 2013

Montrer existence et calculer :

INIE]

/0 sin(2z) In(tan(z)) dz.
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Mines-Ponts MP 2014

Pour tout x €]0; [, soit

F(z) = /Ox In(sin(x —t)) dt.

La fonction F' est-elle intégrable sur [0;7]? Si oui, calculer I'intégrale.

Mines-Ponts MP 2016

1
Déterminer lim n [ In(1+ ¢")dt.

n—+o00 0

Mines-Télécom MP 2017
™

1. Démontrer la convergence de U'intégrale I = / : In(sin(t)) dt.
0

2. Calculer J = /E In(cos(t))dt et K = / In(sin(t)) dt en fonction de I.
0 0

s
2

3. Déterminer L = / In(sin(t) cos(t)) dt en fonction de I,.J, K. En déduire les
0
valeurs de I, J, K, L.

Mines-Télécom MP 2017
14t
V1—t2

Pour tout entier naturel n et tout ¢ € {0 ; g}, posons f,(t) =

1
Déterminer lim / ’ fn(t) dt de deux maniéres :
n—-+4o00 Jq

1. Par convergence uniforme.

2. Avec le théoréeme de convergence dominée.

Mines-Ponts MP 2017
Soit f:[0;1] — R continue. Montrer que :

exp (/Olf(t) i) < /01 exp(f(£)) dt.

Mines-Ponts MP 2017

+oo p?
Calculer / ()

o 1+ a2

dx a Paide d’une somme.

Mines-Ponts MP 2019

Soit f une fonction continue sur [0; 1], a valeurs strictement positives. Pour tout a réel
positif, on pose :

1
I(a) = / F(6)* dt.
0
1. Montrer que la fonction I est dérivable et préciser la valeur de I'(0).

1
2. Trouver la limite de I(a)a quand a tend vers 0.
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Mines-Ponts PC 2019

Soit f une fonction continue sur [1; +oo[, a valeurs réelles, de carré intégrable. Montrer
que

tend vers 0 lorsque x tend vers +o0.
2

Centrale PC 2017
T

x e
Montrer que / o dt ~ 97 quand r — +o0.
0 x

Mines-Ponts PC 2018
Soit f(z) = /1 gt:"” dt.
o In(t)
1. Donner le domaine de définition de f.

2. Donner la limite de f en +oo.

Mines-Ponts MP 2018

Soit E 'ensemble des fonctions continues de R dans R telles que :

Vi € R, f(x):/oz\/mmf.

1. Montrer que, si f € E, alors f est croissante sur R, et nulle sur R_.

2. Montrer que, si f € E et ne s’annule pas sur un intervalle I, alors il existe ¢ tel

que :
2
Veel, f(z) = (xllc)
3. Décrire E totalement.
X-ENS
Soit f € C?[a;b],R). Montrer que :
b b—a b—a)?, .,
[ rwa ="+ o] < P

Mines-Télécom MP 2017

Pour tout n € N*, on pose :

I - /OW cos(nzx) — cos(ny)

d ;.
cos(z) — cosly) r avecy €]0;7]

Donner la valeur de I,,.
Indication : on pourra chercher une relation de récurrence entre I,, + 1,15 et I, 1.
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Centrale-Supélec MP 2021
'+OO
On donne ¢ = / e "In(t) dt.
0
1. Montrer 'existence de c.

2. Montrer que ¢ < 0.

n t
3. (a) Montrer que ¢ = lim <1 — > In(¢) dt.
n—+oo Jo

(b) En déduire que la suite <Z o ln(n)> converge.
neN*

k=1

Mines-ponts MP 2021
On pose :
F:(z;y) — / In(x + ycos(t)) dt.
0

1. Déterminer le domaine de définition D de F'.
2. Calculer quand cela est possible la valeur de F'(z;z).
3. Montrer que F est de classe C! sur I'intérieur de Dp.

4. Déterminer une expression de F' sans intégrales.

CCINP MP 2023

Soit, pour n un entier naturel non nul :

I +o0 1 d
= —dt.
/0 (1+t4)n

1. Montrer que [, est défini, puis que la suite (I,,),>1 converge vers une limite a
déterminer.

2. Trouver une relation de récurrence entre I, et I, 1. En déduire une deuxieme
fagon de déterminer la limite de la suite (I,,),>1.

CCINP MP 2023

Soit a et b deux réels strictement positifs.

1. Calculer I'intégrale suivante :

b 1
/ - dt.
a t2 +t2

Indication : poser u = /1.
+00 1
2. Justifier l'existence de R,, = Z —
keni1 k2 + k2
3. Montrer les inégalités suivantes :

1
2 arctan ( < R, < 2arctan () .

1
m)\ NG

4. En déduire un équivalent simple de R, au voisinage de +oc.
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CCINP MP 2017

Soit n € N, n > 2. On définit la fonction :

fut s fula) = 2omn)

1. Montrer que la suite (I,,),>2 telle que :

I, = /0+00 fu(z)dx

est définie pour n > 2.

2. Démontrer que :
+00

Vn >2, I, =2 sinh(z)e " da.
k=1
+o0 1

3. Calculer kz::l 1

Mines-Ponts MP 2017
Uin(1 + 2¢ t2
Soit F(x) :/ n(1 + 2t cos(x) + t2)
0 t
1. Montrer que F est définie et de classe C! sur [O; g]

dt.

2. Calculer F'(z) pour = € {0 ; g}

Mines-Ponts MP 2013
+o0 sin?(t)
t2

Calculer / dt.

0

Mines-Ponts PC 2023
Soit f € C(R,R). On suppose que f admet une limite ¢/ en —oo et que l'intégrale
+

oo
f(x)dz existe. Pour tout (a;b) € R?, montrer que I'intégrale
0

[ et - fo+ ) d

—0o0

existe et déterminer sa valeur.

Mines-Ponts MP 2017

On définit f par :

[t sinh(xt)
fl2) = /0 t cosh(t) dt.

1. Donner le domaine de définition de f. Montrer que f est C*°.

2. Montrer que f(z) ~ —In(l —z) quand z — 1~.
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Centrale-Supélec PSI 2013

On définit 'application suivante :

f R — R

z 1
r / —— - dt
0 x+sin®(t)

Montrer que f est bien définie. Etudier sa monotonie.
Trouver glﬂlir(l] f(z).

Trouver zl—lgpoo f(x).

= W o

Donner un équivalent de f en 0. (On pourra faire le changement de variable
u = tan(t).)

Centrale-Supélec PSI 2013

Soit E={f € C(R,C)| f(z) = f(z+ 2m)}. On pose sur E :
IfIF = sup{|f(u)| | v € R}

et
x»—>/ flax+1t)dt.

1. Montrer que G est un endomorphisme.
2. (a) Montrer que G est C'.

(b) Donner une équation différentielle vérifiée par G.
3. La fonction G est-elle :

(a) injective?

(b) surjective ?
4. Résoudre G(f) = A\f, d’inconnues (f;\) € E x C.

ENS
Soit .
I(z) = / (1 — 22)" cos(t) dt.

1. Montrer que :

n!

Vn €N, 3P,,Q, € Zs,[X], I.(z) = W(P (x) cos(x) + Qn(x)sin(z)).

i
2. En déduire que 5 est irrationnel.

X MP 2017

O te P, =
n note on

1
Montrer que pour n # m, / P,(t)P,(t)dt = 0.
-1

(X2 = 1)").
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CCINP PC 2019

Soit n € N. Etudier I'intégrale suivante :

+0o 1
/ S
o 14+t241tn

Mines-Ponts MP 2021

Soit f la fonction d’une variable réelle a valeurs dans C telle que :

+00 e—t(l—‘rix)d
- .
fla)= | 7

1. Montrer que f est définie sur R.

2. Trouver une équation différentielle et déterminer f.

Mines-Ponts MP 2021
Soit @ > 0. On note :

fo @ |—a;a] — R
V14 22
€T —_ —
2 _ 12
Calculer lim fa(z) da.
a—0t —a
Mines-Ponts MP 2021
21n($) et
1. Calculer lim — dt.
z—1t In(z) t
2. Soit
F @ Jl;4o00[ — R

2In(z) @t
x — / —dt
In(z) t

Montrer que F' est injective.

CCINP PSI 2021
1

+o0
Soit f:x— /0 m dt

1. Donner le domaine de définition Dy de f.

2. La fonction f est-elle continue sur Dy 7

3. Montrer que si € Dy, alors 1 —x € Dy et f(1 —z) = f(z).

4. Trouver un équivalent de f en chacune des bornes de Dy.

Mines-Télécom MP 2018

1 t
On note I:/ t?’widt.
0 1—1¢

Etudier l'existence et la valeur de I.
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Mines-Ponts MP 2025

Soit a € R7.. Soit b une fonction continue par morceaux de période 1. Pour tout € > 0,

on pose :
+oo T
IE = / b (> 1[0;04({[) dzx.
—00 g
Montrer que :
1
lim I, = a/ b(y) dy.
0

e—0t

CCINP MP 2023

1. Soit M > 0 et u: [1;+o00[— R de classe C* telle que, pour tout z € [1;+o0],
+oo o/ (t
|u(z)| < M. Montrer que / wit)

1

dt converge.

+oo sin(¢)

2. Montrer que /

+oo
dt et / sin(t?) dt convergent.
1 1

+oo
3. Montrer que / sin(t*) dt converge.
1

CCINP 2023

+oo |
On note I = / a(t) dt.
Jo 1412

1. Etudier 'existence et la valeur de I.

2. Soit a > 0 tel que a # 1. Trouver des réels a et 3 tels que :

1 o« n 16
(1+2)(a2+12)  1+12 a2+

In(t)
1+ 12)(a2 + 2)
4. Rappeler le théoréme de la convergence dominée.

+ooIn(t)
L utili leul / Y
utlliser pour calculer 0 (1 + t2)2

dt.

+0o0
3. Calculer I(a) :/ (
0

Mines-Ponts MP 2022

1. Montrer la convergence de l'intégrale suivante :

2
+oo
I / (aretan(t)> "
0 t

2. A Paide d’une intégrale & parametres, calculer I.

X-ENS

Calculer /Z In(1 + tan(z)) dz.

0
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Centrale-Supélec MP 2018

Pour tout n € N, on pose :

I +o0o 1 d
" /0 cosh(x)2n+2 *

1. Montrer que I, est définie pour tout n € N.

2. Montrer que :
2n+ 2
VneN, [, =——I,.
" T on 13
Calculer 1.

—+o0 n
3. Calculer S = Z n2

n=1 (27:>

CCINP MP 2018

Pour (o; 8) € R?, on définit :

f o]0 — R
In(z)|?
(1 —z)e

1. (a) Trouver un équivalent en 0 et en 1 de f.
(b) Déterminer les valeurs de « et [ telles que f se prolonge par continuité a
I'intervalle [0; 1].
(c) Déterminer les valeurs de « et 3 telles que f soit intégrable sur ]0; 1].
In(x)
V-1

dz. Montrer que [ existe puis calculer /.

1
2. Soit I:/
0

Mines-Ponts MP 2019
Soit f: R — R, de classe C'. Montrer que :

‘/01f3($)d$—f(0)2/01f($)d$ < HfIH/Olf(w)dx,

ou || f'|| désigne la norme infinie de f" sur [0;1].

Mines-Ponts MP 2016

Etudier Iexistence et la valeur de

3 1
[ —
0o 1+ tan®(x)

ou a > 0 est donné.
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Mines-Ponts MP 2016

Soit f € C'([a;b],R) telle que :
Vt € [a;b], f'(t) €[0;1] et f(a) = 0.

Montrer que f*(x) < 2/ f(t)dt pour tout = € [a;b.

Centrale-Supélec PC 2016

On considere U'intégrale f(x) =

x? 1
[
L V141t
1. Donner I'ensemble de définition de f.

2. Etudier f aux bornes de son ensemble de définition.

3. Etudier les variations de f.

Centrale-Supélec MP 2016

Donner un résultat du cours relatif aux sommes de Riemann. Donner une démonstration
de ce résultat dans le cas ou f est de classe C!.

ENSEA /ENSIIE PSI 2015

Soit n un entier naturel. Soit f une fonction continue sur [a;b] a valeurs dans R.
b
On suppose que, pour tout p € [0;n], / tPf(t)dt = 0.

a
Montrer que f possede au moins n + 1 racines entre a et b.

Mines-Ponts MP 2015

Montrer que :
400 1

/0+00 In(tanh(z))dz = — kz_: sk

CCINP MP 2019

(In(x))? ,
iz 5 105 1].

2. On pose u,(z) = z**(In(z))? pour n entier et x €10;1].

1. Montrer U'intégrabilité de f : x +—

1
Pour n entier, montrer U'intégrabilité de u, sur |0; 1] et calculer / un(z) de.
0

1(] 2
3. Déterminer une expression de [ = / M
o 1422

4. Soit £ > 0. Proposer une méthode de calcul de I a ¢ pres.

dz sous forme de somme.

CCINP MP 2015

On pose Fx) = [ () o,

n pose F(x) = . miad
1. Donner le domaine de définition de F'.
2. Calculer F(1).

3. Calculer F(x) pour tout x.
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Mines-Ponts MP 2013
be 1 — cos(u)

Soitb>a>Oetf(x):/ 3 du.
u

axr
Déterminer lim f(x).
z—07t

X MP 2017

Soit f € C*°(R,R%) une fonction intégrable. On suppose que Inof est concave.
1. Montrer qu'il existe o € R tel que f croit sur | — oo ; x¢[ et décroit sur |xg ; +o00].
2. Montrer que :
Je, k> 0,Vz € R, f(z) < ke .
3. On considere g € C*°(R,R%) intégrable telle quil existe z; € R tel que g croit
sur | — 0o ;2] et décroit sur |z ; +ool.
On définit : .
fxg: :BH/_ fz—y)g(y) dy,

produit de convolution de f et g.

Montrer qu’il existe z2 € R tel que h croit sur | — oo ; z5] et décroit sur |xs ; +00].

ENSEA /ENSIIE PSI 2023

Pour tout n € N, on pose :

1
I, = / (In(1 + 2))" dz.
0
1. Montrer que, pour tout n € N, [, est bien définie et que :
0< I, <(In(2)".
2. Montrer que, pour tout n € N,
L1 =2(In(2)"* — (n + 1)1,,.
o L I
3. Etudier la convergence de la série Z —.
n!

I
4. Déterminer le rayon de convergence de la série entiere Z —'x”.
n!

Mines-Ponts PSI 2017

Soit it
f:xH/ Mdy,
oy

1. Donner le domaine de définition de f.

2. La fonction f est-elle développable en série entiere au voisinage de 07 Quel est
son rayon de convergence ? Calculer f(1).

3. La fonction f est-elle dérivable ?
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Mines-Télécom PSI 2018

1. Justifier que la fonction

1 1
T —
t2  (arctan(t))?

est intégrable sur [0;1].

2. En déduire un équivalent simple de

1 1
(o) = / ——dt .
() » (arctan(t))? quand « — 0

Mines-Télécom PSI 2017
“+o00
Soit I' : v € RY, +— / t*le~t dt.
0

1. Montrer que :

['(z) = lim ot <1 — > dt.
n—+oo Jo n
2. Montrer que :
1T
['(z) = lim nn :

n—+oo g(x + 1)+ (x 4+ n)

Centrale-Supélec PSI 2015

Soit f € C(R,4,R). Pour tout x € Ry, on pose :

Fla)= [ f@at et gla) = f(a)+ Fla).

1. On suppose que f admet une limite finie en +o00. Déterminer quand est-ce que
I admet une limite finie en +007?

2. On suppose que F' admet une limite finie en +o0o. La fonction f admet-elle
forcément une limite finie en 400 ?

3. On suppose que g admet une limite finie en +0o0. Montrer que f admet alors
forcément une limite finie en +o0o. Déterminer cette limite.

Mines-Ponts PSI 2015

Soit | ;
f x»—>/ _COS()dt.
0 2
S 1
Montrer que pour tout n € N*, il existe a,, > 0 tel que f(a,) = T
n

Mines-Ponts MP 2021

Soit f:[0;4+00[— R continue et bornée. Montrer que :

T A2 LCONP Y

n—-+o0 Jo 1 4+ n2x? 2
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TPE/EIVP PSI 2015

Soit a > 0, f continue sur [1; +oo[ et admettant une limite finie £ en +00. On s’intéresse
+oo t)— f(t
Flat) = 1(0)
1 t
1. Montrer que pour tout x € [1;+o0[ on a :

[LO=0 4y 10y, 10,
1 t t 1t '

a

a la convergence de

2. En déduire la convergence de l'intégrale recherchée et expliciter sa limite en

fonction de / ’ fit) dt.
1

Centrale-Supélec PC 2015

Trouver tous les polyndémes P de R[X] tels que :

k+1

VkeZ,/ P(t)dt =k + 1.
k

Mines-Ponts MP 2016

Soit (an)nen telle que :

"/ (n+1)m
VneN, a, = / sin(#?) dt.
Jw

1. Montrer que Z a, converge.

2. Montrer que l'application x — / sin(#?) dt a une limite en +oo.
0

Mines-Ponts MP 2019

Tracer la courbe représentative de la fonction définie par :

Mines-Ponts MP 2019

On considere la fonction
(x;y) — /7T In(z + y cos(t)) dt.
Jo

1. Donner le domaine de définition de f.
2. Montrer que f est différentiable.
3. Comment expliciter l'intégrale

G 1 of
T At = 2 () ?
/0 x + ycos(t) dt Ox (z:9)
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Mines-Ponts MP 2015

Soit P la fonction de | — 1;1[xR dans R définie par :

1—1r?

P(r;t) = :
(r;1) 1 — 2rcos(t) + 2

1. Soit ¢t € R fixé. Montrer que la fonction qui & r associe P(r;t) est développable
en série entiere sur | — 1;1[. Calculer ce développement.

2. Soit r appartenant |0 ; 1] fixé.
(a) Justifier que la fonction qui a ¢ associe P(r;t) est continue, positive, paire

et 2m-périodique.

1 0
(b) Montrer que 2—/ P(r;t)dt = 1.
T J—m
3. Soit a € [0;7]. Montrer que :

lim P(r;t)dt = 1.

r—1—J—a

4. Soit f € C(R,R) 2m-périodique. Montrer que :

lim 1/7r flz+t)P(r;t)dt = f(z).

r—1— mwJ—7

Mines-Ponts MP 2014

Calculer :
x? 1
li ——dt.
250 Jy In(cos(t))

Mines-Ponts MP 2014
1 1
soit )= [ L _a
oit (1) 0 (1+z+22) v

1. Donner le domaine de définition de ¢ et montrer que 1tLu;n ©(t) = 0.

2. Donner un équivalent de ¢ en +ooc.

Centrale-Supélec MP 2014

1. Montrer que

400 e—t e—tm
Flz) = /0 <t "1 —e—t> dt

converge pour tout r € R,
2. Montrer que F' est monotone.

3. Déterminer la limite de F' lorsque z tend vers +oc.
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X-ENS Cachan PSI 2017
Soit a = (ay;...;a,) € R™. On pose :

+oo
fla) = / e (1 + arz + - + a,a”)? da.
0

1. Montrer que f est définie, de classe C*, positive.
2. Montrer que f(a) — +o00 quand ||la|| — +oo.

3. Montrer que f admet un minimum.

*

On note a* = (af;...;a’) un point ot ce minimum est atteint.

r'n

4. Montrer que :

Vie[l;n],dd+ G+ Daj+---+ (1 +n)la, =0.

5. Soit P(X)=1+aj(X+1)+a5(X +1)(X+2)+- +ai(X+1)--

Montrer que P(X) =af(X —1)--- (X —n).

Calculer P(—1), puis en déduire que a) =

6. Montrer que :
“+oo
f(a’{;...;a:‘l)zl—k/ e "(I14+ajz+---+ayz")d.
0

1

En déduire que f(a*) = T
n

(X +n).

X MP 2017

1. Soit f € C(]0;1],R). On suppose que :
1
Yk € [0;n — 1], / F6)*dt = 0.
0

Montrer que f s’annule au moins n fois sur [0;1].

2. Soit f de R dans R, 27-périodique. On suppose que :

ke [0:n — 1, /02” F(#) cos(kt)dt = 0 — /02” F(#) sin(kt) dt.

Montrer que f s’annule au moins 2n fois.

Mines-Télécom MP 2017
Soit f : R, — R continue, décroissante et intégrable sur R, .

1. Montrer que f(z) tend vers 0 quand x tend vers +oo.

1
2. Montrer que f(z) =0 ()

T
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CCINP MP 2018

Soit a € R et
f R — R
sin?(z)
x
ajOl

1. On suppose 1 < a < 3. Montrer que f est intégrable sur R7 .
2. On suppose a < 1. En utilisant les nombres

[

s

montrer que f n’est pas intégrable sur R .

*

3. Déterminer les valeurs de o pour lesquelles f est intégrable sur R7.

Mines-Ponts MP 2018

Soit f: R, — R, continue, bornée et intégrable.
+oo
1. Justifier I'existence de u,, = / f"(t) dt pour tout n € N*.
0

2. Discuter la convergence de Y, en fonction de || f||~.

CCINP PC 2021
SizeRetnéeN, on pose :

Jn(x) = /og sin®(t) cos™ (t) dt.

1. Pour quelles valeurs de x Uintégrale J,(z) est-elle définie ?

2. (a) Calculer J,(1).

(b) Soit x tel que —1 < = < 1. Montrer que J,(z) > J,(1). En déduire la nature
de la série de terme général J,(z) quand —1 < = < 1.

(¢) 1. Montrer que sin € N et b > 0, la fonction
f:t — In(sin(t)) sin®(¢) cos™(t)

est intégrable sur {O ; g}

ii. Montrer que J, est de classe C! sur Rz
, sin®(t)
d) Soit g,(t) = ————=ouz > 1.
(@) Soit gu(1) = s ot

Montrer que g, est intégrable sur {0 ; g} et calculer /0 ? go(t) dt.
(e) En déduire la nature de la série de terme général J,(x).

Mines-Ponts 2012

Montrer que

too ]
/(@) :/x i1

est définie sur R,. Y est-elle continue 7 intégrable ?
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Mines-Ponts MP 2017
+oo cos(xt)

Soit f(x) = /
/() 0 1+ ¢2
1. La fonction f est-elle C* sur R*?

2. Montrer que :
+oo cos(wt)
2/ dt =0
zf'(@) )+ (1+12)2

dt.

m Mines-Ponts PSI 2021
Soit f: R, — R telle que EIJP flz) =

“+o00

1. Prouver que /
0

converge et que dans ces conditions :

f(x)dx converge si et seulement si la suite n — / f(x)dx
0

/OJFOO f(z)dz = lim f(z)dz.

n—-+o00 J(

2. Que se passe-t-il si on enléve I'hypothese Erf flz)=07

Mines-Ponts PSI 2018

Soit
1 — cos(t)

12

1. Montrer que F' est définie et continue sur R, de classe C* sur R%.
2. Déterminer la limite de F, F’ et F" en +oc.

3. Calculer F(x) pour z € RY.

+00 gj
4. En déduire la valeur de / snr;(t)
0

“+o0
F:z— / e t. dt.
0

dt.

Centrale-Supélec PSI 2018
Soit .
froz— / In(1 — 2x cos(t) + z?) dt.
0

1. Donner I’ensemble de définition de f.

. km
2. Soit n € N*. On pose, pour k € [0;n — 1], a, = —.
n
(a) Montrer que :
n—1
(z+1) [T(1 = 2z cos(ar) + 2*) = (z — 1)(z* — 1).
k=0

(b) Calculer f a I’aide d’une somme de Riemann.
3. Calculer f(1).
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Centrale-Supélec 2012

1. Etudier les convergences simple et uniforme de la suite de fonctions définies par :

1
==y
, oo
2. Etudier l'existence et la valeur de / fi(z)da.

3. Soit g € C(R,R), de carré intégrable.
+oo
Montrer que 1_1)15{1 / fu(z)g(x)dz = 0.

On prendra soin de justifier I'existence des intégrales mises en jeu.

Mines-Ponts MP 2021
Soit n e N*et 1 <y; < --+ <z, <y, des nombres réels.
1. Soit P € R,,_1[X]. Montrer que :

Yi
Vi e {1;...;n},/ Pt)dt =0 = P =0.
2. Montrer qu’il existe un polynéme non nul P € R, [X] tel que :

vie {1;...;n), /yiP(t)dtzo.

CCINP MP 2022
400 eit

1. Soit a € R7.. Montrer que / o dt converge.
1

+o00
2. En déduire la nature de / sin(t?) dt.
1

Vtsin(t)

—=dt .
I+ cos(t) converge

+oo
3. Montrer que /
1

m Centrale-Supélec PC 2023
Pour tout x €]0;+00], on pose :

boof 1
f(:c):/1 Ok 3 4.

Montrer que la fonction f est bien définie.
Déterminer la limite de f en +oo.
Montrer que f est de classe C'! sur | — 1; 400/ et donner ses variations.

Déterminer la limite de f en —1.

MR ER NS

Exprimer la fonction f.
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Mines-Ponts MP 2018

Soit

v(z)
F(z) = /( | f(z;t)de
avec u,v € C([a;b],R) et f € C([a;b] x R/R).

La fonction F' est-elle continue sur [a;b] 7

CCINP PC 2024

sin(t) —t
On pose g(t) = (t?) pour tout t € R*.
1. Montrer apres prolongement par continuité en 0 que g est continue sur R.
+oo sin(t)
t2

2. On pose [, = /0 dt, ou p € N.
Pour quelles valeurs de p € N, I'intégrale I, converge-t-elle ?
3. (a) Montrer que :
Vt € R, sin®(t) = 3 sin(t) — 1 sin(3¢).

(b) Montrer que :

+o0 gin?(¢) 3 [3z sin(t)
at =2 / dt.
[

On suppose désormais que p = 3.

4. Soit f: R — R continue. Soit U et V' des fonctions continues sur R telles qu’il
existe a € R tel que U(a) = V(a). Montrer que :

lim f(t)dt = 0.

T—ra U(l‘)

5. Déduire des questions précédentes la valeur de I,,.

(909| ccine pc 2025

Calculer : \
a cos(t
lim (*)
a—0t a t

dt.

[910] x mp

Soit (m;n) € N2. Apres avoir justifié son existence, calculer I'intégrale suivante :

o Jar

7 - %

1 /rr sin ((2m + 1)%) ' sin ((Qn +1)%

- ()

Mines-Ponts MP 2021

Soit
+oo arctan(x + t)

- e dt.

fixr—

Calculer f.
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Mines-Ponts MP 2018

Soit (a;b) € R? tels que a < b. Soit E I'espace vectoriel des fonctions continues de [a ; 0]
dans R, muni de la norme infinie. Soit B la boule fermée de centre O et de rayon 1
pour cette norme. Soit enfin f € F. Montrer que :

b b
sup [ f()g(t)dt = [1£(0)|

geB Ja

ENSEA/ENSIIE PSI 2018

Soit la fonction :

dt.

+00 e—t _ e—a:t

Fro [
0 t

1. Déterminer le domaine de définition de f.

2. Etudier le caractere C' de f et déterminer f.

3. En déduire une expression simple de f.

Mines-Ponts PSI 2021
1 7t
Soitf:xl—>/cos< )dt.
0 +

rx+t

1. Montrer que f est continue sur Ry et C' sur R .

2. Déterminer f(0) et 1_131 f(z).

3. Montrer que f est C' sur R, par deux changements de variables.

Mines-Ponts MP 2022

Selon la valeur du parametre réel p, discuter la convergence de l'intégrale :

+oo P — 1
dt.
/1 t21n(t)

Calculer sa valeur en cas de convergence.

Mines-Télécom PSI 2022
r?n(z)
2 —1
1. Pour tout n € N, montrer que f, est intégrable sur |0; 1].

1
On pose [, = / fu(t)dt.
0

2. Déterminer lim I,,.
n—-+4oo

3. Pour tout k € N, calculer I — I;;. En déduire que :

Pour tout n € N; soit f,, : © —

n I, = —.
4k—n+ln2

191




Mines-Ponts PSI 2023
1 \/3 +o0
Soitn e N, w=—=-—i—e¢et In:/ t"e¥t dt.
2 2 0
1. Calculer I,, pour tout entier naturel n.

2. En déduire une expression de la fonction g € C(R,, R) telle que :
+o0
Vk € N, / thg(t) dt = 0.
0

3. Soit (a;b) € R? un couple de réels tels que a < bet f € C([a;b],R) une fonction
telle que :

b
Vk € N, / t*f(t)dt = 0.
En admettant le résultat suivant :
Ve >0, 3P € R[X], Vz € [a;b], |f(z) — P(z)| <,

montrer que f = 0.

ENS MP 2014

Soit (pp)nen une suite de fonctions de R dans R positives, continues et 2mw-périodiques.
On suppose de plus que, pour tout naturel n :

1 2w d 1
[ e
. 27—0
e V6 >0, nl_lgloo : pn(x)de = 0.

Soit alors f une fonction de R dans R continue par morceaux et 27-périodique. On
pose, pour tout entier naturel n :

1 2T
fulz) = %/0 F(x — O)pa(t) dt.
Montrer que : ,
Jim [ (fal@) = f@)? dz =0,

Mines-Ponts MP 2017

On définit R: h € C(R;,R) — R(h) tel que si x € Ry, R(h)(z) =

SHR®

S—
(ME]

h(xsin(t)) dt

(NJE]

2
et S:ge CHRy,R)— S(g) tel quesiz e Ry, S(g)(x)=g'(0)+ f/ g (xsin(t)) dt.
wJo
1. Montrer que R et S sont des applications linéaires a valeurs dans C'(R ., R).
2. On pose W,, = / ? sin”(t) dt. Trouver une relation entre W, o et W,,.
0

3. Soit P un polynéme. Montrer que (S o R)(P) = P.
4. Montrer que pour tout g € C*(Ry,R), (So R)(g) = g.
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Mines-Ponts MP 2025
Soit f € C(R,R) et g la fonction définie pour tout x > 0 par :

o) =~ [ cos(e = )7 ) dy.

T

1. Déterminer la limite de g en 0.

2. On suppose que f a une limite en +o00. Déterminer celle de g.

Mines-Ponts PSI 2024
Sin €N, on définit f, : Ry — R par :

1. Etudier la convergence simple de la suite (f,)nen.

2. Etudier la convergence uniforme de la suite (f,)nen.

+o0o
3. Calculer, pour n € N, I,, = / fn(z) dz.
0

4. Déterminer lir+n I,,. Est-ce cohérent avec les théoremes du cours?
n—-—+0oo

Mines-Télécom MP 2018

Pour tout n € N*, on pose :

+o0 2\ "
Uy = / (1 + x) dzx.
0 n

+oo 2
1. Montrer que la suite (uy,),en+ converge vers / e ¥ dux.
0

2. Calculer lim w,.
n—+o0o
400 9
En déduire la valeur de / e dx.
0

™

3 T
On admet que / “eos(t)dt ~
0

n—-+oo n’

CCINP PSI 2019
1
Soit ne N*, z e Ret f,() = ———.
Jn() cosh” ()
1. Montrer que les f,, sont intégrables sur [0;+ool.

00 1
o cosh"(x)

Montrer que la suite (1,,)nen+ converge et déterminer sa limite.
3. Déterminer la nature des séries de terme général (—1)"1, et I,.

4. Quel est le rayon de convergence de la série entiere Z L,x"?
n=1
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Mines-Ponts MP 2019
+00 e—l’tQ
On pose [(x) = / —dt.
1. Déterminer ’ensemble de définition de I.

2. Déterminer un équivalent de I en +o0.

Centrale

Pour tout x €]0; 1], on pose :

() :/: lnl(t)dt

1. Montrer que ¢ est bien définie et que cette fonction se prolonge par continuité

en 0 et en 1.
2. En déduire la valeur de
Ly —1
/ dzx.
o In(z)

Mines-Télécom MP 2016

Soit f : x|—>/ m

1. Quel est le domaine de définition de f?

1 1
2. Pour x €10; 1], calculer / e
} [ T \/ U2 + 1'2
On pourra effectuer le changement de variable u = i et utiliser la fonction

t—In(t+v1+t2).

1 1
3. Montrer que / _—
e Vu? 4 x?

4. Montrer que f(z) ~ —In(z) quand z — 0%,

du ~ —In(z) quand x — 0%,

X ESPCI PC 2015

Soit f une fonction continue sur R, dans R, intégrable sur R et telle que f(z) = O (;12)
en +o00. Soit a > 0.

Montrer que = +— f (a: + %) et x— f (\/ x? + a2> sont intégrables sur R, et que leur
intégrale sont égales.

CCINP PC 2014

Soit
1 4

o 1+1¢
1. Déterminer '’ensemble de définition de F'.

F:z+— dt.

2. Avec le changement de variable ¢t = u?, calculer F’ (%)

3. En déduire F (%)
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X ESPCI PC 2013

Etudier V'intégrabilité de x —

en 0, en 1 et en 400.

1
In(x)

ENSEA /ENSIIE PST 2021

Pour tout n € N, soit f,, : x € [0;1] = n?ze .

1. Etudier la convergence simple de la suite (f,)nen.

1
2. Déterminer lim / fn(t)dt.
0

n—-+o0o

Mines-Télécom MP 2022

Montrer que :

—_
+
8
R B
I E
=
(o
~
I
P
8
S
A
+ =
[u—

3
Il
N

CCINP PSI 2025
On pose :

fa) = /:w e: dt.

1. Montrer que f est bien définie et continue sur ]0; 400l
Déterminer f'.

2. (a) Montrer que :
e—m

Vx>0, f(z) <

(b) Montrer que :
+00
Vo >0, f(x) =e “ln(x) +/ e "lIn(t) dt.
0

(c) Montrer que f est intégrable sur |0 ; +ool.
+o0

3. Calculer / f(t)dt a l'aide d’une intégration par parties.
0

TPE/EIVP MP 2012

In(1 +
Soit g : R™ — R telle quexHM

5 six#0et 1siz=0.

x
1. La fonction g est-elle bornée ?

2. La fonction g est-elle décomposable en séries entieres ?
1 2
3. Montrer que / g(x)dz
0

+o0 7T2
O 11 —=—
n rappelle que ngl Rl

1
4. Soit W, = n/ In(1 + ") dt.
0

Calculer lim W,,.
n—-+o0o
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ENS MP 2019

1

Calculer / 2% dx.
0

ENSEA /ENSIIE PSI 2024

Pour tout n € N, on pose :

_ (zln(z))”
T
1. Montrer que Z fn converge simplement et exprimer sa somme.

n=0
1
2. Montrer que f,, est intégrable sur |0; 1] et calculer / fa(t)dt.
0

3. Montrer l'intégrabilité de x — 2% sur ]0; 1].

CCINP PSI 2023

Soit a,b € R tels que a < bet f:[a;b] — R de classe C*.

1. Pour tout n € N*, on pose :

I, = /abf(x) sin(nzx) dz.

Montrer que lim I, = 0.

n——+00
+00 gj
On pose [ = / sin(z) dx.
0 x

2. (a) Montrer que I converge.

sin(nx) e

(b) Soit, pour tout k € N*, K,, = /5
0

Montrer que lim K, = 1.
n—-+00

xz

3 sin(nx)

(¢) On introduit J, :/0 sin(z)

Montrer que 1_1)1_{1 (J, — K,) =0.
(d) Montrer que, pour tout p € N*, Jo,11 = Jo, 1.
(e) En déduire la valeur de I.

X MP 2019

Pour tous n € Z et x € R, on pose :

Jn(x) = ! /%ei(““w)*”") dé.
0

2min

1. Montrer que les J,, sont a valeurs réelles.

2. Montrer que les J,, sont développables en série entiere sur R et donner I'expres-

sion de leur développement.
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Mines-Ponts MP 2021

Soit b € R%.. On considere une fonction continue f : [0;b] — R et une fonction continue
b-périodique g : R — R. On pose :

w(f;t) = sup{|f(z) = fF(Y)l, | =yl < t}.

1. Montrer que pour tout n € N*,

b
0

b 1 /b
| f@gmayde =5 [ f@)de [“g(e) do+ el fi)
ou €,(f;g) tend vers 0 lorsque n tend vers +o0.
7 sin(x)

2. Déterminer lim —dux.
S Jo 1 + 3 cos?(nx)
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4 Equations différentielles

o Mp

Soit I'équation différentielle (E) : 4z2y” — 8xy’ + 9y = 2 + 1.
1. Trouver une solution polynomiale de degré 2 a (E).
2. Résoudre I'équation sur R* . On pourra poser z = e’.

3. Résoudre I'équation sur R*.

X PC 2019

Résoudre I’équation différentielle y” + 2y’ + y = cos?(t).

Mines-Ponts MP

Soit f: R} — R, continue et bornée.
Soit I’équation différentielle :

vy —y+ f(x) =0,

1. Résoudre cette équation dans R7 .

Déterminer 'unique solution g telle que 1_131 g (z) = 0.

Montrer que g est bornée sur R*.

On suppose désormais que f? est intégrable sur R .

1
2. Montrer que g(z) = o ()
T—+00 \/E

3. Montrer que g* et gf sont intégrables sur R%.

Centrale PSI

Soit I’équation différentielle :
(1+2)y" +ay —y=0. (1)

1. Justifier qu’il existe une unique solution de (1) sur R vérifiant
y(0) = V2 et /(0) = 0.
2. Déterminer les solutions de (1) qui sont développables en série entiere.

3. En posant x = sinh(t), résoudre (1).

[943] x

Résoudre I'équation différentielle

2y (t) +y(t) =t pour t >0 et n€N.
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ENS Lyon 2022
+o0
Soit ¢ € C'(R4,R) telle que / lg| < +o0.
0

Montrer que 1'équation différentielle y” + ¢(¢)y = 0 admet une solution non bornée.

cor vp

Soit (a;b) € R? avec a # b et n € N*.
1. Soit k£ € R. Résoudre 'équation différentielle

(z —a)(z =)y (z) — nwy(z) = ky(z).
2. On définit f sur R,[X] par :
VP(X) e R,(X), f(P(X))=(X —a)(X —b)P(X)—nkP(X).

Montrer que f est un endomorphisme de R,[X] et déterminer ses valeurs
propres.

3. L’endomorphisme f est-il diagonalisable ? Calculer det(f).

CCINP 2018

Trouver toutes les fonctions f : R — R de classe C? telles que f” = f.
Indication : justifier qu’il existe un nombre réel X tel que f”(z) + f'(z) + f(x) = Xe”
pour tout z € R.

ENS PC 2015

Soit ¢ : R — R deux fois dérivable. On suppose :
. xgllloogo(x) =leR;
e da>0,Vz e R, p(z) > a.

Montrer que I’équation différentielle

/" "

vy =9y

admet une solution qui tend vers 400 en +oo.

Mines-Télécom MP

Montrer que les solutions du systeme d’équations différentielles

¥=x+y
Y =—-c+2y+=z
Z=x+z

possedent une limite en —oo.
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cop wip
Soit f:x+— /5 cos(zsin(t))dt et (F): xy” +y +ay =0.
0

1. Montrer que f est de classe C? sur R.
2. Montrer que f vérifie I'équation différentielle (£).
3. Déterminer les solutions développables en série entiere de (F).

4. En déduire le développement en série entiere de f.

o Mp

2
SoitF:tr—>—/
7 Jo

V1 —t%m

‘3 (2n—1
Pour tout n € N*, on pose W,, = (20 )

2-4---(2n)
9 I
On admet que W,, = — /2 sin®"(6) d6.
7 Jo

) - .\ 1

1. Donner le développement en série entiere de x — Ny
-

2. La fonction F est-elle développable en série entiere 7 Justifier.
Le cas échéant, calculer ce développement en série entiere et donner son rayon
de convergence.

3. Montrer que I’ engendre ’espace vectoriel réel des solutions développables en
série enticre, solutions de I'équation différentielle (2 —¢)z” + (3t —1)a’ +tx = 0.

Centrale MP
Soit ¢ : Ry — R% et I'équation différentielle (E) : y"(z) = q(z)y(z
on note y, 'unique solution de (F) vérifiant y,(0) =1 et ¢/, (0) =

). Pour tout a € R,
Q.
1. Montrer que pour tout z € R¥, yo(z)yy(x) > 0.

Montrer que yq est strictement croissante sur R .

2. Montrer que :

Va € R,V € R, y,(z) = yo(x) (1 + /Ox WOE dt) .

3. Montrer qu’il existe a; < 0 tel que, pour a € R, les propriétés suivantes sont
équivalentes :

i) y, s’annule sur R, ;
i) a<a.

Calculer a;.

cop 2015

Résoudre 1'équation différentielle z(x 4+ 1)y” + (z +2)y —y = 2.
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Centrale 2015

Résoudre I'équation différentielle

—2x

V1+a?

y//+4y/+4y:

Mines 2015

Résoudre I'équation différentielle (1 + 22)y” + 4zy’ + 2y = 1.

Mines 2015

Résoudre dans R 1’équation différentielle suivante :
(22 4+ 1)y" + (4z — 2)y' — 8y = 0.

On donne une solution particuliere : x +— exp (—2x).

CCINP MPI 2025

1. Déterminer une primitive de la fonction x — cos(z).

2. Résoudre sur R 'équation différentielle y” +y = cos®(x) en utilisant la méthode
de variation des constantes.

CCP MP

Soit ’équation différentielle z(z — 1)y” + 3xy’ + y = 0.

1. Trouver les solutions de cette équation différentielle développables en série en-
tiere sur un intervalle | — ;[ de R, avec r > 0.

2. Est-ce que toutes les solutions de z(x — 1)y” + 3zy’ + y = 0 sur ]0; 1] sont les
restrictions d’une fonction développable en série entiere sur | — 1;1[?

CCP MP

1. Enoncer le théoréme de dérivation sous le signe intégrale.
+o00

2. Démontrer que la fonction f : x +— / e cos(xt) dt est de classe C* sur R.
0

3. (a) Trouver une équation différentielle linéaire (F) d’ordre 1 dont f est solution.
(b) Résoudre (F).

Centrale PSI 2017

1. Montrer que 1'équation différentielle (E) : v = (1 + %)y admet une unique
solution f telle que f(0) = f'(0) = 1.

2. Montrer que la fonction z +— est intégrable sur [0; +ool.

S
f2(x)

+oo ]
3. Montrer que la fonction g : x +— f(x)/

I2(t)

4. En déduire les solutions de (E) en fonction de la fonction f.

dt est solution de (FE).
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1960 ccp 2017

Résoudre matriciellement le systeme différentiel :

¥ = —x — 4y + 4det
y'=ax+3y

Centrale 2012

On consideére équation différentielle (E) : z(2* + 1)y +y +x = 0.
1. Trouver a, b, c € R tels que, pour tout x € R*,

1 a br+c

z(x? +1) ;+x2+1‘

2. Résoudre I'équation (F). Existe-t-il des solutions définies sur R ?

Mines 2012

Montrer que I'équation différentielle (E) : 2y’ = z + y* admet une unique solution

développable en série entiere, et que son rayon de convergence appartient a 'intervalle
[1;2].

Centrale 2012

Soit ¢ € C(R™,R) intégrable. Montrer qu’il existe une unique solution de I’équation
différentielle y” + y = ¢ qui admet une limite en +o00. Préciser cette limite.

TPE/EIVP 2018

Déterminer les fonctions f : R — R de classe C* vérifiant, pour tout = € R,

J@) = f@) = [ 't

Mines-Ponts
Soit n € N* et A € M,(R). On considere le systeme différentiel X'(t) = AX(t) noté

(S). Démontrer que toutes les solutions de (S) sont polynomiales si et seulement si A
est nilpotente.

966] Mines

Soit a,b : R — R deux applications continues de R dans R périodiques de période 1.
On considére ’équation différentielle notée (F) donnée par 3’ = a(x)y + b(x). On note

aussi, pour x € R, A(z) = / a(t)dt et I = A(1).
0
1. Trouver une condition sur I pour que A soit 1-périodique.

2. Soit y une solution de (E). Démontrer que x — y(x + 1) est aussi une solution
de (B).

3. Soit I # 0. Démontrer que (E) admet une unique solution 1-périodique.
4. Si I =0, que peut-on dire?

5. Donner un exemple pour chacune des situations.
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Mines

Résoudre I'équation différentielle

Existe-t-il des solutions bornées ?

Centrale

Le but de cet exercice est de déterminer les fonctions f :]0;+oo[ de classe C! et
solutions de 1’équation différentielle (non linéaire) E suivante :

f =1 fl=1.

1. Résoudre I’équation différentielle xy’ — y = 0.
2. Soit f une solution de (F). Démontrer que f est strictement croissante.

3. On suppose que f est minorée par 1. Déterminer la forme de f, puis obtenir une
contradiction.

4. On suppose que f est majorée par 1. Déterminer la forme de f, puis obtenir une
contradiction.

5. En déduire qu'il existe un unique x¢ €]0;+o0] tel que f(zo) = 1. Déterminer
toutes les solutions de (F).

1969 NP

On considere les deux équations différentielles suivantes :

20y — 3y =0 (H)
20y’ =3y =z  (E)

1. Résoudre 'équation (H) sur |0; 4o0].
2. Résoudre 1'équation (F) sur |0; +o0].
3. L’équation (F) admet-elle des solutions sur [0;+oo[?

X MP 2019

Soit x une fonction continiment différentiable au voisinage de 0, telle que
2'(t) = 3x(t) + 85 cos(z(t)) et x(0) =177,

Montrer que x se prolonge en une solution de cette équation différentielle sur R entier.

Mines-Télécom MP 2016

Résoudre le systeme différentiel

~ &\
I

8
+

N

~

SRS
I

r+y+=z
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Mines-Télécom MP 2024

Déterminer toutes les fonctions f développables en série entiere sur R qui vérifient :

(E):2zy" +y —y=0, y(0) =1.

Mines-Télécom MP 2019

On considere sur R I'équation différentielle :
(E) :y" + sinh(z)y' +y = 0.

1. Montrer que si y est solution de (F) sur R, alors z : z — y(—x) est solution de
(E) sur R.

2. Montrer qu’il existe une unique solution paire sur R valant 1 en 0.

CCINP PC 2023

On considere I'équation différentielle :
(E) :cos(t)y + sin(t)y’ = — cos(t) sin(t).

I

Donner l'ensemble des solutions réelles de (E) sur I = }—

NIE]
NI

ENSEA /ENSIIE PSI 2024

Résoudre I'équation différentielle
z” + 62’ + 9z = 2te™,

ou x : t — x(t) est la fonction inconnue.

CCINP PSI 2022

On considere 'équation différentielle :
(E) : (2% — 1)y" + 22y’ — 2y = 0 sur lintervalle | — 1;1].

1. Chercher les solutions polynomiales.

2. Effectuer le changement y(x) = xz(z), ou z est une fonction inconnue. En
déduire une équation différentielle vérifiée par z.

3. Donner (a;b;c) € R? tel que pour tout z €] — 1;1[\{0} :
42 — 2 a b c

x(x2—1):;+x+1+x—l’

4. Donner I'expression de z.

5. Donner I'ensemble des solutions de (E) sur | — 1;1].
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ENSEA/ENSIIE MPI 2023

Résoudre I'équation différentielle

t2

do
~_a - .
! (1+1)6 cosh(?)

dt

CCINP PC 2022

Résoudre I'équation différentielle 2xy’ + y = 1 sur R.

Mines-ponts MP 2018
Résoudre 1'équation différentielle x”(t) + z(t) = cot(t).

CCINP PSI 2024

1. Déterminer (a;b;c) € R? tel que

1_a+b+c
t2—1) ¢t t—1 t+1°

2. Déterminer les solutions de I'équation différentielle ¢(t* — 1)z’ + 2z = ¢2.

Mines-Télécom MP 2021

Déterminer les fonctions x € C*(R,R) vérifiant 1’équation différentielle :

(t*+1)a" — 22 =0.

Mines 2022

Montrer que la fonction :

f R — R
1
N e 22 sixF#0
0 sinon

n’est solution d’aucune équation différentielle linéaire homogene normalisée a coeffi-
clents constants.

ENS 2023

Soit I un intervalle de R et deux fonctions a et b continues sur 1.

1. Soit z une solution non nulle de y” + ay’ + by = 0 sur I. Montrer que les zéros
de x sont isolés.

2. On suppose a de classe C''. Montrer l'existence d’'une fonction z : I — R deux
fois dérivable sur I telle que f(t) = x(t)e®® soit une solution d’une équation
différentielle de la forme y” + qy = 0, ou ¢ est continue sur .

3. On note E, I'ensemble des solutions de y” + qy = 0 sur I. Soit ¢; et ¢ deux
fonctions continues sur I, vérifiant ¢; < go. On considere y; € E,, \ {0} et
Y2 € By, \ {0}, ainsi que a et § deux zéros consécutifs de y;. Montrer que ys
s’annule sur [a; 3]
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CCINP MP 2024
Soit
(B): 2%y +day + (2 - 2Py =1

et
(H) : 2%y + day + (2 — 2*)y = 0.

1. Montrer qu’il existe une unique solution développable en série entiere qui vérifie
(E) et la déterminer.

1
2. Montrer que g : ¥ = —— est solution de (E).
T

sinh(x) _
3. On admet que h: z +— 5 est solution de (H).
T

Déterminer toutes les solutions de (H).

Mines-Télécom MP 2024

On considere I’équation différentielle suivante :

exp (—z72) ‘

zy + 3y = e

1. Résoudre cette équation différentielle dans R*, puis dans R.

2. Déterminer un développement limité de la solution a l'ordre 4.

Mines-Télécom MP 2022
Soit ’équation différentielle (F) : 4zy” + 2y’ —y = 0.
1. Chercher les solutions sous forme de somme d’une série enticre.

2. Faire le changement de variable x = t? et montrer que (E) est équivalente a
2" — 2z = 0. En déduire les solutions sur R .

3. Faire le changement de variable z = —? et montrer que (E) est équivalente a
Z" + z = 0. En déduire les solutions sur R* .

4. Faire le raccordement des solutions puis en déduire la solution sur R.

Mines-Télécom MPI 2025

On considere 'équation différentielle suivante :

y' = ("= 1)y.

1. Montrer que s’il existe une fonction f solution de I’équation différentielle véri-
fiant f(0) = f/(0) = 1, alors cette fonction est unique.

2. On suppose que la fonction = ﬁ est intégrable sur R, . On pose :

+oo ]
AN TOE dt.

Montrer que g est solution de ’équation différentielle.

g(x) = f(x)

3. Montrer que la fonction = est bien intégrable sur R, .

b
f(z)?
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CCINP TSI 2025

En posant z = In <_Z|J_1>, résoudre I’équation différentielle ' = y(1 4 y).
Y

Mines-Télécom PSI 2019

Résoudre le systeme différentiel :

¥ =x—>5z2

y=y+z
Z=x+y+=z
m Mines-Ponts MP 2021
1. Résoudre sur D =] — oo ; 1] I'équation différentielle :
(B):af +y =
L = .
Yy Ty 1—»

2. L’équation (F) a-t-elle une solution de classe C* sur D7

X MP 2017

Résoudre z2y” + Sxy’ + 4y = 0.

Centrale-Supélec PC 2017

On considere 1’équation différentielle :
VIF 2y () 4+t (t) — y(t) = 0.
1. Tracer les solutions f et g soumises aux conditions initiales
(£(0); f1(0)) = (0:1) et (g(0);4'(0)) = (1;0).

L’une d’entre elles vous semble-t-elle évidente ?
2. Chercher 'autre solution sous la forme d’une série entiére.
3. Pour tout t €] — 1;1[, prouver I'égalité g(t) = /1 + t2.

CCINP MP 2017

On considéere I'équation différentielle suivante sur R, Re" :

2
(E)::U”—i—gx’—i—x:O.

in(t
1. Montrer que ¢y : t — SH;( ) est solution de (E).

2. A Paide du wronskien, chercher une autre solution de (F).
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CCINP TSI 2023

Résoudre I'équation différentielle :

yW =2y +y=0.

On pourra poser z =" — y.

Mines-Ponts PSI 2012

Trouver les solutions 27-périodiques de 1’équation différentielle :

y" + ey = 0.

m Centrale-Supélec PSI 2016

Soit p € R. Trouver toutes les fonctions trois fois dérivables sur R et a valeurs réelles
telles que, pour tout t € R :

CCINP PC 2016

On considere I’équation différentielle :

(E) : 2(x — 2)y"(z) + (z — 2)y/(2) — y(z) = 0.
1. Montrer que yy : © — x — 2 est solution.
Soit I I'intervalle |1;2[ ou ]2;+o0.
y(x)

x —
d’une certaine équation différentielle d’ordre 2 que I'on explicitera.

2. Montrer que y est solution de (£) si et seulement si 2z : x — est solution

Vr—1

3.(a) On pose ¢ : & — —2 . Montrer que ¢ est dérivable sur I et calculer
z —

¢'(x) sur I.
(b) Résoudre (F) sur I sachant que :

4 — 32 1 1 2

20(x —1)(z—2) x 2x-1) x—-2

(¢) Résoudre (F) sur |1;+oo].
(d) Résoudre (F) sur ]|0;-+oo[ ou sur R.

Mines-Ponts MP

1. Soit f une fonction de classe C', & valeurs dans C, et a € C tel que Re(a) > 0.
On suppose que f'(t) + af(t) tend vers 0 quand ¢ — 4+o00. Montrer que f tend
également vers 0 quant ¢t — —+o00.

2. Soit f une fonction de classe C?, & valeurs dans C, telle que f”(t) + f'(t) + f(¢)
tend vers 0 quand ¢ — 4oc0. Montrer que la fonction f tend également vers 0
quand ¢t — 4o00.
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1999] x MP 2022

Soit A un réel.

1. Résoudre I'équation différentielle :

SN 142t

(e g
—2t
2. Soit f la fonction définie par f(t) = e(le(w:R.

Justifier que la fonction f est développable en série entiere et donner un équi-
valent des coefficients de ce développement.

CCINP PSI 2023

On considere I’équation différentielle :
(E) : 52" (t) + 102/ (t) + 62(t) = 0.

1. Résoudre cette équation différentielle dans R.

2. Soit z une solution non nulle de (F). Montrer qu’il existe ¢ € R tel que |z(t)| = 1.
2

3. Etudier les variations de ¢(t) = @ R.
4. Soit z vérifiant (E). Montrer que I'application qui & ¢ associe
x(t)?
14 x(t)*

est bornée et atteint sa borne supérieure. Sa borne inférieure est-elle atteinte ?

1001 | CCINP PSI 2022
Soit la fonction f(z) = arcsin(z)v/1 — 22.
1. Montrer que cette fonction est C'* sur un intervalle que 1’on précisera et donner
sa dérivée.

2. Trouver des polynémes non nuls a, b, ¢ tels que f soit solution de 1’équation
différentielle du premier ordre :

a(x)y + b(x)y = c(x).

3. Montrer que l'unique solution de cette équation, qui s’annule en 0, est une
fonction impaire développable en série entiere au voisinage de 0.

4. En déduire que f est développable en série entiere au voisinage de 0.

5. Donner ce développement en série entiere.

1002 | Mines-Ponts MP 2021

Résoudre sur R I'équation différentielle 23y’ — 2y = 0.
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CCINP PC 2019

1. Soit # € R. Préciser les parties réelle et imaginaire de

1

T +i

2. Résoudre I'équation différentielle y/ + ——y =0
2(x +1)

3. On définit, pour x réel :

+00 eimteft

flz) = ; Tdt.

Montrer que I'on définit ainsi une fonction f sur R. Montrer que f est continue.
Etudier le caractére C! et exprimer f’.

4. Montrer que, pour tout x € R :

5. Pour tout a € R*, on note :

Montrer ’existence de I,,.
Exprimer [, en fonction de f.
En déduire le signe de 1.

1004 | TPE/EIVP PSI 2016

On considere 1’équation différentielle :

(E):y" — (2 + 42®)y = 0.
Soit f une solution de (FE) telle que f(0) = 1. On suppose qu’il existe R > 0 et
(an)nen € RY tels que :

+oo
ap=1et Vo €] - R;R[, f(z) =) aa”.
n=0

1. Déterminer a;.

2. Déterminer une relation entre a, 1, a, et a,_1.

3. Déterminer as et az. Faire une conjecture sur a, et la démontrer.
4. Résoudre (F) en posant y(x) = f(z)z(x).

1005 | Mines-Ponts PC 2015

Soit a € R. Résoudre ’équation différentielle :

z(y" —y')+ay=0.
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CCINP MP 2021

On considere I'équation différentielle :
(B): (2* —42)y + (2 —2)y = 4.

1. Trouver une solution de (F) sous la forme d'un polynome.
2. Résoudre (E) sur les intervalles | — 00 ;0[, ]0;4] et |4; +o0].
3. Trouver les solutions de (F) sur | — 0o ;4[, |0;400] et R.

1007 | Mines-Télécom PSI 2017

Résoudre I'équation différentielle xy” — 4y’ +y = 0.

1008 | Mines-Télécom MP 2025

Résoudre :

1009 | Mines-Télécom MPI 2024

Soit a > 0 et h € C(R,4,R) bornée. L’équation y' — ay = h(t) admet-elle une solution
bornée dans R, ? Donner ses solutions.

CCINP PC 2023

Soit S I'ensemble des fonctions de classe C? sur R vérifiant I’équation différentielle :

y'(z) — (2" + Dy(x) = 0.

On pose f 'unique élément de S vérifiant f'(0) = f(0) = 1.

1. Montrer que S est un sous-espace vectoriel de 1’espace des fonctions de classe
C? sur R.

2. Soit g: R = R, x — f?(x). Calculer g(0) et ¢'(0).
3. Montrer que, pour tout x € R, ¢”(z) > 0.
4. Montrer que f?(x) > 1 pour tout x € R,.

z 1
5. Posons h(x) = f(x)/ @dt. Montrer que h est définie et que h € S.
0

6. Montrer que {f;h} est une base de S.

ENSAM PSI 2016

On considere ’équation différentielle :
z(x + 1)y + y = arctan(x).

1. Résoudre I’équation sur les intervalles ne contenant ni —1 ni 0.

2. Existe-t-il des solutions sur R ?
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CCINP PC 2018

Le but de I'exercice est de déterminer les solutions sur R* de 1’équation :
(E):zy" +axy —y=0.

1. Déterminer un réel a tel que h, : & — 2* soit solution de (E) sur R7.
+oo eft

1et
2. Montrer que / = dt converge et que / = dt diverge.
1 0

xr eft .
3. Soit G : z — / — dt. Etudier les variations de G sur R7.
1

4. Soit f une fonction deux fois dérivables sur R et s : x — xf(x). Montrer que

s est solution de (E) sur R* | si et seulement si f" est solution d'une équation

différentielle linéaire du premier ordre (E’), que 1'on précisera.
5. Résoudre (£') sur RY.

6. Exprimer les solutions de (E) sur R¥ a I'aide de la fonction G.

1013 | Mines-Ponts MP 2017

Donner le systeme a résoudre pour effectuer la variation des constantes dans le cas
d’une équation différentielle linéaire a coefficients constants d’ordre 2.

X MP 2018
Soit x € C*(R,R%) vérifiant :

11—z
2 = .

3
Trouver une condition nécessaire et suffisante sur z(0) et 2’(0) pour que z soit bornée.

CCINP MP 2015

On considere 1'équation différentielle :
(B) : z(z+2)y'(z) + (z+ Dy(z) = L.
1. Rappeler la dérivée de x — In(x 4+ 22 — 1).

Résoudre (E) pour = > 0.

2. Montrer que (£) admet une solution f développable en série entiere sur | —2; 2.
Donner ce développement.

3. En déduire a I'aide des questions précédentes une expression de f(z) pour z > 0.

1016 | Mines-Ponts PC 2014

Résoudre :
v(z+1)y"(z) —y'(x) — 2y(z) = 32,

1017 | Mines-Ponts PSI 2022

Résoudre I'équation différentielle :

y'+xy +3y=0
y(()) =1, y,<0) =0
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1018 | Mines-Ponts MP 2015

Résoudre I'équation différentielle d’inconnue y :

w(z? + 1)y —2(2® + 1)y + 22y = 0.

1019 | Mines-Télécom PC 2022

On note (F) I'équation différentielle suivante :

T

2y () + () = .

1. Déterminer les solutions de (£) développables en série entiere.

2. Soit (z0; o) € R?. On consideére le probléme de Cauchy :

Sans calcul, déterminer le nombre de solutions de ce probleme sur un intervalle
bien choisi.

3. Résoudre I'équation différentielle (F) sur les intervalles | — oo ;0[ et |0 ; +00].

4. Dans le cas (zo;y0) = (0; 1), trouver toutes les solutions sur R du probleme de
Cauchy de la question 2.

1020 | TPE/EIVP MP 2018

Soit I’équation différentielle
(E): ¢ + (2 — cos(t?))y = 0.

Soit f : R — R une solution de (E) a valeurs strictement négatives.
1. Montrer que f est convexe.

2. Soit a € R. Donner une équation de la tangente a la courbe représentative de f
au point d’abscisse a.

En déduire une contradiction puis conclure.

CCINP PSI 2016

On donne I’'équation différentielle suivante :
(E):z(1—2)y" + (1 =3x)y' —y =0.

1. (a) Déterminer les solutions de (F) développables en série entiére.
(b) Pourquoi peut-on dire que (E) admet d’autres solutions ?

2. Résoudre entierement 1’équation différentielle en utilisant le changement de fonc-

2(z
tion inconnue y(x) = 1() Effectuer les raccordements éventuels.
—
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CCINP MP 2015

On considere I'équation différentielle
(E): 2ty +y = 3tcos (t%) .

1. Montrer qu’il existe une unique solution v de (E) sur R’ développable en série
entiere.

2. Résoudre (F) dans le cas général et un déduire une simplification de v.

1023 | Mines-Ponts PSI 2024

On considere 'équation différentielle suivante :
(E): 2%y +y = 2°.

1. Montrer que (F) n’a pas de solution développable en série entiére (autour de
7610).
2. Résoudre (F) sur R.

3. Montrer que (F) admet une unique solution y telle que 1i1’(I)1+ y(x) = 0.
r—r

1024 | Mines-Ponts PC 2016

Résoudre I'équation différentielle suivante :
2y’ — (x4 3)y' + 3y = 0.

Indication : on commencera par chercher une solution développable en série entiere
telle que y(0) = 1, dont on déterminera explicitement le rayon de convergence.

1025 | ENSEA/ENSIIE MP 2018

On considere 1’équation différentielle suivante :
(E) : 2%y" — 3wy’ + 4v = 2°

et on note (H) I’équation homogene associée.
1. Trouver les solutions polynomiales de (H).
2. Trouver toutes les solutions de (H) sur |0 ; 400].

3. Trouver toutes les solutions de (E) sur |0; 4o00].

1026 | Mines-Télécom MP 2019

Résoudre le systeme différentiel suivant :

2'(t) = =3x(t) + y(t) — 2(t)
y'(t) = =Ta(t) + 5y(t) — (1)
2 (t) = —6x(t) + 6y(t) + 22(t)
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CCINP PC 2017

1 1
Pour tout ¢ > 0, on pose ¢(t) = ;eft.

1. Montrer que lim ¢(t) = 0.
t—0+

X
2. En déduire que pour tout z > 0, I'intégrale / ©(t) dt existe.
0

3. Montrer que les solutions de z?y/(x) 4+ y(z) = z sur |0; +oo| sont les fonctions

de la forme .

z+— ez (h(z)+ k),
ou k est une constante réelle.

4. Pour tout x > 0, montrer 1’égalité suivante :

lh too  eTU q
R =

On pourra considérer le changement de variable ¢t = g
Tu

5. Montrer que la fonction

du

+00 —u
f:xr—)/ ©
0 14+ zu

est définie et continue sur [0;+o00].

6. Montrer que g :  + xf(x) est solution de z*y'(z) + y(x) = x sur [0;+oo[ et
que c’est la seule.

7. Montrer que g est de classe C™ sur [0; +00].

8. Trouver la limite de g en +o00.

CCINP MP 2015

Résoudre le systeme différentiel suivant par résolution matricielle (diagonalisation) :

x' =3z — 4y — exp(—t)
y =x—2y

1029 | Mines-Ponts PC 2016

Résoudre le systéme différence homogene X' = AX avec

3 -1 - —1

Quelle méthode utiliser dans le cas ou il y a un second membre ?

215




CCINP PC 2018

Soit 7 > 0. Soit f une fonction développable en série entiere sur | — r;r[. Soit a > 0.
On considere I'équation différentielle suivante :

(E):y’+zy=ff>.

Pour tout x €]0;r[, on pose :

TP = — [ e f)du

x* Jo
a
1. Déterminer I'ensemble des solutions sur ]0; +o0o[ de I'équation y' + — = 0.

2. Pour tout = €]0;r[, montrer I'existence de M, > 0 tel que, pour tout t € [0; x],
|f(t)] < M,. En déduire que pour tout = €]0;r[, la fonction u — u® ! f(u) est
intégrable sur ]0; z].

3. Montrer que la fonction T,/(f) est solution de (E) sur ]|0;r[, puis résoudre (E)
sur cet intervalle.

4. Montrer qu’il existe une suite (a,)nen telle que :

+o0 ap .
Vo €]0;1], Ta(f>(x):7;)n+ozx'

5. Montrer que (E) admet une unique solution sur ]0;r| qui posseéde une limite
finie en O.

1031 | Mines-Télécom PSI 2016

On considere ’équation différentielle :
o%y" + 4oy’ + 2y = In(1 + 2).

Déterminer une solution développable en série entiere et 'exprimer a I’aide de fonctions
usuelles.

1032 | Mines-Ponts 2013

On considere le probléme suivant :

y =1+ 2?y?
y(0) =0

1. Montrer que cette équation différentielle admet une unique solution maximale.
On note f cette solution.

2. Montrer que f est impaire.
3. Montrer que f est définie sur un intervalle | — a;a[ avec a € R.
4. Tracer 'allure de f.
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1033 | Mines-Télécom MP 2024
4n
(2n + 1)!
1. Justifier que f est définie et de classe C* sur | — 1;1].

+o0
On pose a, = (n!)? pour tout n € Net f(z) = > a,z*".
n=0

2. En déterminant une relation de récurrence entre a,,; et a,, montrer que f vérifie
I’équation différentielle :

fl(x) =14 22" (2) + o f(2).

En déduire I'expression de f.

1034 | TPE/EIVP PC 2015

On considere I'équation différentielle y” + zy = 0 avec y(0) et y/(0) = 0. Résoudre
I’équation différentielle en utilisant des séries entieres.

X ESPCI PC 2013

On considere une solution f bornée de I’équation différentielle suivante :

/! :Uy
=0
y +1+x3

. / _
Montrer que m1—1>r4£100 f'(x)=0.
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5 Fonctions de plusieurs variables

cop Mp

Déterminer les coordonnées et la nature des extrema de :
f: R — R
2
(z5y) — 2= (> —y)

1037 | Mines-Ponts/X MP

h h
Soit (a;b) € R? et h € C*(R?,R) telle que h = aa— - bﬁ—.
ox oy

On suppose que h est bornée. Montrer que h est nulle.

CCP 2015

On considere le disque D = {(z;y) € R* | 22 + y* < 1} et la fonction f définie par :
V(w:y) €D, flzyy) = 2° = 3a(1+y%).

La fonction f admet-elle sur D des extrema globaux ou des extrema locaux ?

1039 | ccp MP
1. Soit f une fonction de R? dans R.

(a) Donner, en utilisant des quantificateurs, la définition de la continuité de f
en (0;0).
(b) Donner la définition de « f différentiable en (0;0) ».

2. On considére 'application définie sur R? par :
m S —

Flaiy) = a1y

0 si (z;y) = (0;0)

a) Montrer que f est continue sur R2.
q
(b) Montrer que f est de classe C* sur R2.

R

ry

On pose, pour tout (z;y) € R?\ {(0;0)}, f(z;y) = ——=—= et f(0;0) = 0.
pose, P (2;9) \{(0;0)}, f(z:y) N f(0;0)

1. Démontrer que f est continue sur R2.

2. Démontrer que f admet des dérivées partielles en tout point de R2.

3. La fonction f est-elle de classe C! sur R? ? Justifier.
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cor vr

Soit o € R. On considére 'application f définie sur R? par :

flayy) = xzﬂzjz_my si (z;y) # (0;0)

o si (z;9) = (0;0)
1. Prouver que :

V(z;y) € R 2+ —ay > — (2% +97).

N | —

2. (a) Quel est le domaine de définition de f?
(b) Déterminer o pour que f soit continue sur R2.

3. Dans cette question, on suppose que a = 0.

0 0
(a) Justifier I'existence de of et of sur R?\ {(0;0)} et les calculer.

or Oy
of

0
(b) Justifier I'existence de 8f(0; 0) et 8—(0; 0) et donner leur valeur.
Z )

(c) La fonction f est-elle de classe C'* sur R??

cop mp

1. Soit F et F' deux espaces vectoriels réels normés de dimension finie. Soit a € F
et soit f : £ — F une application.

Donner la définition de « f différentiable en a ».
2. Soit n € N*. Soit F un espace vectoriel réel de dimension finie n.

Soit e = (ey;...;€,) une base de E.

On pose : Vz € B, ||zl = 112&};|x1|, oux = ;xiei.
On pose : V(x;y) € E X E, |[(z;y)[| = max([|z]|so; [ylloo)-
On admet que ||| est une norme sur E et que ||| est une norme sur £ x E.

Soit B : E x EE — R une forme bilinéaire sur FE.

(a) Prouver que :
IC € R",V(z;y) € Ex E, [B(x;y)] < Cllxloo]ylloo-

(b) Montrer que B est différentiable sur E x E et déterminer sa différentielle en
tout (up;v9) € E X E.

Mines 2016
On considere 'ensemble A = {(x;y) € R* |z > 0,y > 0,z +y < 6} et la fonction f
définie sur A par :
V(ziy) € A, flay) = 2"y(z+y —4).
1. Représenter le domaine A.

2. Trouver les extrema locaux et globaux de f sur A.

219




CCINP 2024

Soit f la fonction définie sur R? par :
V(x;y) € R?, fla;y) = 22° + 6ay — 3y° + 2.

1. La fonction f admet-elle des extrema locaux sur R?? Si oui, les déterminer.
2. La fonction f admet-elle des extrema globaux sur R?? Justifier.
3. On pose K =[0;1] x [0;1].

Justifier, oralement, que f admet un maximum global sur K, puis le déterminer.

1045 | X-ENS/Mines-Ponts MP

Soit n € N*. Pour M € M,(R), on note : f(M) = (Tr(M); Tr(M?);...; Tr(M™)) € R™.

1. Montrer que f est différentiable sur M, (R) et calculer sa différentielle df(M)
pour tout M € M,(R).

2. Comparer, pour tout M € M,(R), le rang de df(M) et le degré du polynéme
minimal annulateur de M, noté my,.

3. Montrer que I’ensemble {M € M, (R) | xar = mp} est un ouvert de M, (R).

Mines-Ponts MP
Soit f : R®™ — R™ différentiable telle que lim | f(z)|| = +oo et que, pour tout

|z||—+o0

r € R", df(z) est surjective. Soit a € R" et g : R" —» R, x — || f(z) — al]*.
1. Montrer que la fonction g est différentiable et exprimer dg(z) pour tout € R™.
2. Montrer que la fonction g admet un minimum global.

3. En déduire que la fonction f est surjective.

Mines-Ponts PSI

L’application H : R* — R définie par H(x;y) =

.IAy

msi (z:y) # (0;0), et H(0;0) =0

est-elle continue ? de classe C'' ?

CCINP MP 2023

Soit f 'application de R? dans R définie par f : (z;y) — 42? + 122y — >
Soit C' = {(z;y) € R?* | 2? + y* = 13}.

1. Justifier que f atteint un minimum sur C.
2. Soit (u;v) € C ou f atteint I'un de ses extrema.

(a) Justifier avec un théoreme de votre programme qu'’il existe un réel A tel que
le systeme () suivant soit vérifié :

du 4+ 6v = \u
6u —v =M\

(b) Montrer que (A —4)(A+1) —36 = 0.

3. Déterminer les valeurs possibles de (u;v), puis donner le maximum et le mini-
mum de f sur C.
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CCINP PC 2017

On pose f(z;y) = zn(y) — yIn(z) pour tout (x;y) € R’f.
Déterminer les extrema de f sur R’f.

Mines-Ponts MP 2021
Soit A = {(z;y) € R? | zy = 0} etD:{(a:;y) eRz\xyE] —g,g[}
1. Représenter A et D dans R
2. Les ensembles A et D sont-ils ouverts ? fermés ?
3. Montrer que
In(1 + sin(xy))

[ (wy) — y g A
1 si (z;y) € A

est de classe C*° sur D.

CCINP TSI
Soit
f: R — R
(r;9) — ' +y* —4day

Déterminer les points ou f admet des extrema locaux.

Mines 2024
Soit
f: R — R
(z;y) +— min(2?y?)
Quel est le domaine de continuité de f 7 de différentiabilité de f 7 La fonction f est-elle
de classe O17?

1053 | Centrale-Supélec PC 2023

On pose :
Vr €R, f(z) =2 —In(1+2%) et Vr,y€R, F(r;y) = f(x) — f(y).

1. Montrer que f est de classe C! et que I’équation f’(z) = a d’inconnue z admet
au plus deux solutions.

2. Déterminer les points critiques de F'.

3. Quelle est la nature des points critiques ?

1054 | ENSEA/ENSIIE MP 2015

Rechercher les éventuels extrema de la fonction f(x;y) = (z — y)? + 2° + 3.
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1055 | Mines 2024

On munit R2 de la norme euclidienne et on considere la fonction :
f: R — R?

(r;y) — (;sin(l’ +y); ;COS(x - y))

1. Déterminer la différentielle de f.

2. Montrer que pour tout (z;y) € R? :

[ df(zy)ll <

Nl

3. En déduire que le systeme

22 = sin(z + y)
2y = cos(z — y)

admet au plus une solution.

1056 | Mines 2023
Etudier Pexistence, la continuité et les extrema de :
f+ RxRy —
+oo sin( t + )

— —=dt
(z:9) / t+y

1057 | ENSEA/ENSIIE MPI 2023

Etudier les extrema de la fonction :

f i RLxR —» R
(r;y) +— z(y? +In*(x))

1058 | Mines-Ponts MP 2022

On pose :
f(x;y)=v1+x2+\/1+y2—f/y§.

La fonction f admet-elle des extrema globaux? locaux?

Mines-Ponts MP 2022
Soit
f: R — R
sin(zy)
T s(@y) #(0,0)
(xiy) — 4 lz[+ 1yl
0 sinon

La fonction f est-elle continue ? de classe C!?

222




1060 | Mines-Télécom MP 2024

Soit
R R
(z;y) — Bay—a® —y°

Etudier les extrema de la fonction f.

CCINP PSI 2019

3 3

932132 si (z;y) # (0;0), et f(0;0) = 0.

1. La fonction f est-elle continue sur R??

2. La fonction f est-elle de classe C! sur R??
0 f

0xdy’

Soit f: (x;y) —

3. Etudier I'existence de

1062 | Mines-Ponts MP 2023

1. Soit U un ouvert de R, g € U et f : U — R dérivable en z telle que f admet
un extremum en z,. Montrer que f'(xy) = 0.

2. Enoncer un théoréme semblable pour U un ouvert de R? et le démontrer.

3. Etudier les extrema de
[ (z;y) — |sin(z —I—iy)]2

sur Uensemble Q = {(z;y) € R?* | 22 +y? < 1}.

1063 | Mines-Ponts PSI 2025

+o00 xQn
On pose f(z;y) = .
n;l 1 _|_ y2n

1. Donner I’ensemble de définition de f et le représenter graphiquement.

2. Déterminer les dérivées partielles de f.

CCINP PSI 2019
Soit
f: R — R?
(z;y) — Py’ (z+y—1)
1. Trouver les points critiques de f.

2. Déterminer les extrema locaux de f.

CCINP MP 2027

Déterminer les extrema de la fonction f définie sur R? par :

f(z;y) = 2° + 32y* — 152 — 12y.
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CCINP PSI 2015

On consideére les deux ensembles suivants :

K:{(:U;y)E]R2]Og:cgﬁetOéygﬂ},
T={(ry) eR*|0<x<y<T}
On considere la fonction F(z;y) = z(r —y) powr 0 < z <y < et F(z;y) =y(m —x)
pour 0 <y <z <.
1. La fonction F' admet-elle des extrema locaux sur 7'7

2. La fonction F' admet-elle un minimum sur K ? un maximum ? Si oui, déterminer
leur valeur.

CCINP MP 2022

On considere la fonction f définie sur R% x R par f(z;y) = z((In(x))? + y?) et ¥ la
surface représentative de f dans un repére orthonormé.

1. Déterminer les points critiques de f. La fonction f admet-elle un extremum
global 7

2. Soit (a;b) un point critique de f. Déterminer I’équation du plan tangent a ¥ en
(a; b; f(a; b))
3. Exprimer I’équation du plan tangent en (1;1;1).

4. Exprimer la différentielle en (1;1), puis g telle que g(z;vy) = (f(z;v); f(z;v)).

1068 | Mines-Ponts PSI 2014

Soit g : R? — R continue. Soit C le cercle de centre O et de rayon R > 0.

1. Montrer qu’il existe deux points A et B de C diamétralement opposés tels que
9(A) = g(B).

2. En est-il de méme pour deux points de C séparés d’un quart de tour?

CCINP PSI 2017

On note f la fonction :
(25y) — 2%y +In(4 + 7).
1. Montrer que f admet sur R? un unique point critique.
2. On note g : z — f(z;2®) — f(0;0). Trouver un équivalent simple de g en 0.

3. La fonction f admet-elle des extrema locaux?

1070 | Centrale-Supélec PC 2023
On définit :
f @[22 xR — R
2

(xy)  — % — V4 — 2% cos(y)

Montrer que f possede un maximum et un minimum, puis déterminer leur valeur.
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CCINP PC 2019

Pour tout (z;y) € R?, on pose :
f(z;y) = cosh(2z) — cos(2y).
On consideére les deux ensembles suivants :

D={(zy) eR*| 2" +y* <1}

D' ={(z;y) e R* | 22 +¢* < 1}
1. Pour tout ¢ positif, montrer les inégalités sin(¢) < t et sinh(t) > t.
2. Montrer que f admet un minimum nul sur R2.

3. Montrer que D est fermé et borné. En déduire que f admet un maximum sur

D.

4. Montrer que D’ est un ouvert et déterminer les points critiques de f dans D’.

5. En déduire qu’il existe to € {0 ; g} tel que le maximum de f sur D soit égal a
f(cos(to);sin(ty)).

6. Etudier les variations sur [0 ; g} de la fonction ¢ : 6 — f(cos(#);sin(6)).
Conclure.

CCINP TSI 2019
Soit
f R3 — R
(r;9;2) — (22 + 9%+ 224+ 3)? — 16(2? + 9?)
et S la surface d’équation f(x;y;z) =0.
1. Montrer que S est réguliere en tout point.

2. Soit M (3;0;0). Trouver une équation cartésienne du plan tangent & S passant
par M.

1073 | Centrale-Supélec PC 2016

Soit A une fonction de R dans R. On pose A = {(z;y) € R? | z = y} et

h(z) — h(y)
T —y

fi(ry) €ERP\Ar— eR.

1. On suppose que h est de classe C'. Montrer que f se prolonge en une fonction
continue de R? dans R.

2. On suppose que h est de classe C2. Montrer que f se prolonge en une fonction
de classe C! de R? dans R.

1074 | Mines-Ponts MP 2023

On considere R™ muni de la structure euclidienne usuelle. Soit N une norme sur R” et
a > 0. Soit f:R"® — R de classe C'! tel que pour tous z,y € R" :

(Vf(z) =V f(y),z—y)>aN(x—y)

Montrer que f(z) tend vers +o0o quand N(z) tend vers +o0.
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ENS MP 2022

1. Soit u € C*°(R",R) telle que Au > 0 sur B(0,1). Montrer que u atteint son
maximum sur la sphere S(0; 1).

2. Démontrer le méme résultat en supposant uniquement que Au > 0 sur B(0, 1).
3. Soit V telle que :

1 1 1
T ) Tn
Ve e R", V(z) = ,

Montrer que AV = 0.

CCINP PC 2018

1. Soit
g : R* —

R
1
r > Texp (:c) + exp(z)

Montrer que g est croissante et calculer g(—1).

2. Soit
f: R — R

(z;9) —— xexp(y) +yexp(x)

Montrer que si (z¢; yo) est un point critique, alors xq < 0, xoyo = 1 et g(z¢) = 0.
Déterminer le(s) point(s) critique(s).

3. Soit z — f(—1+ ax;—1+ z) ou a € R. Donner un développement limité en 0
a l'ordre 2.

4. Montrer que f n’admet pas d’extremum local.

5. Notons D = {(z;y) € R? | |x| < 1 et |y| < 1}. Déterminer le minimum et le
maximum de f sur D en justifiant leur existence.

1077 | Mines-Télécom PSI 2022

Etudier la continuité en (0;0) de chacune des fonctions suivantes, toutes supposées
nulles en (0;0). Elles sont définies pour tout (z;y) € R?\ {(0;0)} par :

3 Ty

3
ry
ety ety

224+ y?+ay

flzy) = h(z;y) =

TPE/EIVP PSI 2017
Posons f(x;y) = (z — y)?(1 — 2* — y?) pour (z;y) € R%
1. Préciser le signe de f.
2. Déterminer les points critiques de f.
3. La fonction f possede-t-elle un minimum global ?
4. Montrer que f possede un maximum global et préciser les points ot il est atteint.
5

. Préciser les extrema locaux de f.
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1079 | CCINP PC 2015
Soit
f: R — R
(z;y) —> e +e¥+e ™Y
1. Montrer que :
VieR, e =1+t

2. Déterminer tous les points critiques de f et donner leur nature. Existe-t-il un
maximum ?

CCINP MP 2023

On note, pour tous réels x et y :
f(z;y) = y*sin (a:) siy#0 et f(z;0) =0.
Y

1. On pose Xy = (z9;0) ou 29 € R.
(a) Montrer que f est continue en (zg;0).
(b) Montrer que f est continue sur R2.

2. On considere X; = (x1;9;) € R? avec y; # 0.
(a) Calculer les dérivées partielles de f en Xj.

(b) La fonction f est-elle différentiable en X 7 Si oui, donner la différentielle de
f en Xj, puis en (0;1).

3. Calculer les dérivées partielles de f en Xj. Si on suppose que f est différentiable
en Xg, que vaut sa différentielle ?

CCINP MP 2012

1. Déterminer les extrema de la fonction
[ (z;y) — sin(z) cos(z) cos(z + y)
sur le domaine

A:{(x;y)€R2]:c}O,y}Oetx—l—yég}.

2. Soit (z;y;2) € R3 tel que z +y + z <
1

Montrer que sin(x) sin(y) sin(z) < 3.

us
o

1082 | Mines-Ponts MP 2014

Montrer que
“+o0o

flay) ="

n=0

(n? —nx —y)?
2n

est définie sur R?, qu’elle posséde un minimum et trouver pour quel couple (z;y) elle
I’atteint.
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CCINP PC 2024

Soit h une application de R dans R, & valeurs positives, de classe C?, convexe et de
dérivée strictement négative.

1. Montrer que x +— e~ vérifie ces hypotheses.

2. Soit
g : R — R
r +— x4+ h'(x)

(a) Montrer que g est strictement croissante, et vérifier que g(0) < 0.

(b) Montrer que 'équation g(z) = 0 a une et une seule solution. On la notera a.
3. Soit f I'application de classe C? de R? dans R, qui a (x;y) associe

x? — 2zy + 2y* + h(z).

(a) Montrer que (a;%
(b) Montrer que f admet un extremum local et déterminer sa nature.

) est I'unique point critique de f.

4. On pose :
o: ((x;y); (259) — ' — xy’ — 2"y + 2yy/.

On admet que ¢ est un produit scalaire sur R2. Montrer que :
3k > 0, V(z;y) € R?, 2% — 20y + 2y* > k(2 + 7).

5. Montrer que 'extremum de f est global.

ENSAM 2015

Déterminer les fonctions g € C'(R,R) telles que le champ de vecteurs

Vo= (¢ 00

soit le gradient d’une fonction f. Calculer alors cette (ces) fonction(s) f.

ENS MP 2019

On définit les intégrales doubles des fonctions de [0;1]? dans R continues : on intégre
successivement et les deux variables jouent des roles équivalents i.e.

/o1 /o1 flasy)dedy = /01 /01 flz;y) dy dz.

On définit une norme :
1 1
11l = V || flaiypay e

On considére 'ensemble A des g € C([0;1]%,R) telles qu'il existe r,s : [0;1] — R avec,
pour tous z,y, g(z;y) = r(z)s(y).

Soit f € C([0;1]%,R). Supposons que, pour tout g € A, ||f + gl = ||f]l-

Montrer que f est la fonction nulle.
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COINP P 2021
Soit
f: R — R
(z5y) — 2% =y
Soit 'ensemble C' = {(z;y) | h(z;y) = 0}.

1. Montrer que h est une fonction de classe C'*, puis montrer que (0;0) est le seul
point critique de h. La fonction h admet-elle un extremum local en (0;0) 7

2. Soit f : R? — R, une fonction de classe C' et telle que f(z;y) = 0 pour
(z;y) € C.

(a) Justifier que pour tout t € R, f(t%t3) = 0.

0
(b) En déduire que af(O; 0) = 0.

ox
3. Soit
(Vo R — R
u > f(t%u)
Justifier que ¢; est dérivable sur R et montrer qu’il existe y(t) €] — t3; 3] tel
que ;(y(t)) = 0.
4. Conclure que (0;0) est un point critique pour f.

5. Représenter dans un repére orthonormé ’ensemble C'.

1087 | Mines-Ponts MP 2024

Posons D = Rf. Montrer que I’ensemble

X

S = {g e C'(D,R) | 3f € CY(RY,R), V(z;y) € D, g(a;y) = f (y)}

est I’ensemble des solutions sur D d’une équation aux dérivées partielles a préciser.

CCINP PSI 2014
On pose D = {(z;y) € R? | 2? + 2¢* + 2y < 1}
1. L’ensemble D est-il borné ?

2. A Daide du changement de variable u = x + fetv= %, calculer I'aire de D.

1089 | TPE/EIVP MP 2018

On définit : .
f (R%) — R

(2155 1,) (:ﬁ) (g;)

La fonction f admet-elle des extrema ? Si oui, lesquels ?

1090 | Mines-Télécom MP 2018

Etudier la fonction f définie par :

f(x;y) = arctan(x) + arctan(y) — arctan <1x Ty ) :
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Mines-Ponts MP 2019

Soit D =R x R et A =R% x R. On définit, pour tout (u;v) € D :
uw? + 0% wu

¢(u;v) = ( 5y

v

1. Montrer que ¢ est une bijection de D dans A.
2. Montrer que ¢ et ¢~* sont de classe C'*.

1092 | Centrale-Supélec PC 2022

Soit f € C*(]J0;+o0[,R). On définit :

¢ : ]0;+oof} — R
2+ 2
(T5932) f( = >

Déterminer les choix de f tels que :

0P N 0?d N 0*® 0
oz Oy 022

CCINP PC 2018

Soit g : R? — R harmonique, c’est-a-dire g est de classe C? et :

02 02
. )
ox? = Oy?
1. Trouver a, b des réels tels que :
1 a b
+

1—2 1+t 1—t
2. Résoudre I’équation différentielle suivante :
(1—*)y" -2ty = 0.

Soit f : R — R une fonction dérivable deux fois et F' = f o g.
, PF  0*F
3. Exprimer 92 et 37y2
4. On suppose que f” ne s’annule pas. Montrer que F' est harmonique si et seule-
ment si g est une constante.

Soit A : R — R une fonction dérivable deux fois et :

e = ()

5. Déterminer les applications h telles que G soit harmonique.
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1094 | Mines 2015

Résoudre I'équation aux dérivées partielles

20 f

dans le domaine U = R?\ {(x;0) | z € R_}, en passant en coordonnées polaires.

1095 | Mines-Ponts PSI 2019
Soit

() »—>Z ery

1. Quel est le domaine de définition de f 7

2. Déterminer les extrema locaux de f.

ENS MP 2013

On suppose disposer d'une fonction f de deux variables (¢; ) € R?, positive, de classe
C1, telle que, pour tout z € R, f(0;x) = 0, et vérifiant I'inégalité :

of _ of _

ot 81‘ S KT,

ol ¢ et K sont deux constantes réelles avec ¢ > 0. Montrer que f est nulle.

ENS MP 2013

Soit v une fonction de deux variables (¢;x) € R, x R, lipschitzienne et bornée.

Montrer qu’étant donnée une fonction uy € C1(R,R), il existe une unique fonction
u e CHR, x R, R) vérifiant :

ou N Iuv) 0
ot or
u(0;+) = ug

1098 | Centrale-Supélec MP 2013

On considere R® comme espace euclidien.
Soit f une fonction croissante de R, dans R de classe C' avec f(0) =1 et f/(0) =
On note N : z — ||z| et F:z— f(||z|)z.

1. La fonction N est-elle de classe C! sur R™ \ {0}?
Quelle est la différentielle de N ?

2. La fonction F est-elle de classe C* sur R™ \ {0} ?
Quelle est la différentielle de F' 7

3. La fonction F est-elle continue en 07 Est-elle différentiable en 07
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CCINP MP 2023

Soit f: R? — R telle que f(0;0) =0 et

V(z;y) € R?, ai(x;y) >

of
dy ox

)]

On pose u:z+— f(r;z), v:x— flx;—x) et w, :y— f(z;y).
1. Calculer les dérivées de u, v et w,.
2. Montrer que pour tout x € R, il existe un unique y, € R tel que |y,| < |z| et
Wy (y) = 0.
3. On pose ¢ : x — y,. On suppose que @ est dérivable.

Exprimer ¢'(z) en fonction des dérivées partielles de f en (z;¢(x)). Montrer
que ¢ est de classe C*.

ENS MP 2014

Soit u € C*(R™, R), et x € C'(R™,R) & support compact. Montrer que :

LIveal? = [ VeI = [ udn

1101 | TPE/EIVP MP 2016

Soit S une matrice symétrique réelle. On note

_XTSX

BX)=Zrx

pour tout vecteur colonne X non nul.
Montrer que P(z) = det(S—xz1,) admet comme racines les valeurs prises par la fonction
R en ses points critiques.

1102 | Mines-Ponts PC 2013

Soit
f:C — C\{-2}
2z+1
zZ
z4+2

Onpose S={z€C||z|=1},D={z€C||z|<1}et E={z€C||z| < 1}.

1. Montrer que sous réserve de restrictions, f définit une bijection sur chacun de
ces ensembles.

2. On pose z = x + iy, u: (z;y) — Re(f(2)) et v : (z;y) — Im(f(z2)).
Montrer que u et v sont de classe C*° sur R? \ {(—2;0)}.
3. Déterminer f—1.

4. Déterminer le jacobien de (z;y) — (u(z;y);v(z;y)).

1
. Caleul // . dud
5. Calculer o [z )] xdy
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CCINP PSI 2019
Soit
. R? — R
S
(1y) — {xQSin(z) six#0
Ty

0 sinon

1. Montrer que f est continue sur R2.

2. Calculer les dérivées partielles de f. Montrer qu’elles sont continues en (0;0).

*f  Pf ) )
t . Interpréter le résultat.

3. Calcul
alculer 8x8ye g0z

CCINP MP 2022

Soit Q = {(z;y) e R? |z >0 et y > 0} et

o Q — Q
X
(r;y) — |y ;

1. Montrer que ® est bijective et déterminer 1.
2. On pose (u;v) = ®(z;y) et f(x;y) = F(u;v).
of of o? 0?
—f, —f, —f et —f en fonction des dérivées partielles de F'.
or’ dy 0%x 0%y
3. Résoudre : 5 9
xai(w; y) + ya“;c(w; y) —2f(z;y) +2=0.

Exprimer

4. Résoudre :

o0 f o*f
2 2
— —y"—===0.
Ty Y 0%y
CCINP MP 2022
Soit
f: R — R
xry .
— i (7 0; 0
(x;w NN \/m ( 3/) £ ( )
0 sinon

1. Prouver que f € C(R* R).
2. On pose ug = (cos(0);sin()) avec 6 €] — 7 ; 7).

Trouver les 0 tels que la dérivée partielle de f en (0;0) selon up existe.
3. Existe-t-il des dérivées partielles de f en (0;0) 7

0
4. Calculer af(x,y) avec (z;y) # (0;0).
T

5. Est-ce qu’il existe des dérivées partielles d’ordre 2 de f sur R??
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1106 | Mines-Ponts PSI 2013

Soit f € CYR2,R), (p;q) € R? tel que (p;q) # (0;0), et c € R.

Montrer que les restrictions de f aux droites d’équation px + qy = ¢ sont constantes si
of _ of

or  Foy

et seulement si ¢

1107 | Mines-Ponts MP 2016

Déterminer les extrema de la fonction f définie sur R? par :
frilzy) — ' +y' =2z —y)?

et donner leur nature.

1108 | Mines-Ponts MP 2021

Soit g € C*(R,R). On considere la fonction f définie sur R? par :

g(x) —gly) |
flzy) = T —y sirfy
g'(z) siz =y

Montrer que f est de classe C*.
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6 Topologie

cop

Soit F un espace vectoriel normé. Soit A et B deux parties non vides de F.
1. (a) Rappeler la caractérisation de 'adhérence d’un ensemble a 'aide des suites.
(b) On suppose A C B. Montrer que A C B.
2. Montrer que AUB = AU B.
3. (a) Montrer que AN B C AN B.

(b) Montrer, a l'aide d’'un exemple, que I'autre inclusion n’est pas forcément
vérifiée. On pourra prendre £ = R.

CCP MP

Enoncer quatre théorémes différents ou méthodes permettant de prouver qu’une partie
d'un espace vectoriel normé est fermée et, pour chacun d’eux, donner un exemple
concret d’utilisation dans R?. Les théorémes utilisés pourront étre énoncés oralement
a travers les exemples choisis.

Remarques :
1. On utilisera au moins une fois des suites.
2. On pourra utiliser au plus une fois le passage au complémentaire.

3. Ne pas utiliser le fait que R? et l’ensemble vide sont des parties ouvertes et
fermées.

cor vr

Les questions 1 et 2 sont indépendantes.

Soit E un espace vectoriel normé. Soit A une partie non vide de E. On note A 'adhé-
rence de A.

1. (a) Donner la caractérisation séquentielle de A.
(b) Prouver que, si A est convexe, alors A est convexe.

2. On pose, pour tout = € E, da(z) = ngng —all.
a

(a) Soit z € E. Prouver que :
da(z) =0 = z € A

(b) On suppose que A est fermée et que, pour tout (x;y) € E?, pour tout
tef0;1],
da(tr + (1 —t)y) < tda(z) + (1 —t)da(y).

Prouver que A est convexe.

1112 | X PC 2019

On considére I'ensemble des couples de vecteurs de R? formant une famille libre. Mon-
trer que cet ensemble est ouvert dans R? x R3.
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1113 | Mines-Ponts MP 2024

Soit (E, ||-||) un espace vectoriel normé de dimension finie. Montrer qu’une intersection
décroissante de boules fermées de E' est encore une boule fermée.

cor vr

Soit E' = C([0;1],R). On munit £ des normes ||-||oo et ||-||; définies par :
1
Vi€ E, flle= sup [f()] et |[flh =/ |[F(B)] dt.
te(0;1] 0

On pose O ={f € E| f(1) > 0} etF:{f€F|f01f(t)<0}.
1. Montrer que O est ouvert pour la norme ||| co-
2. Montrer que F' est fermé pour les normes |||« et ||-||1-

3. L’ensemble O est-il ouvert pour la norme ||-||; ?

CCINP 2024

On note F 'espace vectoriel des applications continues sur [0 ; 1] a valeurs dans R. Pour
tout f € E, on pose :

1
1l = sup £ et 7= [ 1F0)]a.
te[0;1] 0

1. Les normes ||-||oo et ||-||1 sont-elles équivalentes ? Justifier.
2. Dans cette question, on munit £ de la norme ||| .
(a) Soit u: B — R, f— f(0).
Prouver que u est une application continue sur .

(b) On pose F' = {f € E | f(0) = 0}. Prouver que F' est une partie fermée de
E pour la norme ||-||oo-

3. Dans cette question, on munit £ de la norme ||-||;.
Soit ¢: [0;1] = R, t +— 1.
Pour tout n € N*, on pose :

fn(t) = {nt S?

3= O
A N
~
IN N
—_ 3=

1 si

(a) Soit n € N*. Calculer || f,, — ||
(b) On pose F = {f € E| f(0) =0} et on note F I'adhérence de F.
Prouver que ¢ € F. L’ensemble F est-il fermé pour la norme ||-||; ?

—

Soit A C R tel que tout a € A est isolé. Montrer que I’ensemble A est au plus dénom-
brable.

X-ENS

Donner un exemple de forme linéaire non continue.
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cor vr

Soit n € N* et K le corps des réels ou des complexes.
1. Montrer que GL,(K) est un ouvert dense de M, (K).
2. Montrer que O,(R) est un compact d’intérieur vide de M, (R).

CCP MP

Soit A une partie non vide d’un espace vectoriel réel normé E.

1. Rappeler la définition d’un point adhérent a A, en termes de voisinages ou de
boules.

2. Démontrer que :

r €A < J(z,)nen telle que, Vn € N, z, € Aet lim =z, = x.

n—-+o0o

3. Démontrer que si A est un sous-espace vectoriel de F, alors A est un sous-espace
vectoriel de E.

4. Démontrer que si A est convexe, alors A est convexe.

-

Soit E et F' deux espaces vectoriels normés.
1. Soit f une application de F dans F' et a un point de E.
Montrer que les deux affirmations suivantes sont équivalentes :
i) L’application f est continue en a.

ii) Pour tout suite (z,)nen d’éléments de E telle que 11111 Ty = a,
n—-—+0oo

alors nl_l}riloof(itn) = f(a).

2. Soit A une partie dense dans E, et soit f et g deux applications continues de F
dans F. Démontrer que si, pour tout z € A, f(x) = g(x), alors f = g.

CCP MP

Soit E et F' deux espaces vectoriels normés sur le corps R.

1. Démontrer que si f est une application linéaire de F dans F', alors les propriétés
suivantes sont équivalentes :

i) L’application f est continue sur E.
ii) L’application f est continue en Og.
iii) Il existe & > 0 tel que : Vo € E, || f(2)||r < k||z||E-

2. Soit E l'espace vectoriel des applications continues de [0; 1] dans R muni de la
norme définie par :

1/ lloo = Sup}lf(ff)l-

z€[0;1

On considere 'application ¢ de E dans R définie par :

o) = [ foyae

Démontrer que ¢ est linéaire et continue.
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cor vr

Soit £ = C([0;1],R) muni de la norme ||-||o, définie par :

ViEE, |flloo= sup|f(t)].
t€(0;1]

On considere I'ensemble A = {f c E|f0)et [} f(t)dt > 1}.
1. Montrer que A est une partie fermée de F.
2. Montrer que si f € A, alors || f|l > 1.
3. Soit n > 1. On considere
1 .
(1—1—):1: si <o
otz @ N

1+ si x>«

n
Montrer que 'on peut choisir « € [0;1] tel que f, € A.
En déduire la distance de Of a A.

CCINP 2024

1. Rappeler, oralement, la définition, par les suites de vecteurs, d'une partie com-
pacte d'un espace vectoriel normé.

2. Démontrer qu’'une partie compacte d’un espace vectoriel normé est une partie
fermée de cet espace.

3. Démontrer qu’'une partie compacte d’un espace vectoriel normé est une partie
bornée de cet espace.

Indication : on pourra raisonner par ’absurde.

4. On se place sur F = R[X]| muni de la norme ||-||; définie pour tout
P=ay+a X+ -+ a, X" de E par ||P|y = _|a;].
i=0
(a) Justifier que S(0;1) = {P € R[X] | ||P||s = 1} est une partie fermée et
bornée de E.
(b) Calculer || X™ — X™]|; pour m et n des entiers naturels distincts.
L’ensemble S(0;1) est-il une partie compacte de E 7 Justifier.

1124 | Mines-Ponts

Soit (E, ||-]]) un espace vectoriel normé. Montrer que I'application

T

from ———
L+ ]

réalise une bijection continue de E dans la boule ouverte centrée en O et de rayon 1.

1125 | Mines-Ponts MP 2021

Soit X une partie de GL,(C) non vide, compacte et stable par produit. Montrer que
X est un sous-groupe de GL,(C).
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cor par

Soit F I'espace vectoriel des suites bornées complexes.
+00
|un]
n
n=0 2

2. Les normes N; et N, sont-elles équivalentes ?

—+oo
un
[t sont deux normes sur E.

1. Montrer que Ny (u) = et Ny(u) =

|
n—0 n.

Centrale PSI

On note SL,(R) I'ensemble des matrices de M, (R) dont le déterminant vaut 1. L’en-
semble S L, (R) est-il un espace vectoriel 7 un groupe multiplicatif ? un fermé de M,,(R)?
un ouvert de M, (R)?

X-ENS

On munit R™ de la norme euclidienne canonique et M,(R) de la norme d’opérateur
associée. Montrer que 'enveloppe convexe de O, (R) est la boule unité fermée de M, (R).

XENS

Soit (E,||:]|]) un espace normé réel de dimension finie, K un compact non vide de FE.
Montrer qu’il existe une boule fermée de rayon minimal contenant K. Cette boule est-
elle unique ?

[1130] x

Décrire les composantes connexes par arcs de GL,(C) et de GL,(R).

[1131] x

Décrire les composantes connexes par arcs de O, (R) et de SO, (R).

1132 x

Montrer que SL,(C) est connexe par arcs.

Mines-Télécom MP 2024

Soit E le plan euclidien.
1. L’ensemble A = {(z;y) € R? | y* — 2* = 1} est-il un fermé de E'?
2. Donner la définition d’un partie connexe par arcs.

3. Montrer que le cercle de centre O et de rayon 1 est une partie connexe par arcs
de R2.

4. Soit f : E — R continue. Montrer que I'image par f d’une partie connexe par
arcs, fermée et bornée, est un segment.

[1134] x

Soit K un voisinage compact de 0 dans R"™. On pose A = {u € L(R") | u(K) C K}.
1. Montrer que A est compact.

2. Montrer que, pour u € A, |det(u)| < 1.
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[1135] x

Soit K un compact de R™ convexe non vide et u un endomorphisme de R™ tel que
u(K) C K. Montrer que u admet un point fixe dans K.

1136 | Centrale-Supélec MP 2025

1. Montrer que les parties connexes par arcs de R sont les intervalles.
Soit Q une partie de F = R. On note (C) la propriété suivante :
Pour toute fonction f: € — {0;1} continue sur €2, f est constante.

2. Montrer que si §2 est connexe par arcs, alors € vérifie (C).

Soit E =R? et Q = {(:U;Sin (%)) |z € Ri} U ({0} x [-1;1]).
3. (a) Montrer que 2 vérifie (C).
(b) Montrer que €2 n’est pas connexe par arcs.

Centrale

Soit F un espace vectoriel réel normé et f une forme linéaire de E. Montrer que :

f est continue <= Ker(f) est fermé.

1138 | Mines-Télécom PSI 2025

Soit n € N*. Soit U,, ’ensemble des polyndémes de R[X] unitaires de degré n et scindés
sur R. On se propose de démontrer que U, est un fermé de R,,[X].

1. Soit P € R[X], unitaire de degré n. Montrer que P est scindé sur R si et
seulement si

Vz € C, [Im(z)|" < |P(2)].

2. Conclure.

1139 | Mines-Télécom MP 2024

Soit F' un espace euclidien de dimension n. On identifiera M, .;(R) et R™. Soit M un
matrice symétrique de M,(R). On note \; < --- < A, ses valeurs propres comptées
avec leur multiplicité. On pose pA(X) = XTAX, pour X € M, (R).

1. Montrer que :
VX € My (R), M| X% < @a(X) < Al X

2. Trouver une condition nécessaire et suffisante pour que ¢ ({1}) soit un compact
non vide.

1140 | Mines-Télécom MPI 2024

Soit E un espace vectoriel réel normé et A, B des sous-ensembles de E. On pose :
A+B={a+blacAbe B}

1. Montrer que si A et B son compacts, alors A + B est compact.

2. Montrer que si A est fermé et B compact, alors A + B est fermé.
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ENS MPI 2025

Soit E un espace préhilbertien de dimension infinie. Soit K une partie de E, non vide,
bornée et dont la frontiere est compacte. Montrer que K est d’intérieur vide.

1142 | Mines-Ponts MP 2023

Montrer que I’ensemble des suites réelles convergentes est un fermé de £°°.

CCINP MP 2018

Soit £ un espace vectoriel normé et A une partie non vide de E. On note A lintérieur
de A.

1. Montrer que A est un ouvert.

2. On suppose que A est un sous-espace vectoriel de E. Montrer que, si A # 0,
alors A = F.

3. On pose E = M,(R) et A I'ensemble des matrices nilpotentes de E. On veut
montrer que A = 0.

(a) Montrer que si A # (), alors I'intérieur de Vect(A) est non vide.
(b) Aboutir & une contradiction.

CCINP PC 2018

On étudie £ = {(:p,y) € R?

1

1. Donner une condition nécessaire et suffisante pour que (z;y) € E.

(i y) est diagonalisable dans R}.

2. Montrer que E est un ouvert de R2.

Mines-Télécom MP 2019
Soit E un espace vectoriel normé.
1. Donner la définition d'un ouvert de E.
2. Montrer que toute boule ouverte de E est un ouvert de F.

3. Montrer que tout ouvert est réunion de boules ouvertes.

1146 | Mines-Ponts MP 2023

Soit p un entier naturel non nul et a, b des réels tels que a < b.
On note Z, = {f € C([a;b],R) | Card({x € [a;0b]}) | f(z) =0}) >p}.

Déterminer 'adhérence de Z,, pour la norme infinie.

1147 | Mines-Ponts MP 2021

1. Montrer que I'ensemble des matrices de M, (C) de rang inférieur ou égal a r
(avec 0 < r < n) est un fermé.

2. Déterminer I’adhérence de I’ensemble des matrices de rang exactement 7.

X MP 2018

Soit E' I'ensemble des polynémes a coefficients dans {—1;0;1}. Notons A I'ensemble
des racines des polynomes de E. Quelle est 'adhérence de A?
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1149 | Centrale-Supélec MP 2018

Soit (E; ||-||) un espace vectoriel normé.
Soit A un compact de E.

1. Montrer que A X A est un compact.
2. Soit f: A — A telle que :

Ve,ye A,z #y = ||f(x) = f)ll < llz —yll.

Montrer que f admet un unique point fixe.
3. Soit f: A — A telle que :

Vo,y € A, |[f(x) = FW)ll = [l —yl|

Montrer que f est bijective et préserve les distances. (Montrer que I'inégalité de
I'hypothese est un fait une égalité.)

ENS Ulm 2022

Montrer que 'application M +— Tr(exp(M)) est convexe sur S,(R).

Centrale 2023

Soit E un espace vectoriel normé. On dit qu’une partie A de E est connexe s’il n’existe
aucun couple de fermés disjoints non vides (F'; G) tel que A = FUG.

1. Montrer que 'on peut remplacer « fermés » par « ouverts » dans la définition
ci-dessus.

2. Montrer que A est connexe si, et seulement si, toute application continue de A
dans N est constante.

3. Montrer que si A est connexe par arcs, alors A est connexe.
4. Quelles sont les parties connexes de R?

5. Soit u € RN telle que (tn11 — Un)nen converge vers 0. On note V(u) 'ensemble
des valeurs d’adhérence de u. Montrer que V(u) est un intervalle.

6. Soit u € EN bornée telle que (41 — Up)nen converge vers 0. Montrer que V (u)
est connexe.

Centrale 2022

Soit B un compact convexe de R™ et v un endomorphisme de R™. On suppose que
uw(B) C B.
On pose ug = Id, et u,, = Tllnz_:luk pour n > 1.
1. Quels sont les Compa(ljt_so convexes de R?
2. On pose A = ﬁoun(B) Montrer que z € A si, et seulement si, u(z) = = et
xr € B. "

3. Montrer que A # ().
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ENS 2022

Montrer que les morphismes continus de SL,(R) vers GL,(R) sont a valeurs dans

SL.(R).

1154 | Mines 2024

On note I = [1;+o0[ et on considere les ensembles :
« E={feC(I,R)| f aune limite en + oo},
e F={feR|IneN,IPeR,[X],Vtel, f(t)=P(t)t ™}
1. Montrer que (E, ||-||») est un espace vectoriel normé, et que l'ensemble F' est
un sous-espace vectoriel de F.

2. Montrer que F' est dense dans F.

ENS 2022

Soit A C R? bornée et x € conv(A).

Montrer que, pour tout n > 1, il existe x,...,x, € A tels que :
1& diam(A
— Z A avec diam(A) = sup ||z — y]|.
n i=1 Vn z,ycA

1156 | Mines-Télécom PSI 2023

1. Soit N la norme définie sur R? par :

N(z;y) = max (\yl x + o+ y!)
Représenter la boule unité pour cette norme.
2. Soit E un espace vectoriel réel de dimension n. Soit {¢1;...;¢,} une famille de

formes linéaires sur E. A quelle condition I'application N : F — R, qui a x
associe 1n<1<fi<x|g0i(x)\, est-elle une norme ?
P

1157 | Mines-Télécom MP 2018

Soit E' = C([0;1],R) muni de la norme de la convergence uniforme.
On pose A= {f € E|f(0)=0et [y f(t)dt > 1}. Montrer que A est un fermé de E.

ENS MP 2018

Que dire d’un sous-groupe strict fermé de U ?

1159 | TPE/EIVP MP 2018

Soit (E,||-||) un espace vectoriel normé.
1. Soit F un sous-espace vectoriel de E. Montrer que F est un sous-espace vectoriel.

2. Soit F' un hyperplan de E. Montrer que F' est fermé ou dense dans F.
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1160 | Centrale-Supélec MP 2021

Soit E 'espace vectoriel des suites réelles bornées. Montrer que les deux applications
suivantes sont des normes sur £ :

e La norme infinie des suites;

1. Ces deux normes sont-elles équivalentes ?

2. Soit Z l'ensemble des suites nulles a partir d’'un certain rang. Montrer que
I'intérieur de Z est vide, et déterminer son adhérence.

1161 | Centrale-Supélec MP 2016

Soit I un segment de |0;1] et £ = C'(I,R) muni de la norme infinie.
1. Enoncer le théoréme d’approximation de Weierstrass.

2. On pose f(x) = 2z(1 —z). Etudier les convergences simple et uniforme sur I de
la suite de fonctions (f,),>2 définie par :

fa=fofo-of.
n fois

3. Montrer que Z[X] est dense dans F.

ENS MP 2019

Existe-t-il un espace vectoriel muni de deux normes et une suite dans cet espace tels
que cette suite converge pour les deux normes mais vers des limites différentes ?

come

Soit (E, ||-||) un espace vectoriel normé et K un compact de F.
Soit f: K — K telle que

Vwy) € K a#y = (=) = fW)Il < llz —yll.

1. (a) Montrer que si f admet un point fixe, alors ce point est unique.
(b) En étudiant I'application g : z + || f(x) — x|| définie sur K, montrer que f
admet un unique point fixe.

2. On considére une suite (2, ),y définie par :

ro € K
{Vn eN, 01 = f(x,)
Montrer, a partir de la suite définie par :
Vn e N, v, = ||z, — al,

ou a est le point fixe de f, que (x,)nen converge vers une limite a déterminer.
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X MP 2019

On note E l'ensemble des applications continues de [0; 1] dans R. On le munit de la
norme infinie sur [0;1]. Pour tous m € N* et € > 0, on définit :

Qe ={f € E|Vee[0;1], Iy elz —e;x+ef, [f(x) — f(y)| > m|z —y[}.

1. Montrer que, pour tous m € N* et ¢ > 0, 2,,, . est un ouvert dense.

2. On admet le théoreme de Baire : une intersection dénombrable d’ouverts denses
est dense. Montrer que 1’ensemble des applications continues de [0;1] dans R
nulle part dérivables est dense dans E.

1165 | X MP 2013

On note C,, I'ensemble des matrices de M, (C) dont le polynéme caractéristique est
égal au polynéome minimal.

1. Démontrer que C,, est un ouvert dense de M, (C).
2. L’application qui a une matrice associe son polynéme minimal est-elle continue ?

3. Montrer que GL,(C) est connexe par arcs.

1166 | Mines-Ponts MP 2017

Soit n € N. On considere les ensembles suivants :
A ={(zy) eR* [ 2" +y* =n} et Ay={(z;y) €Q" |2’ +y’ =n}.

L’ensemble A; est-il dense dans A; ?
L’ensemble A, est-il dense dans Ay ?

L’ensemble Aj est-il dense dans Az ?

L

Donner une condition nécessaire et suffisante pour que A, soit dense dans A,,.

1167 | Mines-Ponts MP 2018

Soit E un espace vectoriel réel de dimension infinie.

1. Soit C' un convexe de E et D un ensemble tel que C C D C C. Montrer que D
est connexe par arcs.

2. Soit H un hyperplan de E. Montrer que E\ H est connexe par arcs si et seulement
si H n’est pas fermé.

1168 | Centrale-Supélec MP 2017

On note A, I'ensemble des matrices M de M, (R), dont le polynéme caractéristique
est scindé a racines simples. On note B,, 'ensemble des matrices M de M, (R), dont le
n

polynome caractéristique est [[(X — my;).
i=1
1. Rappeler la définition d’un fermé.

2. Montrer que B,, est un fermé. Montrer que A,, est un ouvert.

3. Quelle est la dimension maximale d'un espace vectoriel inclus dans B,, 7
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1169 | Mines-Ponts MP 2022

Soit E un espace vectoriel réel ou complexe, A une partie de FE et f une fonction
continue de [0;1] dans E telle que f(0) € A et f(1) € E'\ A. Montrer qu’il existe un
élément de f([0;1]) qui appartient a la frontiere de A.

X MP 2024

Soit f:[0;1] — R et Gy son graphe. Les deux affirmations suivantes sont-elles vraies
ou fausses?

1. La fonction f est continue si et seulement G est fermé.

2. La fonction f est continue si et seulement G; est compact.

1171 | Mines-Ponts MP 2018

Soit E un espace vectoriel normé et K un compact non vide de E. Montrer qu’il existe
un segment de longueur maximale dans K.
On rappelle que [a;b] = {ta+ (1 —t)b| 0 <t < 1}.

1172 | X MP 2019

1. Montrer que I’ensemble A défini par
A ={P € R,[X] | P simplement scindé¢ et deg(P) =n}

est ouvert dans R, [X].
2. Quelle est 'adhérence de A7

1173 | Mines-Ponts

Soit E = C([0;1],R) et (f;9) € E* On pose Ny(f) = ||gf]|oo-
1. Donner une condition nécessaire et suffisante sur g pour que N, soit une norme.

2. Donner une condition nécessaire et suffisante sur g pour que N, soit équivalente
a la norme infinie.

ENS

Soit P € C[X] non constant. Montrer que l'image par P d’une partie fermée (resp.
ouverte) de C est fermée (resp. ouverte).

1175 | ENSEA/ENSIIE 2012

Un espace vectoriel réel normé E est dit uniformément conveze si et seulement si :
Ve >0, 36 > 0, V(x;y) € E?,
T+
ol <Lyl < et -yl > e — [“52] <1-8

Etudier si R?, pour les trois normes usuelles |||, |||l2 et ||-||co, est uniformément
convexe.
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1176 | Mines-Ponts

Soit £ = C'([0;1],R). Pour tout f € E, on pose :

N(f) = \/f2(0) + /Ol(f’(t))2dt.

1. Montrer que N est une norme sur F.
2. Montrer que, pour tout f € E, ||f]le < V2N(f).

3. Les normes N et ||-||o sont-elles équivalentes ?

Mines-Ponts

Soit E un espace vectoriel réel de dimension finie n > 2. Soit :
P={uc L(E)|u*=1dg}.

1. L’ensemble P est-il fermé? compact ?

Soit, E un espace topologique, A une partie non vide de E et a € A. On dit que
le point a € A est isolé dans A s’il existe un voisinage V' de a dans E tel que

VNA={a}.
2. Caractériser T' = {Tr(u) | v € P}. En déduire que Idg est un point isolé de P.

3. Déterminer tous les points isolés de P.

1178 | Centrale-Supélec MP 2023

Soit (E,N) et (E’,N’) des espaces vectoriels réels normés de dimension finie. Soit
d € N. On note ||-|| 'application de R4[X] définie par :

d
ZakaH = max |ag|.
= ke[05d]
1. Montrer que ||-|| est une norme sur R,[X].

2. (a) Soit (Yn)nen € (E")N telle que 1_1}{{1 yn = /.

Montrer que Y = {¢} U {y, | n € N} est un compact de £’

(b) Soit f: E — E’ continue telle que pour tout compact K de E’, f~1(K) soit
un compact de E. Montrer alors que pour tout fermé F' de E, f(F') est un
fermé de E'.

3. Soit P € Ry[X]| unitaire, x une racine réelle de P telle que |z| > 1. Montrer que
2] < [Pl + 1.
En déduire que I'ensemble des polynémes unitaires et scindés de Ry[X] est un
fermé de R,[X].

Mines-Ponts MP 2013
1. Montrer que GL,(C) est dense dans M,,(C).

2. En déduire qu’il existe une base de M,,(C) constituée de matrices inversibles.
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1180 | Mines-Ponts MP 2017

Soit (E, N) un espace vectoriel normé de dimension finie n. Pour v € L(E), on pose :
[ull = sup{N(u(z)) [z € E, N(z) <1}.
1. Montrer que ||-|| est bien définie et que :

Yy € E, N(u(y)) < [|ul|N(y).

2. Montrer que 'on a ainsi bien défini une norme sur L(FE).

3. Soit (ug)ken une suite dans L(E). Montrer que (uy)gen converge pour la norme
||-|| si et seulement si (uy)keny converge simplement pour N.

1181 | Mines-Télécom MP 2018
1. Dans un espace vectoriel normé, donner la définition d’un point adhérent a une
)
partie, et une caractérisation de I’adhérence d’une partie.

2. Soit M € M, (R). Montrer que M est adhérent & GL,,(R). L’ensemble GL,(R)
est-il un fermé de M, (R)?

1182 | Mines-Ponts MP 2017

Soit E Despace vectoriel des fonctions de classe C' de [0;1] dans R et ¢ une forme
linéaire positive non nulle. Soit

ps i f— |¢(f)|+/01\f’(x)]dx.

Par exemple, pour ¢ : f +— f(0), on note py la fonction associée.

1. Montrer que pour tout f :

[6(N)] < AW loo-

En déduire que p, est une norme.

2. Montrer que py et py sont équivalentes.

1183 | Mines-Ponts MP 2024

Soit E un espace euclidien, A un compact et u un endomorphisme orthogonal tel que
u(A) C A.

1. Montrer que u(A) = A.
2. On note :
r=inf{s e Ry |z € E, AC B(z,s)}.
Montrer qu’il existe une unique boule fermée de rayon r contenant A.

3. Montrer que u admet un point fixe.
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X MP 2025

Soit E un espace vectoriel réel de dimension finie.
1. Montrer que tout convexe fermé non borné contient une demi-droite.

2. Montrer que le résultat est encore vrai sans I’hypothese « fermé ».

1185 | Mines-Télécom MP 2024

On appelle matrice stochastique de M, (R) toute matrice carrée d’ordre n dont les
coefficients sont des réels positifs et la somme de chaque coefficient de la méme ligne
vaut 1. On note S I'ensemble des matrices stochastiques de M, (R).

1. Montrer que S est stable par produit matriciel.

2. Etudier la topologie de S (ouvert, fermé, compact, connexité par arcs).

Mines-Ponts PSI 2023
Soit £ = C([0;1],R). Si f € E, on note :

<p(f):xn—>/oxtf(t)dt.

1. Montrer que ¢ est un endomorphisme de F.

2. Trouver le plus petit k£ > 0 tel que :

Vi€ E, lo(fllce < Ellflloo-

3. Trouver le plus petit £ > 0 tel que :

Vi€ E, lle(f)lleo < KIS

1187 | Centrale-Supélec MP 2024

Soit n € N*.

1. (a) Rappeler la définition de || - || sur M, (C).

A) = .
(b) On note p(A) /\gslga)\)\]

L’application A — p(A) est-elle une norme ?
2. Montrer que :
1
VA € M, (C), Yk € N, p(4) < | 4%]F.

3. Soit N une norme quelconque sur M, (C). Montrer que :

p(A) = lim [N(AM)|F.

k—+o0

1188 | Mines-Ponts MP 2023

Soit S un segment non trivial de R, f une fonction de classe C? de S dans R.
Montrer que f est convexe si, et seulement si, il existe une suite de polynémes convexes
convergeant uniformément vers f.
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X MP 2021

Soit K une partie d'un espace vectoriel normé E. On dit que K est précompacte lorsque,

pour tout § > 0, il existe une liste finie (z1;...;z,) d’éléments de E telle que
K C U B(l’k,é),
k=1

et on note alors n(K,d) le plus petit de ces entiers n.
1. Montrer que si K est compact alors il est précompact.
2. On suppose E de dimension finie d. Soit K un compact d’intérieur non vide.
Déterminer un équivalent de In(n(K, §)) lorsque ¢ tend vers 0.
On pourra commencer par le cas ou F = R? muni de la norme infinie.
3. On considere ici l'espace vectoriel E = C([0;1],R) muni de la norme infinie.

On note K l'ensemble des fonctions 1-lipschitziennes de [0;1] dans R qui s’an-

nulent en 0. Montrer que K est précompact, puis déterminer un équivalent de
In(In(n(K,0))) quand § tend vers 0.

ENS MP 2025

On note E I'ensemble des fonctions de R dans R lipschitziennes et 1-périodiques. Pour
tout a €]0; 1], on note :

Hf”a = Sup]f(x)] + sup M
ay

1. Montrer que ||-||, est une norme sur E pour tout a €10;1].

2. Montrer que ’ensemble des fonctions de R dans R de classe C*! et 1-périodiques
est un fermé de E pour la norme ||-||;.

1191 | Mines-Ponts PC 2022
1. Donner la norme euclidienne habituelle sur R”. Existe-t-il d’autres normes eu-

clidiennes sur R™ ?

Dans la suite, la norme euclidienne habituelle sur R™ est notée ||-||. La sphere
unité correspondante est notée S.

2. Soit f € L(R™). Montrer que la fonction z +— || f(z)|| admet un maximum sur
S. Ce maximum est noté || f]|-

3. Pour tout couple (f;g) d’éléments de L(R™), prouver l'inégalité :

Lo gll < (LA - Wgll

4. Soit f € L(R") tel que ||f|| < 1. Montrer que la série Y f* est convergente et
k>0
que sa somme est un automorphisme de R".
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1192 | Mines-Télécom MP 2022

On pose pour tout l'exercice £ = C([a;b],R).
1. Donner les normes |[|-||; et ||-||oo sur E.

2. Justifier, oralement, en ne donnant que les arguments importants, que ||-||; est
une norme.

3. Montrer que si (fn)nen € EN converge au sens de |||, alors elle converge au
sens de |||

4. Les normes ||-||1 et ||||oc sont-elles équivalentes ?

CCINP MP 2022

1. Soit (E,||-||) un espace vectoriel normé, et K un compact de E.
Montrer que K est fermé et borné.

On s’intéresse a l'espace vectoriel £ = C([0;27],C) muni de la norme |-|2
définie par :

2m
£l =/ [ 1f @) do.

2. On admet dans un premier temps que ||-||2 est une norme sur E.
Pour tout n € N, on pose f, : © — "%,

(a) Montrer que pour tous entiers n et p distincts, || f, — fpll2 = 2¢/7.
(b) En déduire que la boule fermée B(0, 1) n’est pas compacte.

3. (a) Démontrer pour tous complexes u et v I'inégalité :

) 2

En déduire que pour toutes fonctions f et g de F, et pour tout A € R :

27 )\2 2T 2T
[Ti@g@lde < % [Tr@Pde+ o [P
noa— = [

21
démontrer que /0 |f(z)g(x)| dz < || fll2]lgll2-

(¢) En déduire que ||-||o vérifie I'inégalité triangulaire, puis que c¢’est une norme.

1194 | TPE/EIVP MP 2016

Soit E un espace vectoriel réel. On considere une application N de E dans R telle que :
e« Vxe E\{0}, N(z) >0
« N(0)=0
o V(z;y) € B2, VA ER, N(Ax +y) < |M\N(z) + N(y)

Montrer que N est une norme sur F.
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Mines-Ponts MP 2025

Soit (a;b) € R? tel que a < b, n € N*, (2;)1<icn € [a; 0] et (y:)1<icn € [a;b)ImL.
On note E 'ensemble C([a;b],R) muni de la norme de la convergence uniforme, et P
I’ensemble des applications polynomiales de [a;b] dans R.

Montrer que l'adhérence de 1’ensemble

{pe P|Vie([l;n], p(x;) = vi}

est
{feE|Vie[l;n], f(z;) = yi}.

1196 | Centrale-Supélec MP 2018

Soit (E,||-||) un espace vectoriel normé de dimension finie.
Soit K un compact de F.
Soit f: K — K une fonction continue telle que :

Vwy) e K o #y = () — f@)l < llz -yl
Le but de cet exercice est de montrer que la fonction f admet un point fixe.
1. Montrer que ’hypothése K compact est nécessaire, en considérant la fonction :

f o [1i400] — [1;400]

1
T — T+ —
x

2. Montrer que, si f admet un point fixe, alors celui-ci est unique.
3. Montrer que f admet un point fixe.

4. On considere zy € K et la suite (uy,),en definie par :

Up = Lo
Vn € N, un1 = f(un)
Pour tout N € N, on pose :

Uy ={u,|n>N} et A= () Uy.

NeN

(a) Montrer que f(A) = A.
(b) Montrer que A est ’ensemble des points fixes de f. Conclure.

1197 | TPE/EIVP MP 2012

1. Soit N4 : R[X] — R, telle que P — sup|P(x)|.

z€A
A quelle condition sur A, 'application N4 est-elle une norme ?
2. Soit A et B deux parties de R telles que N4 et Ny soient des normes.
Comparer N4 et Np.
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ENS MP 2023

Montrer que I'intervalle |0 ; 1[ n’est pas réunion disjointe de fermés d’intérieur non vide.

X MP 2017

Soit w = (wy;...;wy,) dans R™ et G, le groupe défini par G, = wR+27Z". On suppose
que les w; sont liés dans Q. Montrer que G, n’est pas dense dans R".
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7 Arithmétique et algebre

1200 | X-ENS
Soit P,@Q, R € C[X] et n > 3 un entier. On suppose P" + Q" = R".
Montrer que P, (), R sont égaux, a une constante multiplicative pres.

1201 | Mines MP 2019

Pour tout (z;y) € Z?, on pose z xy = x + (—1)%y. Montrer que (Z,*) est un groupe.

—

Déterminer tous les morphismes de groupes de (R, +) dans GL,,(C) qui sont continus.

—

Soit n € N*. Une permutation o € S,, est un dérangement si et seulement si ¢ n’a pas
de point fixe. Y-a-t-il plus de dérangements pairs ou impairs ?

ENS MP

Trouver tous les groupes finis tels que I'identité soit le seul automorphisme.

1205 | Mines-Ponts MP 2021

Montrer que 2021 a un multiple dont tous les chiffres en base 10 sont égaux a 1.

CCP MP

Soit I un idéal d’un anneau commutatif A.
On note VI = {z € A|3n € N*,2" € I} le radical de I.

1. Montrer que /0 = {z € A | In € N*, 2" = 0} est un idéal de A.
2. Montrer que v/I est un idéal et qu’il contient 1.
3. Soit I et J deux idéaux de A. Montrer que

(a) IcJ = VIcJ

(b) VINJT =vInyJ

4. Montrer que VVI=1.

1207 | X PC 2020

Trouver les polynémes P appartenant Z[X] tels que, pour tout n € Z, P(n) est premier.

Mines-Ponts

Soit n > 2 un entier.

1. Déterminer un groupe multiplicatif de M, (C) qui n’est pas un sous-groupe de
GL,(C).

2. Soit G un groupe multiplicatif de M,(C) qui n’est pas un sous-groupe de
GL,(C). Montrer que tous les éléments de G ont le méme rang.
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Mines-Ponts
On pose Z[i] = {a + bi | (a;b) € Z*}.
Montrer que Zli] est un anneau. Quels sont les éléments inversibles ?

1210 | Mines-Ponts

Déterminer tous les morphismes de groupes de (Q, +) dans (Z, +).

Mines
Soit G un sous-groupe fini de GL,(C) tel que GN SL,(C) = {I,}.
Montrer que G est cyclique.

1212 | Mines-Ponts MP 2021

Quel est le chiffre des unités de 20222022 7

[1213] x

Soit n > 2 un nombre naturel. Montrer que les deux affirmations suivantes sont équi-
valentes :

i) m est premier;
ii) (n—1)!'= -1 mod n.

XENS

Soit n € N*. Montrer qu’il existe N,, € N tel que tout sous-groupe fini de GL,(Z) est
de cardinal inférieur ou égal a N,,.

XENS

Soit V' un espace vectoriel réel ou complexe de dimension finie et G un sous-groupe fini

de GL(V). On note V& = {z € V | Vg € G, g(x) = x}. Montrer que

1

Card(G) Z Tr(g) = dim(VG)- (formule de Burnside)

geG

ENS Ulm

Soit € R*%. On appelle spectre de x, noté spec(z), la suite réelle (u,(z))nen+ dont le
terme général est défini par u,, = |nz| (partie entiere de nx). Si z € R, \ Q, on dit
que la suite (u,(r))nen+ est une suite de Beatty.

Démontrer le théoréeme de Beatty :

Soit a et b deux nombres réels supérieurs a 1. Les deux affirmations suivantes sont
équivalentes :

i) Les ensembles A = {u,(a) | n € N*} et B = {u,(b) | n € N*} forment une
partition de N*.

1
i) —+ 7= 1 et a,b sont irrationnels.
a
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—

Un nombre complexe z € C est transcendant si et seulement s’il n’est racine d’aucun
polynéme non nul de Q[X].

1. Soit a € R annulé par un polynoéme irréductible P € Z[X] de degré d > 1.
Soit (pn)n=0 € ZN et (gn)ns0 € (N*)N telles que lim Pn _ a,

n—-+4o0o Qn

avec # Q.
dn

Montrer le critéere de Liouville :

1
2. Montrer que le nombre E>1 Tomt est transcendant.
nz

Mines-Ponts MP

Soit (G, ) un groupe abélien d’élément neutre e. On suppose qu'il existe n € N* tel
que, pour tout x € G, 2" = e.

1. On suppose n = ab avec a A b= 1.
On pose G, = {2° |z € G} et G, = {2* | x € G}.
Montrer que G, est un sous-groupe de G.
Montrer que pour tout z € G, il existe un unique couple (u;v) € G, X G, tel
que T = uv.
2. On suppose n impair.
(a) Montrer que I'application @, : z — 2% est un automorphisme de G et préciser
sa réciproque.
(b) Soit k € N* tel que k An = 1.
Montrer que I'application ®;, :  — ¥ est un automorphisme de G et préciser
sa réciproque.

ENS

Soit n € N* et G un sous-groupe fini de GL,(C). On suppose que »  Tr(M) = 0.
MeG
Montrer que Z M = 0.
MeG

1220 | Mines-Ponts MP 2023
1. Soit a et n deux nombres naturels avec a > 2 et n > 2. On suppose que a” — 1
est premier. Montrer que a = 2 et que n est premier.

2. Soit p un nombre premier impair et d un diviseur de 2P — 1.
Montrer que d =1 mod 2p.
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—

Soit f un morphisme de (ZY, +) vers (Z, +) tel que, pour tout k € N, f(e) = 0, ol ey,
est la suite définie par eg(n) = dx,,,. Montrer que f = 0.

1222 | Mines-Ponts MP 2022

Soit n > 2 un entier. On veut montrer que n ne divise pas 2" — 1. Par I’absurde, on
suppose que n divise 2" — 1. Soit p un diviseur premier de n.

1. Montrer que 2 est inversible modulo p. On note k£ 'ordre de 2 modulo p.
Montrer que k | n et que k | p — 1.

2. Conclure.

X-ENS

Pour tout n € N, soit d, le nombre de couples (a;b) € [1;n]? tels que a et b soient
premiers entre eux. Soit p: N* — C la fonction de Mebius définie par :

1 sin=1
p(n) =< (=1)" si n=py---p (p1,-..,pr premiers distincts)
0 si n est divisible par un carré parfait différent de 1

n 2
1. Montrer que d,, = > p(d) {ZJ .
d=1

d, 6
2. En déduire que 1—13-100 2= 2

X-ENS

Soit m > 2 un entier et K un corps, |K| > 3. Démontrer que D(GL,(K)) = SL,(K),
ou D(GL (K)) = (ABA™'B7!' | A, B € GL,(K)). (L’ensemble D(GL,(K)) est appelé
le groupe dérivé de GL,(K).)

1225 | Mines-Ponts

1. Le polynome X* + 4 est-il irréductible sur Q ?

2. En déduire les entiers n tels que n* + 4 est premier.

ENS Ulm

Pour toute permutation o de S,, on note £(¢) la signature de o et inv(o) le nombre
d’invariants de o. Calculer : ()
o

2 inv(o) +1°

O'GSn

X-ENS

Trouver tous les morphismes de (Q,+) dans (Q*, -).

XENS

Soit p > 3 premier et ¢ : GL,(Z) — GL,(Z/pZ) la réduction canonique. Soit G un
sous-groupe fini de GL,(Z). Montrer que ¢|g est injective.
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Soit G un groupe fini. On suppose que pour tous z,y appartenant a G \ {e}, il existe
7 € Aut(G) tel que 7(x) = y. Le groupe G est-il abélien ?

X PC 2019

Soit m,n des entiers positifs. Déterminer un polynéome unitaire de degré maximal
divisant X™ — 1 et X" — 1.

X MP 2021

Pour n € N*, on note C,, = {(x;y) € (Q*)? | 22 + y* = n}.
1. Montrer que C est non vide.
2. Montrer que C7 est vide.
3. Soit n € N*. On suppose C), non vide. Montrer que C,, est infini.

1232 | X MP 2021
1 n

Résoudre 1'équation —+ — =
a

A d’inconnue (a;b;n) € N*3,

CCP MP

On note p un entier naturel supérieur ou égal a 2. On considere dans 7Z la relation
d’équivalence R définie par :

xRy PN dk € Z tel que x — y = kp.

On note Z/pZ V'ensemble des classes d’équivalence pour cette relation R.
1. Quelle est la classe d’équivalence de 07 Quelle est celle de p?

2. Donner soigneusement la définition de I’addition usuelle et de la multiplication
usuelle dans Z/pZ. On justifiera que ces définitions sont cohérentes.

3. On admet que, muni de ces opérations, Z/pZ est un anneau.
Démontrer que Z/pZ est un corps si et seulement si p est premier.

CCP MP 2025

1. Soit (a;b;p) € Z3. Prouver que : sipAa=1et pAb=1, alors pAab=1.

2. Soit p un nombre premier.

(a) Prouver que pour tout k € [1;p — 1], p divise <Z> E!.

En déduire que p divise <z>

(b) Prouver que :
VYne N, nP =n mod p.

Indication : procéder par récurrence.
(¢) En déduire, pour tout entier naturel n, que :

p ne divise pas n = n?P' =1 mod p.

258




cor vr

1. Enoncer le théoréme de Bézout dans Z.

2. Soit a et b deux entiers naturels premiers entre eux. Soit ¢ € N. Prouver que :

alcetb|c < ab|ec.
3. On considere le systeme (.5) :

=6 mod 17
=4 mod 15

dans lequel I'inconnue x appartient a Z.

(a) Déterminer une solution particuliere xy de (S) dans Z.
(b) Déduire des questions précédentes la résolution dans Z du systeme (5).

X MP 2021
Pour o € S,,, on pose A(c) = o(1)o(2) + 0(2)0(3) + -+ o(n—1)o(n).
Déterminer le maximum de A.

1237 | X ESPCI

Soit ¢ > 2 un entier fixé.

1. Soit d et n deux naturels non nuls. Montrer que, si d divise n, alors ¢? — 1 divise
q" — 1.

2. La réciproque est-elle vraie ?

1238 | x
Soit p premier et C, = {z € C| In € N, 2" = 1}.
Montrer que C), est un sous-groupe de (C*,-) et en déterminer les sous-groupes.

Centrale PC

Pour tout n € N, on note (f) ou H, le polynome
On pose A: P e R[X]— P(X +1) - P(X) € RIX].
1. On dit qu'un polynoéme P stabilise Z si, pour tout k € Z, P(k) € Z. Montrer
que, pour tout n € N, H,, stabilise Z.
2. Déterminer Ker(A) et calculer A(H,,) pour tout n € N.

3. Soit P € R,[X] stabilisant Z. Montrer qu'il existe (co;...;c,) € Z" tel que
P:COH0+"’+Can.

X(X-1)-(X—n+1)
n!

ENS MP MPI

Soit G un groupe fini. Si X et Y sont des parties non vides de G, alors on pose
Xt={o7t|zeX}et XY = {ay | (r;y) € X x Y}. Dans la suite, X désigne une
partie non vide de G.

1. On suppose que | X X| < 2|X|. Montrer que XX ' = X1 X.

2. On suppose que | XX ~!| < 3|X|. Montrer que X ~'X est un sous-groupe de G.
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X ESPCI

On veut montrer que, pour tout n € N* il existe m € N* et (eq;...;6,) € {—1;1}™
m

tel que n = Z eik?.
k=1

1. Prouver la propriété pour tout n € {1;2;3}.
2. Développer les polynomes (X +3)*— (X +1)? et (X +4)? — (X +2)? et conclure.

ENS MP MPI

Soit n € N* et une transposition (ab) telle que 1 < a < b < n.

1. Soit n € N*. Montrer que la transposition (12) et le cycle ¢ = (12---n) en-
gendrent le groupe symétrique .S,,.

2. Montrer que la transposition 7 = (13) et le cycle ¢ = (1234) n’engendrent pas
le groupe symétrique Sy. (On pourra s’intéresser a la parité de 7(i) — i et de
c(i) — i pour tout ¢ € [1;4].)

3. Montrer que la transposition (ab) et le cycle ¢ = (12---n) engendrent S, si, et
seulement si, b — a et n sont premiers entre eux.

1243 | Mines-Ponts MP MPI

Déterminer tous les couples (m;n) € N? tels que 3™ = 8 + n?.

XENS

Calculer le nombre d’involutions du groupe S,,.

1245 | X MP 2019

Quels sont les idéaux maximaux de 'anneau C([0;1]) des fonctions réelles définies et
continues sur [0; 1] qui sont strictement inclus dans C([0;1])7

X MP 2019

1. Pour n un nombre premier, montrer que :
n| 1"t 42 e (=) L
2. Trouver tous les nombres entiers n > 1 tels que :

n|1"+2" 4+ 4+ (n—1)"

Mines-Télécom MP 2022
1. Le groupe (Z/10Z)* est-il cyclique ?
2. Le groupe (Z/127)* est-il cyclique ?

3. Soit des entiers p > 2 et ¢ > 2 premiers entre eux. Montrer que :

Z]pqZ = Z)pZ x 7./qZ.
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1248 | Mines-Télécom MP 2022

Soit f : R — R un morphisme de corps.
1. Déterminer f sur Z puis sur Q.
2. Montrer que f(R;) C R,.
3. Etudier la monotonie de f.

4. Déterminer entierement f.

1249 | Mines-Télécom MP 2018

Résoudre dans Z/11Z le systéme suivant :

r+y=4
zy = 10

1250 | Mines-Télécom MP 2016

Soit E l'ensemble des matrices réelles de la forme (_ab 2)

1. Montrer que F est un sous-espace vectoriel de M(R) et donner sa dimension.

2. Montrer que F est un sous-anneau de My(R). Est-ce un corps?

1251 | Mines-Télécom MP 2022

Pour un anneau A, on dit qu’un idéal I de A est premier si et seulement si :
V(z;y) € A2, zyel = zclouycl

Soit A un anneau commutatif dont tous les idéaux sont premiers. Montrer que A est
un anneau integre, puis que A est un corps.

CCINP MP

Soit (A, +, ) un anneau commutatif.

1. (a) Rappeler la définition d’'un anneau.
(b) Rappeler la définition d'un idéal.

2. Soit I un idéal de A. Montrer que si 14 € I, alors I = A.
3. Soit x € A. On pose I, = {a-z | a € A}. Montrer que I, est un idéal de A.

4. On suppose que A n’est pas ’anneau nul. Démontrer :

A est un corps <= Les seuls idéaux de A sont {04} et A.

1253 | Mines-Ponts MP 2021

Soit G un groupe fini. On suppose que tous les éléments de G sont d’ordre au plus 2.
Que peut-on dire du cardinal de G'7

1254 | Mines-Ponts MP 2024

Montrer que tout sous-groupe d'un groupe cyclique est cyclique.
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1255 | Mines-Télécom MP 2024
Soit 'anneau A = (R¥, +,+), et, pour tout z € R, I, = {f € A| f(z) = 0}.
1. Montrer que I, est un idéal.

2. Montrer que si 1 # x9, alors A =1, + I,,.

1256 | Mines-Ponts MP 2018

Déterminer le plus petit entier n pour lequel il existe un groupe G de cardinal n non
abélien.

1257 | Mines-Télécom MPI 2024

Résoudre I'équation 22 + z + 1 = 0 dans Z/7Z et Z/6Z.

1258 | Mines-Ponts MP 2019

Soit a € [1;p — 1] avec p premier.
1. Montrer qu'il existe un unique b € [1;p — 1] tel que ab=1 mod p.

2. Quels sont les a tels que a =b7?

1259 | Centrale-Supélec 2017

Soit p un nombre premier. On note :
« F,=7Z/pZ,
[, le groupe des inversibles de Z /D2,

. F;QZ{?\ﬁgépZ}.

. o 2rxi 2myi
1. Montrer que si T =7, alorse » =e 7 .
On notera 7(a) = Y ak’.
kEF,

2. Montrer que si a € F;?, alors 7(a) = 7(1).
3. Montrer que si b € F} \ F3?, alors 7(b) + 7(1) = 0.

1260 | TPE/EIVP MP 2017

Résoudre dans Z/143Z P'équation z? — 3z + 2 = 0.

1261 | Centrale-Supélec MP 2019

On dit qu'un anneau A est régulier si, pour tout x appartenant a A, il existe un u
appartenant a A tel que rux = x.
1. (a) L’anneau (Z, +, -) est-il régulier 7
(b) Un corps est-il un anneau régulier ?
(¢) Soit E un espace vectoriel de dimension finie. Montrer que (L(E), +,0) est
un anneau régulier.

2. Soit A la matrice de M,(R) ayant ses coeflicients a;,;11 égaux a 1, les autres
coefficients étant nuls. Exhiber U tel que AUA = A.

3. Donner une condition nécessaire et suffisante pour que (Z/nZ, +, ) soit un an-
neau régulier.
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1262 | Centrale-Supélec MP 2022

Soit A un anneau commutatif. On dit qu’un idéal I de A est de type fini s’il est engendré
par un nombre fini d’éléments, c¢’est-a-dire :

p
A, e Ve el Elal,...,apeA,x:Z)\iai.

i=1
On écrit aussi I = Vecta({A1;...;A,}). On dit qu'un anneau est noethérien si tous ses
idéaux sont de type fini.

1. Montrer que (Z,+,-) et (K[X], 4+, -) sont noethériens.

2. Montrer que Panneau (A, +,-) est noethérien si et seulement si toute suite
d’idéaux croissante pour l'inclusion est stationnaire a partir d’'un certain rang.

Mines-Ponts MPI 2025
Soit p un nombre premier et g = (p* — p)(p* — 1).
1. Calculer le cardinal de GLy(Z/pZ).
2. Montrer que pour tout A € My(Z/pZ), AT = A2

1264 | Mines-Ponts MP 2023
Soit G' un groupe abélien d’ordre pq, ou p et ¢ sont deux premiers distincts.
1. Montrer que G est cyclique.

2. Montrer I'importance de la commutativité.

1265 | Mines-Ponts MP

Soit K un corps (commutatif) fini de cardinal g.
On considere le groupe quotient GL,(K)/SL, (K).

1. Montrer que GL,(K)/SL,(K) est isomorphe a K*.
On pourra utiliser 'application déterminant.

2. Déterminer le cardinal de GL,(K)/SL,(K).
3. Déterminer les cardinaux de GL,,(K) et de SL,(K).

4. Soit L un autre corps (commutatif) tel que SL, (K) et SL, (L) soient isomorphes.
Que peut-on dire de K et .7

1266 | Mines-Télécom MP 2018

Montrer qu’il existe un nombre infini de nombres premiers congrus a —1 modulo 4.

Mines-Ponts MP

Soit GG un groupe cyclique de cardinal n, d’élément neutre e.
1. Montrer que pour tout a € G, a™ = e.
2. Soit H un sous-groupe de G.

(a) Montrer que H est cyclique.
(b) Montrer que le cardinal de H divise le cardinal de G.

3. Montrer que n = Z ©(d), ou ¢ désigne la fonction indicatrice d’Euler.
din

263




1268 | TPE/EIVP MP 2017

1. Soit p un nombre premier. Résoudre I'équation z? = T dans Z/pZ, puis montrer
que (p— 1) = -1 mod p.

2. Soit n € N*. Déterminer le reste de la division euclidienne de (n — 1)! par n.

1269 | Mines-Ponts MP 2017

Soit £ un K-espace vectoriel de dimension finie supérieure ou égale a 1, f un endomor-
phisme de F et P son polynéme minimal. Donner une condition nécessaire et suffisante
sur P pour que K[f] soit un corps.

1270 | Mines-Télécom MP 2021

1. Résoudre I’équation x> = x dans Z/pZ, p premier.
2. Résoudre I'équation 2% = z dans Z/34Z.

Centrale-Supélec MP 2019
On note ¥, = Z/pZ avec p premier et impair, et C = {2* | x € F}}.
1. (a) Que dire de la structure algébrique de F), et de C?
(b) Expliciter C pour p = 11.

2. Soit P un polyndéme de degré strictement inférieur a d et a coefficients entiers,
avec d € N*. Soit aq,...,aq € Z tels que

Vi € [1;d], p| P(a;) avec les a; distincts modulo p.

Montrer que, pour tout n € N, p | P(n).
3. Montrer que C = {:c elF, |z = 1}

CCINP PC 2014

Soit a € R et f une fonction de R dans R.
1. Montrer que 'ensemble aZ = {an | n € Z} est un sous-groupe de R.

2. Montrer que I'ensemble des périodes de f est un sous-groupe de R.

ENS MP 2019

Soit G’ un groupe. Est-il vrai que :

G est fini <= L’ensemble des sous-groupes de G est fini?

X MP 2019
1. Montrer que Z[iv/3] C Z[j], ot j = e’5".
2. Montrer que Z[j] est un sous-anneau de C.
3. Montrer que Z[iv/3] n’est pas factoriel.
4. Montrer que Z[j] est euclidien.
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1275 | Centrale-Supélec MP 2025

Soit un entier n > 2 et K un sous-corps de C.

1. (a) Enoncer le théoréme de la division euclidienne dans K[X].
(b) Soit P € K[X] et a € K. Donner le reste de la division euclidienne de P par
(x —a)?.
(¢) En déduire une caractérisation des racines de P.
2. Posons T,, = X" — X +(—1)". Quel est le nombre de racines de T}, dans Q, R, C?

ENS 2023

Montrer que SL,(Z) est un groupe, engendré par S = <[1) _01> et T'= ((1) 1)

Mines 2023

Onnote K=Q+v2Q +v2Q +v/3Q +/6Q.
Montrer que K est un Q-espace vectoriel dont {1; V2:/3: \/6} est une base, puis que
K est un sous-corps de R.

Centrale 2022

Soit (A, +,+) un anneau.
1. (a) Montrer que 'unique morphisme d’anneaux Z — A est donné par :

f 7z — A
ki—>k‘1A

(b) Montrer qu'il existe un unique k4 € N tel que Ker(fa) = kaZ. (Le nombre
K4 est appelé la caractéristique de 'anneau A.)
2. (a) Montrer que si A est un corps, alors k4 = 0 ou k4 est un nombre premier.
(b) Montrer que si A est un corps fini, alors k4 # 0.
3. (a) On suppose que A est un corps fini de cardinal p" avec n > 1 et p premier.
Montrer que I'application F' : x — 2P est un automorphisme de corps de A.
(b) Déterminer 'ordre de F' dans le groupe des automorphismes de A.

Centrale 2024

1. (a) Enoncer le théoréme de Gauss dans Z, ainsi que le petit théoréme de Fermat.

(b) Rappeler la définition d’un idéal d’un anneau commutatif. Montrer que pour
tout a € Z, I'ensemble aZ[X] est un idéal de Z[X].

(¢) Soit R un anneau commutatif et p € Z. Montrer que pR = {pr | r € R} est
un idéal de R, puis montrer que pour tous z,y € R, (z+y)? — (2P +yP) € pR.

2. Soit p un nombre premier.
(a) Soit n € N*, R un anneau commutatif et I un idéal de R. On se donne

A, B € M,(R) et on suppose que tous les coefficients de B appartiennent a
I. Montrer que det(A + B) — det(A) € I.

(b) Soit P € Z[X]. Montrer que P(X?) — (P(X))? € pZ[X].
(¢) Soit M € M,(Z). Montrer que Tr(M?) = Tr(M) mod p.
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1280 | Mines 2023
Soit A € M,(Z). Pour x = (x1;...;2,) € Z™, on note T'(x) = pged(xy, ..., T,).
Montrer I’équivalence entre les assertions suivantes :

i) det(A) € {~1;1}
i) Ve e 2", T(Az) = T'(x)

1281 | Mines 2024

Soit G et G’ deux groupes, et f : G — G’ un morphisme de groupes. Montrer que f
est surjectif si, et seulement si, I'image par f de toute partie génératrice de G est G'.

1282 | X 2022

On pose G = SO3(R) et on consideére un sous-groupe H de G tel que :
Vg e G,Vh € H, ghg™* € H.

Montrer que H = {I3} ou H = G.

ENS 2022

On considere le groupe :

Gz{(% _j> ‘(oz;ﬁ)E(C2 et |a\2+|5|2:1}.

Si B est un sous-groupe de G, on définit C(B) = {g~'Bg | g € G}. Montrer qu’il existe
un unique sous-groupe non trivial H de G tel que C(H) = H.

ENS 2023

On munit R? de sa structure euclidienne canonique. On considére deux vecteurs vy, vy
non colinéaires de R?, on pose L = 117 + voZ, et on note vol(L) = |det(vy;v9)].

1. Soit B une boule d’aire strictement supérieure a vol(L). Montrer qu’il existe
x,y € Btelsquex —y e L.

2. Montrer que :
vol(L)

Ve>0,3I €L, ||| <2(1+¢)

3. Soit p un nombre premier tel que p = 1 mod 4. Montrer que —1 est un carré
modulo p.

4. Montrer que p est somme de deux carrés.

1285 | Mines-Ponts MP 2024
1. Soit (G, *) un groupe et (H,*) un sous-groupe de G. Déterminer le plus petit
sous-groupe de G contenant le complémentaire de H.

2. On suppose G fini. Soit S un sous-ensemble de G. Montrer que (S,x) est un
sous-groupe de G si et seulement si S est stable pour la loi *.
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CCINP MP 2022

On considere un groupe (G, -) cyclique d’ordre n, engendré par a. On fixe r € N* et on
pose f:x € G+ z". Soit encore d = pged(r,n).

1. Montrer que f est un morphisme de groupes.

2. Déterminer le noyau de f.

3. Montrer que I'image de f est le sous-groupe de G engendré par a“.

4. Soit g € G. Déterminer le nombre de solutions de 1’équation y = z".

1287 | Mines-Ponts MP 2022

Soit G un sous-groupe de GL,(K) tel que, pour tout M € G, M? = I,,.
1. Montrer que G est abélien.
2. Montrer que |G| < 2".

3. Soit (n;p) € N* x N*. Montrer que les deux groupes GL,(K) et GL,(K) sont
isomorphes si et seulement si n = p.

ENS MP 2022

Soit p = @, .-G’ un nombre premier (écriture en base 10).

On pose P = a, X™ + -+ + ag. Montrer que P est irréductible dans Z[X].

1289 | Mines-Ponts MP 2021
Soit A et B dans M, (R) avec :

0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0
A=10 0 1 . et B=|0 1 0 0
: H . 0 : . . E :
0O ««+ -+ 0 1 O --- 0 1 0

1. Déterminer le sous-groupe engendré par A et B.

2. Que dire des éléments qui commutent avec A et B?

Mines-Ponts MP 2021
Une application p d’un ensemble E dans E est dite idempotente si pop = p.
1. (a) Montrer que si p est injective et idempotente, alors p = Idg.
(b) Montrer que si p est surjective et idempotente, alors p = Idg.
(c) Construire une application idempotente p différente de l'identité pour 1’en-

semble F = {a;b}.
2. Montrer que p est idempotente si et seulement si, pour tout = € P(E), p(z) = =.

3. Donner les trois applications idempotentes pour F = {a;b}, et les dix pour
E ={a;b;c}.
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1291 | Centrale-Supélec MP 2021

Soit A une R-algebre commutative integre de dimension finie n > 2.

1. Soit @ € A\ {0}. Montrer que f : x + az est un automorphisme. En déduire
que a est inversible.

2. Soit a € A\ R. Montrer que {1;a} est libre et que {1;a;a?} est lice.

3. Montrer D'existence de i € A tel que i> = —1, puis que A est isomorphe a C.

X ESPCI 2016
Soit n = 10101010 - - - 101 tel qu’il y ait 2016 fois le chiffre 0.
Montrer que n n’est pas un nombre premier.

1293 | Mines-Télécom MP 2019 MP

1. Soit n € N* tel que n A 10 = 1. Montrer que n* =1 mod 10.
2. On suppose a A 10 =1 et k € N. Montrer que a*1%" =1 mod 10++1.

1294 | Centrale-Supélec MP 2019

Soit G un sous-groupe de (C*,-) et (g1;92) € G x G. On suppose que pour tout g € G,
il existe un voisinage V' de g tel que GNV = {g}. Soit G le sous-groupe engendré par
g1 et G5 les sous-groupe engendré par g; et gs.

1. Décrire les éléments de G;.

2. Décrire les éléments de Gs.

3. Soit K une partie compacte de C*. Montrer que G N K est fini.
4. Montrer que U N G est monogene.

1295 | Mines-Ponts MP 2015

Pour n entier naturel non nul, on note S(n) la somme de ses diviseurs positifs.
Montrer que S(n) < n+nln(n).

CCINP MP 2016

Soit (A, +,-) un anneau d’élément unité 1.

1. Soit (a;b) € A% Supposons que 1 — ab soit inversible dans A. Montrer que 1— ba
est inversible dans A et préciser son inverse.

2. Soit a un élément de a tel qu’il existe un entier naturel non nul n tel que a™ = 0.

(a) Montrer que 1 — a est inversible et préciser son inverse.

(b) En déduire que b = 14 2a+ - --+na™"* est inversible dans A et préciser son
inverse.

3. Soit (a;b) € A? tel que ab est nilpotent. Montrer que ba est nilpotent.

4. On suppose A commutatif. On note Nil(A) I'ensemble des éléments nilpotents
de A. Montrer que Nil(A) est un idéal de A.
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ENS MP 2013

Soit (A, x) un magma associatif. Démontrer la proposition suivante généralement ad-
mise : pour tout n € N*, tout n-uplet (aq;...;a,) d’éléments de A et tout paren-
thésage « admissible » de la multiplication a; X -+ X a, (par exemple, pour n = 4,
(a1 X ag) X (az X aq), a; X (ay X (a3 X a4)), (a1 X (ay X az)) x a4 sont des parenthésages
admissibles), le résultat de la multiplication est le méme.

1298 | Mines-Ponts MP 2016

1. Soit n > 1 entier. Montrer que si 2" + 1 est premier, alors il existe p € N tel que
n = 2P,

2. Pour tout p € N, on pose f, = 2% + 1. Montrer que :
V. eN,p#q = frANfi=1

3. En déduire qu’il existe une infinité de nombres premiers.

1299 | Mines-Ponts

Soit (E,+,-) un anneau non commutatif. On munit £ d’une loi de composition interne
[-,-] (crochets de Lie) définie par :

Y(a;b) € E?, [a,b] = ab — ba.
1. Montrer l'identité de Jacobi :
Y(a;b;c) € E°, {a, b, cﬂ + [b, e, a]} + {c, la, b]} = 0.

2. On note, pour a € E fixé, 'application ¢,, qui va de E dans lui-méme, définie
par ¢, (z) = [a, z]. Montrer que :
(a) Pour tout (z3y) € E?, ¢u(z +y) = @a(@) + ¢a(y).
(b) Pour tout (z;y) € E?, @a(xy) = ¢a(2)y + 200a(y).
(c) Pour tout (z;y) € E?, pour tout n € N :

itan =3 ()bt

k=0

(d) Pour tout (z;y) € E?, pour tout n € N* :
n—1
Pa(z") = Z xksoa(x)xn_l_k'
k=0

(e) Montrer que si a est nilpotent, c’est-a-dire s’il existe p € N tel que a? = O,
alors ¢, est également nilpotent, c’est-a-dire qu’il existe ¢ € N tel que ¢? est
I’application nulle de £ dans E.
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ENS MP 2019

Soit G' un groupe fini de cardinal n. On dit que G vérifie la propriété P si pour tout
entier d divisant n, il existe au plus un sous-groupe de G de cardinal d.

1. On suppose G cyclique. Montrer que G vérifie la propriété P.
2. Réciproquement, si G vérifie la propriété P, montrer que G est cyclique.

3. Soit K un corps fini. On note K* I'ensemble des éléments non nuls de K et on
rappelle que (K*,-) est un groupe. Montrer que K* est cyclique.

4. On suppose que |K| = p?, oll p est un premier supérieur ou égal a 3. Montrer
que X* 4+ 1 admet une racine dans K.

X MP 2024

Soit GG un sous-groupe du groupe des bijections du plan complexe. On suppose que :
o (G est cyclique d’ordre 2™ avec n > 2,
o ( contient la conjugaison z + Z,
« YmeZ,VgeG,VzeC, g(mz) =mg(z).

9(2)

z
1. Montrer que pour tout z € C\ R, il existe g € G tel que —= ¢ {—1;1}.
z

2. Déterminer les sous-groupes de G d’ordre 27!,

3. On regarde C comme R-espace vectoriel. Est-il possible que G ne soit composé
que d’applications linéaires 7

CCINP MP 2025
1. Calculer d = pged (473, 220).

2. Existe-t-il un couple (u;v) € Z? tel que 473u + 220v = d ? Si oui, en déterminer
un.

3. Les équations suivantes ont-elles des solutions (u;v) € Z? ? Si oui, les déterminer.
(a) (E,):473u+ 2200 =1
(b) (Ep) : 473u +220v = 11
(¢) (E.):473u+ 2200 = 22

ENS MP 2018

Donner, & isomorphisme pres, les sous-groupes finis de Oy(R).

1304 | Mines-Télécom MPI 2024

Soit (G, x) un groupe. On note Aut(G) ’ensemble des automorphismes de G. Soit a € G

et
¢ + G — G

r — axxHkat

1. On considere :
o G — Aut(G)
a +— o
Montrer que ¢ est un morphisme de groupes.

2. Montrer que {¢, | a € R} est un sous-groupe de Aut(G).
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1305 | CCINP PC 2022
Soit
f: N — N*
(n;m) — 2"(2m+1)
1. Trouver un antécédent de 56 par f.
2. L’application f est-elle injective ?
3. L’application f est-elle surjective?

4. L’ensemble N? est-il dénombrable ?

ENS MPI 2022

On munit R™ d’une structure d’espace euclidien.
Soit e = (ey;...;e,) une base de R™.
On dit qu'un sous-groupe L de (R™, 4) est un réseau si :

e Vect(L) =R";

e Yz € R" VR >0,B(z,R)N L est fini.

1. Déterminer L pour n = 1.

2. On note L(e) = {a1e1 + -+ - + apey, | (a1;...5a,) € Z™}.
Montrer que L(e) est un réseau.

3. Donner une condition nécessaire et suffisante pour que L(e) = L(¢').

X-ENS

Soit p un nombre premier, G un sous-groupe de GL,,(Z) et ¢ le morphisme de réduction
modulo p :
o G —  GL,(F))
M +—— M modp

Quand 'application ¢ est-elle injective ?

ENS Ulm MP 2023

Soit p premier. Montrer que n divise le cardinal de GL,_(Z/pZ).

ENS MP 2017

Soit G un sous-groupe fini de GL,(Z). Montrer que G s’injecte dans G L,,(Z/pZ) pour
p = 3 premier.

CCINP MP 2019

Soit f : R — R un morphisme de corps.
1. Soit z € R,. Montrer que f(x) = (f(v/7))?. En déduire que f est croissante.
2. Soit (n;x) € N x R. Montrer que f(nz) = nf(z).
3. Soit x € Q. Montrer que f(z) = x.
4. Montrer que f = Idg.
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1311 | Mines-Télécom MP 2019

Soit E l'ensemble des matrices

M(a;b) = (_ab Z) avec a,b € R.

1. Montrer que F est un sous-espace vectoriel de M(R).
2. Montrer que £ est un anneau.

3. Soit la fonction ¢ telle que ¢(a+bi) = M (a;b). Montrer que ¢ est un morphisme
de R-espaces vectoriels de C dans F.

4. L’application ¢ est-elle un morphisme d’anneaux ?

1312 | Centrale-Supélec MP 2019

Soit (G, -) un groupe abélien fini d’élément neutre e.
Le groupe des automorphismes de G est supposé d’ordre 3.
1. Montrer que
o : G — G

r — g}

est un automorphisme, puis que pour tout € G, 22 = e.

2. Montrer qu’il existe un sous-groupe V' de G d’ordre 4. Déterminer les automor-
phismes de V.

3. Montrer qu'il existe r € N tel que G soit isomorphe & V' x (Z/2Z)", en conclure
une absurdité.

Mines-Ponts MP 2018
Soit ¢(n) le cardinal des éléments inversibles de Z/nZ pour tout n € N*.
1. Déterminer ¢(p) pour p premier, puis ¢(p®) pour a € N*.
2. Redémontrer le théoreme chinois.
3. En déduire que si m,n € N* sont tels que m An = 1, alors p(mn) = p(m)p(n).

4. En déduire une expression générale de p(n).

1314 | Mines-Ponts MP 2018
Soit A un anneau commutatif et / un idéal de A.

1. On définit 'ensemble quotient A/I avec la relation d’équivalence suivante :
V(a;b) € A2, a~b <= a—bel.

Montrer que A/I est un anneau pour certaines lois que I'on précisera.

2. En déduire que si a est un entier et p un nombre premier tel que p ne divise pas
a, alors a?"' =1 mod p.
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1315 | Mines-Ponts MP 2015
Soit £ = R x R euclidien muni de son produit scalaire canonique. On définit un arc I
sur E par z(t) = cos3(t) et y(t) = sin3(¢).

1. Trouver toutes les isométries de £ qui conservent I'.

2. Soit G ={f € O(F) | f(I') = T'}. Montrer que G est un groupe pour la loi o.
Puis trouver les sous-groupes de G.

1316 | TPE/EIVP MP 2015

On consideére un groupe fini (G, -) d’élément neutre e tel que, pour tout r € G, 22 = e.
1. Montrer que G est commutatif.

2. On considere un sous-groupe H de G, différent de G, et x un élément de G' qui
n’est pas dans H. On note K le sous-groupe engendré par H et x. Montrer que
Card(K) = 2Card(H). En déduire que le cardinal de G est une puissance de 2.

ENS MP 2024

Montrer qu'un sous-groupe discret de R™ admet une Z-base.

X MP 2017

Soit a € R\ (§ +nZ). On pose :

_1
T = 1 1 d~7 tan(a) .
—d7 tan(a) 1
1. Trouver le lien entre T, et T}, - Tj.

2. Soit d € N, d > 2, sans valuation paire dans sa décomposition en facteurs
premiers. On note :

Ag={a+bVd| (a;b) € Q*}.
Montrer que Ay est un corps.

3. On note :
o Ay — A

a+bv/d — a—bJ/d
Montrer que o est un automorphisme de corps.
4. Soit p,q € Z* vérifiant p A g =1 et ¢ > 3 impair.
Montrer que tan Wg ne peut s’écrire sous la forme x = r - di avec d entier
q

vérifiant les conditions de la question 2 et r € Q.

ENS Ulm

Soit A un anneau tel que tout a € A est soit nilpotent, soit idempotent.
1. Montrer que a?> = a pour tout a € A et que A est commutatif.

2. Si A est fini, montrer qu’il existe n € N tel que A = F} en tant qu’anneau.
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[1320] x

1. Soit a et r premiers entre eux.
Montrer qu'il existe k¥ € N* tel que a* =1 mod r.
2. Soit a et r deux entiers relatifs avec a > r > 2. Montrer que la progression

arithmétique de premier terme a et de raison r contient une infinité de termes
ayant tous les mémes diviseurs premiers.

1321 | Mines-ponts MP 2017
Soit @ un nombre impair positif et n un entier supérieur a 3.
—2
1. Montrer que ¢~ =1 mod 2.

2. En déduire les entiers n pour lesquels le groupe des inversibles de 'anneau Z/2"7Z
est cyclique.

X-ENS

Soit G' un groupe fini et f un morphisme de G dans G. Montrer que :

Ker(f) = Ker(f*) <= Im(f) = Im(f*).

X MP 2017

Soit A une algebre et V' un espace vectoriel. Si 7 € L(A, V), on dit que 7 est une trace
si:
V(A; B) € A%, 7(AB) = 7(BA).
On note T'(A, V') I'ensemble des traces de A sur V.
On note [A, B = AB — BA et [A, A] = Vect({[A, B] | (4; B) € A?}).
1. On dit que A est équivalent a B si A — B € [A, A]. Montrer que cette relation

est effectivement une relation d’équivalence.

2. On note L[A] 'ensemble des classes d’équivalence et on considére 'application
T de A dans L[A] qui & un élément associe sa classe d’équivalence. Montrer que
L[A] est un espace vectoriel et que T est sa trace.

3. Soit 7 € T(A, V). Montrer qu’il existe un unique 7 € L(L[A], V) tel que :

VA € A, 7(A) = 7(T(A)).

4. Montrer que T'(A, V) = L(L([A],V).

X 2022

Soit (A, 4+, ) un anneau commutatif. On dit que a € A est un diviseur de zéro lorsqu’il
existe b € A\ {0} tel que ab = 0.

1. Montrer que si A est fini et sans diviseur de zéro, alors A est un corps.

2. Soit f € A[X]\ {0}. Montrer que si f est un diviseur de zéro, alors il existe
a € A\ {0} tel que af =0.
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1325 | Centrale-Supélec MP

1. Rappeler la définition de ¢ la fonction indicatrice d’Euler et calculer ¢(1176).

2. Soit p1,...,pr des nombres premiers distincts. Soit ¢ € N* un multiple de
p1p2 - - - pr. Calculer le cardinal de I’ensemble

E(gpy;...:pr) ={keN|1<k<qgetkAppy---p =1}

3. En déduire une propriété connue de la fonction indicatrice d’Euler.

ENS MP 2018

Soit f un morphisme de groupe de U muni du produit usuel, dans lui-méme.
1. Supposons f injectif. Montrer que f est 'identité ou l’application z — 271

2. Dans le cas général, montrer que f est de la forme z — 2", ot n est fixé dans Z.

ENS MP 2024

On note S3(Z) 'ensemble des matrices de taille 2 x 2 & coefficients entiers et de déter-

minant 1. On définit :
0 —1 11
S = (1 0 > et T = (O 1> .

1. Montrer que Sy(Z) est un groupe.
2. Montrer que S et T" engendrent Sy(Z).

17 29

3. On admet que A = 7 12

> est dans Sy(7Z). Déterminer sa décomposition avec

les matrices S et T

1328 | Centrale-Supélec MP 2022

1. Soit M € M, (Z). Montrer que M € GL,(Z) si et seulement si |det(M)| = 1.

. M — In
2. Soit M € M, (C) telle que M = I,,. On pose A = T

Etudier la convergence de la suite (A*)en.

3. Montrer qu’il existe une constante K, qui majore le cardinal de tous les sous-
groupes de GL,(Z).

Mines-Ponts MP 2015
Soit p un premier impair.
1. Montrer que le nombre de carrés dans Z/pZ est p—gl.
2. Montrer que —1 est un carré dans Z/pZ si et seulement si p =1 mod 4.

3. Montrer que tout élément de Z/pZ est somme de deux carrés.

ENS MP 2015

Déterminer les entiers n vérifiant n? | 2" + 1.
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1331 | Centrale-Supélec MP 2022

Soit n € N*. On note w = e .

n—1
Pour P € C,,_1[X], on pose F(P ZP MXE et F( P)=> Pl *Xx*

1. Montrer que F et F sont des endomorphismes de C,,_;[X].

2. Calculer FoF. Montrer que F induit un automorphisme sur C,,_;[X]. Exprimer
sa réciproque.

3. Soit P € Z[X]. On suppose que :
(a) Vz € U,, |P(2)| < 1;
(b) P admet une racine dans U,.
Montrer que X" — 1 divise P.

On admet que si A, P € Z[X], A # 0 et A de coefficient dominant 1 ou —1, le
reste R dans la division euclidienne de P par A est aussi dans Z[X].

1332 | TPE/EIVP MP 2013

Montrer que :

Y(a;b) € Z*,¥Yn €N, a=0b modn = a" =b" mod n’.

1333 | Mines-Ponts MP 2019

On considére comme loi la multiplication matricielle. Décrire G, inclus dans M, (R),
tel que G soit un groupe.

ENS MP 2015

1. Soit G un groupe fini. Soit f un automorphisme involutif dont le seul point fixe
est e. Montrer que G est abélien.

2. Soit G un groupe abélien fini. Tous les automorphismes involutifs ont-ils seule-
ment e comme point fixe?

3. Soit G un groupe fini et a € G. On suppose que a est d’ordre 2, et tel que pour
tout = # e et x # a, ar # ra. Que peut-on dire?

1335 | Mines-Ponts MP 2018

Soit aq,...,a, € N*, deux a deux premiers entre eux.
1. On pose, pour 1 <k <7, ¢ = H a;.
z;ﬁk

Montrer que les ¢; sont premiers entre eux dans leur ensemble.

2. Soit b € Z.
Montrer qu’il existe un unique (y;z1;...;x,) € Z™, avec 0 < 23, < a; pour

tout k, tel que :
b T T
k=1 ¢

al.--aT
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X MP 2018

Pour k € N, on note d(k) le nombre de diviseurs positifs de k. Montrer que :
Z ) =nln(n) +n(2y — 1) + O(v/n),

ou v est la constante d’Euler.

ENS Lyon MP 2022

Soit p un nombre premier. On note pour tout ¢ € Q, |q|, = prla),

1. Montrer que pour tous z,y € Q :

{ump 2]yl

|$+y|p maX(|$|p7|y|p)

Que peut-on dire si |z], # |y, ?
On note Q, le complété de Q pour la distance associée a |-|,.
2. Montrer que Q, est un corps.

3. Montrer que pour toute suite de Cauchy (u,)neny de Q,, la suite (Juy|p)nen est
stationnaire.

4. Soit (up)nen dans Q,. Montrer I'équivalence suivante :

Z u, converge <= lim wu, = 0.
>0 n—-+o00

5. Montrer que @, et R ne sont pas isomorphes en tant que corps.

X MP 2021

Soit p un nombre premier et a € N*. Dénombrer les carrés de 'anneau Z/p®Z.

X MP 2021

A quelle condition une permutation de {1;...;n} est-elle un carré ?

X MP 2021

Soit G’ un groupe d’ordre 8 non cyclique.

1. Montrer que G admet un élément d’ordre 2 et que tous les éléments sont d’ordre
1, 2 ou 4.

2. On suppose que tous les éléments sont d’ordre au plus 2. Que dire de G 7

On suppose désormais qu’il existe un élément a d’ordre 4. On note H le sous-
groupe engendré par a.

Montrer que zHz~' = H pour tout z € G.
Soit b € G\ H. Montrer que bab~! vaut a ou a?.

En déduire qu’il existe, a isomorphisme pres, au plus cinq groupes d’ordre 8.

AR AN ol

Exhiber cinqg groupes d’ordre 8 deux a deux non isomorphes.
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ENS MP 2022

On note A = C[X,Y]. Pour tout v C C?, on pose :
I(v) ={P € A|V¥(z;y) € v, P(a;y) = 0}.

1. Soit v C C2. Montrer que I(v) est un idéal de A.
2. On pose P(X;Y) =Y — X? et on note :

v(P) ={(z;y) € C* | P(x;y) = 0}.

Montrer que A/I(v(p)) est isomorphe a C[X].

1342 | Mines-Ponts MP 2013

Soit a € R. On suppose qu'il existe P € Q[X] irréductible de degré supérieur ou égal
a 2 tel que P(a) = 0.

1. (a) Montrer que {Q(a) | @ € Q[X]} est un sous-espace vectoriel de dimension
finie.

(b) Que peut-on dire de sa dimension ?

2. Montrer que c¢’est un sous-corps de R.

ENS Ulm MP 2019

Soit n > 1 un entier naturel et .S,, le groupe des permutations de {1;...;n}. On définit :

g(n) = max (min ({k >1|0" = Id})) .

O‘ESn

Déterminer les entiers naturels n tels que g(n) est impair.

X MP 2023

Pour o € S,,, on note z(0) 'ensemble des éléments de S,, commutant avec o.
1. Montrer que z(o) est un groupe, puis que pour tout automorphisme ¢ de S,
2(p(0)) = ¢(z(0)).
2. Déterminer le cardinal de ce groupe pour une transposition et pour une compo-
sition de transpositions a supports disjoints.

3. Montrer que si n # 6, alors pour toute transposition ¢ et pour tout automor-
phisme ¢ de S,,, ¢(0) est une transposition.

ENS MP 2018

On considére un anneau commutatif A. On suppose que A possede n diviseurs de zéro,
avec n > 1.

1. Montrer que A a au plus (n + 1)? éléments.

2. Trouver une infinité d’anneaux du méme type que A, et qui ont exactement
(n+1)? éléments.

ENS MP 2018

Classifier les sous-groupes de U.

278




ENS MP 2017

Soit n un entier naturel non nul. Exprimer la permutation qui a k£ associe n +1—k a
'aide de transpositions de la forme (i ¢+ 1).

X MP 2018

Soit d € Z et (%) I'équation 2% — dy? = 1 dont on cherche les solutions dans Z2.
1. (a) On suppose d < 0. Résoudre (x).
(b) On suppose Vd € N. Résoudre ().
On suppose dans la suite d > 0 et vd & N.
2. (a) Soit (z¢; 1) une solution de (x) telle que yy # 0. On pose z = xo + yo/d.
i. Montrer que |z| # 1.

ii. Montrer que I'on peut construire une suite (z,;y,) de couples d’entiers
telle que pour tout entier naturel n on ait 2"t = z,, + y,,V/d.

(b) En déduire que I’équation (*) admet une infinité de solutions.
3. On admet le résultat suivant :
Pour tout « réel irrationnel, il existe une infinité de rationnels r = % avec p et

g premiers entre eux, tels que 0 < |a — 7| < q%.

Montrer qu’il existe une solution (zg;yo) de I’équation (x) telle que yo # 0.

1349 | Mines-Ponts MP 2017

Soit A, B € My(Z) telles que pour tout entier k avec 0 < k < 4, la matrice A+ kB soit
inversible a coefficients dans Z. Montrer qu’il en est de méme pour la matrice A+ 5B.

ENS MP 2013

Soit K = Z/pZ, avec p > 3 premier, et v un entier avec 0 < v < p — 1.
1. Montrer qu’il existe y € K tel que y* # 1.
2. Calculer, pour u € N, Z xt.

zeK

1351 | Mines-Ponts MP 2025
Soit P, @ € Q[X], scindés dans C[X], que I'on pourra écrire :

P:aﬁ(X—ak) et szﬁ(X—ﬁk),
k=1 k=1

ou les ay, sont deux a deux distincts et les ) sont deux a deux distincts.
On pose © = oy et y = [, et pour tout t € Q, z; = x + ty et Ry = P(z, — tX).
1. Justifier qu’il existe t, € Q tel que Ry, (y) = 0 et pour tout j > 2, Ry (5;) # 0.

On pose Q|[z;,] = Vectg({2f) | m € N}) C C. On admet que Q[z,] est un sous-
espace vectoriel de dimension finie.

2. Montrer que Q[z,] est un corps.

3. Montrer que z et y appartiennent a Q|z,].
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ENS MP 2015

Soit ¢ € N* et H un sous-groupe propre de (Z/qZ)*. Montrer qu’il existe une infinité
de nombres premiers qui ne sont congrus a aucun élément de H modulo q.

X MP 2020
0 —1

On considere un corps quelconque K et J = <1 0 ) € My(K).

1. Soit A 'ensemble des combinaisons linéaires dans K des matrices Iy et J. Que
dire de la structure algébrique de A ?

2. Soit B l'ensemble des matrices de Ms(K) qui commutent avec tout élément de

A. Que dire de B?

Dorénavant, on cherche a résoudre ’équation X™ = J dans M;(K) en distinguant
selon si K =R ou C.

3. On suppose que K = R.

(a) Déterminer un isomorphisme d’anneaux entre A et un autre ensemble clas-
sique. En déduire la résolution de 1’équation X" = J et son nombre de
solutions.

(b) En fait, quelle est la structure algébrique de A ici?
4. On suppose que K = C.

(a) L’ensemble A garde-t-il la méme structure algébrique ?

(b) En s’inspirant de la méthode de 3(a), résoudre de nouveau 'équation X" = .J
et dénombrer ’ensemble des solutions.
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8 Algebre linéaire

X-ENS

Soit n € N, ay,...,ap, bi,...,b, des nombres complexes tels que a; + b; # 0 pour tous

1 <1,7 < n. Calculer :
1
det ( > .
a; + bj 1<i,j<n
1355 | Mines-Ponts

Soit n € N* et f: M, (R) — M, (R) définie par f(M)= M + M".
1. Montrer que f est un endomorphisme.
2. L’application f est-elle diagonalisable ?

3. Déterminer les sous-espaces propres de f.

X PC 2012

Soit A et B deux matrices de M, (C). Montrer que les deux affirmations suivantes sont
équivalentes :

i) Les matrices A et B ont une valeur propre commune.
ii) Il existe M € M, (C) non nulle telle que AM = MB.

1357] x

Calculer :

det ((pgcd(i, j))

1<z‘,j<n)'

1358 | Mines-Ponts MP 2018

Soit n > 2 un entier.
Résoudre dans M, (R) I"équation A = com(A), ou com(A) est la matrice des cofacteurs
de A.

1359 | Mines-Ponts MP
Soit A, B deux matrices de M, (R) telles que AB — BA = A. Montrer que la matrice
A est nilpotente.

ENS 2024
Soit A € GL,(R) telle que pour tout k € N*, il existe M € M, (Z) telle que M* = A.
Que dire de la matrice A7

1361 | Mines-Ponts PC 2023

Soit n € N* et X, Y deux vecteurs de M, ;(R). On pose M = XYT.
Etudier la diagonalisabilité de M.
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Quelle est la dimension maximale d'un sous-espace vectoriel de M,,(R) formé unique-
ment de matrices diagonalisables ?

1363 | Mines-Ponts MP 2015

Soit A et B dans M, (Z) telles que det(A) et det(B) sont premiers entre eux. Montrer
qu’il existe deux matrices U et V dans M, (Z) telles que AU + BV = 1I,,.

[1364] x

Soit A € M, (R). Résoudre I’équation X + X7 = Tr(X)A, d’inconnue X.

1365 | Mines-Ponts PC 2024

Soit n un entier supérieur ou égal a 2. Soit K un corps et A, B deux matrices de M, (K).
L’égalité (AB)? = 0 implique-t-elle (BA)> =07

ENS PC

Soit A € M3(R) une matrice symétrique. On suppose que
Tr(A) = 3, Tr(A?) =5, Tr(A%) =0.

On note &£ l'ensemble des matrices M appartenant M3(R), symétriques et telles que
Tr(AM) =1 et Tr(A%M) = 3. Déterminer min {Tr(M?) | M € £}.

1367 | Mines/Centrale

Soit V' un espace vectoriel réel de dimension finie. Soit p, ¢, r trois projecteurs de V'
tels que p = \/§q + +/3r. Montrer quep=qg=1r=0.

Mines-Ponts

Montrer que la famille {|z — a| | a € R} est libre dans C'(R, R).

1369 | Mines 2014

Soit A une matrice carrée réelle. On suppose que la suite (A"),en converge vers une
matrice B. Montrer que la matrice B est diagonalisable et de spectre inclus dans {0; 1}.

1370 | Mines-Ponts MP/PC 2023

Soit M = (m; j)1<ij<n une matrice orthogonale de M, (R). Montrer que

<n < Z |m;| én%.

1<i,j<n

Z M

1<i,g<n

Mines-Ponts MP 2008
Soit 0 € R et n € N*. Calculer le déterminant de taille n :

2cos(f) 1 0
D) =| ! 1
0 1 2cos(f)
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1372 | Mines-Ponts MP 2023

Soit A et B deux matrices de M, (C).

1. On suppose A inversible.
Montrer que AB et BA sont semblables.

2. Que dire si A n’est pas inversible ?

ENS PC 2023

Soit A, B € M,(R).
1. Si A+iB € GL,(C), montrer qu’il existe t € R tel que A+ tB € GL,(C).

2. Si les matrices A et B sont semblables dans M,,(C), montrer qu’elles sont sem-
blables dans M, (R).

1374 | Mines-Ponts MP

Trouver toutes les matrices A € M, (R) telles que det(A+ M) = det(A) +det(M) pour
tout M € M, (R).

1375 | Mines-Ponts PC

Soit n € N* et A, B, N € M, (C).
1. On suppose que A et B commutent. Factoriser A" — B™.
2. On suppose N nilpotente. Montrer que la matrice I, — N est inversible.

3. On suppose N nilpotente et AN = NA. Montrer que A — N est inversible si et
seulement si A est inversible.

1376 | Mines

Soit A € M3,4(R) et B € Myy3(R) telles que :

AB =

e )
=N
O~

Montrer que la matrice BA est diagonalisable.

Mines-Ponts MP

Soit M € M,,(C) possédant une unique valeur propre A € C. Montrer que les propriétés
suivantes sont équivalentes :

i) A <1
ii) La suite (M")zey converge vers la matrice nulle.

iif) La série Y M* converge.
keN

o Mp

Soit A € M,(R) telle que A% = A + I,.
1. Montrer que A est diagonalisable dans M, (C).

2. Montrer que X? — X — 1 admet une seule racine réelle et strictement positive.
3. En déduire que det(A) > 0.

283




1379 | Mines-Télécom MP

Soit p un nombre premier.
On note K = Z/pZ et K[ X] = {P € K[X] | deg(P) < 2}.

1. Calculer Card(Ky[X]).
2. Calculer le cardinal de I’ensemble des polynomes de Ky[X| non scindés.

3. En déduire qu'il existe des matrices de M5(K) non trigonalisables.

1380 | Mines-Ponts PC

Calculer, en fonction de n, le nombre de matrices de M, (R) qui sont orthogonales et &
coefficients entiers.

coP Mp
Soit n € N* et A € M,(R) telle que A* + A+ I,, = 0.
Montrer que n est pair.

CCP PSI 2005

Calculer le déterminant de la matrice

—a b ¢ d
b —a d c
c d —a b
d ¢ b -—a
1383 | Mines-Télécom 2019
, . N L 1 -1
Déterminer le polyndéme caractéristique de A = 5 4 > .

Calculer, pour n € N, A" de deux manieres différentes.

[1384] x mp

Soit E un espace vectoriel et p, ¢ deux projecteurs de F tels que Im(p) C Ker(g). On
pose r = p+ q — pq. Montrer que r est un projecteur. Trouver son image et son noyau.

1385 | Mines

Soit n € N*. Montrer que l'ensemble des matrices diagonalisables de M,,(C) est dense
dans M,,(C).

X PC/MP PSI 2022

Soit A € M, (R) symétrique. Montrer que Tr(A)? < rang(A)Tr(A?).
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CCINP MP 2023

Soit F un espace vectoriel réel et f un endomorphisme de E de rang 1.
1. Montrer qu'il existe A € R tel que f? = \f.
2. A-t-on Im(f) ® Ker(f)=FE?
3. Montrer que les assertions suivantes sont équivalentes :

i) Il existe ¢ € R* tel que ¢f est un projecteur.
i) fof#0
iii) Im(f) @ Ker(f) =F

1388 | Mines-Télécom MP 2025

Soit n € N*. Résoudre 1'équation matricielle dans M,,(R) :

M® = M?
Tr(M)=n

1389 | Mines-Ponts PSI 2015
Soit M € My(Z) telle que M™ = I, pour un n € N*. Montrer que M'? = I,.

cop M 2021
Soit n € N* et A € M, (C) avec Tr(A) # 0.
On considere 'application

f - M,(C) — M, (C)
M  — Tr(AM —Tr(M)A

1. Montrer que f est un endomorphisme de M, (C).
2. Caractériser Ker(f) et Im(f).
3. Montrer que f est diagonalisable.

—

Soit n € N* et ag,...,a,_1 € C. Calculer :

ao ap Qa T Qp—1
Ap—1 :
det | @ . . g,
(05} e . aj
ay az -+ Gp—1 Qo

1392 | Mines-Ponts PSI 2019

On munit M, (R) de son produit scalaire canonique. Soit V' le sous-espace vectoriel de
M, (R) formé des matrices de trace nulle. Soit J la matrice dont tous les coefficients
sont égaux a 1. Calculer la distance de J a V.
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1393 | Mines-Ponts PSI

Soit V' un espace vectoriel de dimension finie et f un endomorphisme de V. Prouver
que :
dim(Ker(f)) < dim(Ker(f?)) < 2dim(Ker(f)).

1394 | X PC 2016

Soit n,p € N tels que 1 < n < p, K un corps et A € M,.,(K), B € M, +,(K).
Que dire de det(AB)?

1395 | Mines-Ponts

Soit A, B € M, (R). Montrer que AB et BA ont les mémes valeurs propres.

CCINP MP

Soit (E, (-, -)) un espace vectoriel euclidien et B = (e;)1<i<n, une base ordonnée de F.
Soit encore f I'application définie, pour tout z € E, par :

£(0) = St ender

1. Montrer que f est un endomorphisme de E, que f est symétrique, bijective et
que f admet des valeurs propres toutes strictement positives.

2. Montrer qu'’il existe un endomorphisme de E tel que ¢? = f~1.

3. Montrer que B = (g(e;))1<i<n €st une base de E.

1397 | X PC 2020

Soit F un espace vectoriel euclidien et x,y deux vecteurs non nuls de E. Montrer que

z Y

el i

1
lz = yll > 5 max ([lz; [ yl]) - ‘

X-ENS
Soit A € M,,(C) telle que Tr(A*) = 0 pour tout k € N.
Montrer que la matrice A est nilpotente.

CCINP MP

Soit (E, (-, -)) un espace vectoriel euclidien de dimension n > 3.
Soit a et b deux vecteurs unitaires et linéairement indépendants de E.
Soit encore u 'application définie, pour tout x € E, par :

u(z) = (x,a)b + (z,b)a.

1. Montrer que u est un endomorphisme symétrique de E.

2. Déterminer Ker(u).

3. En déduire les valeurs propres et les vecteurs propres de u.
(z.0)-(x,8)

4. Déterminer les extrema de f:z € E\ {0} — EE
x
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Mines-Ponts MP
Soit K un corps et f : M, (K) — K non constante telle que, pour tout (4; B) € M, (K)?,
f(AB) = f(A)f(B). Montrer que les deux affirmations suivantes sont équivalentes :
i) f(4)=0
ii) A ¢ GL,(K)

—

Soit n € N* et K un corps. Montrer que tout hyperplan de M, (K) rencontre G L, (K).

1402 | Mines-Ponts PC 2023

Soit n € N tel que n > 2. Soit A € M,(R) et H € M,(R) la matrice ayant tous ses
coefficients égaux a 1.

Montrer que pour tout ¢t € R, det(A + tH) det(A — tH) < det(A?).

1403 | Centrale PC 2010

Soit B = (ey;...;e,) une base ordonnée de R™.

Soit u = uje; + -+ - + upen, OU U, ..., U, € R,

Trouver une condition nécessaire et suffisante sur les composantes de u dans la base B
pour que le n-uplet (e; + u;...;e, + u) soit une base de R".

X PC 2015

Soit f un endomorphisme de M, (C).
On suppose que pour tout A, B € M,,(C), f(AB) = f(A)f(B).

Montrer que f est soit injectif, soit nul.

1405 | X PC 2020

Soit G’ un sous-ensemble fini de GL,(R), non vide et stable par produit.
1. Montrer que I,, € G. Soit A € G. Montrer que A~! € G.

1y,

Card(G) i

(a) Soit A € G. Montrer que AP = PA et que P est un projecteur.
(b) Déterminer les ensembles G tels que P = I,,.

2. On pose P =

Centrale 2018

Une matrice A € M, (C) est dite a diagonale strictement dominante lorsque :

n

Vi € [[1,77,]], |(lu| > Z|CLU|
=1
7

Montrer que si A est a diagonale strictement dominante, alors A est inversible.
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1407 | X PC 2020

Soit p,n € N* tels que p < n et K un corps. Soit encore A € M, ,(K) et B € My, (K).

On suppose que
I, C
AB= (" :
0 D

1. Calculer D.
2. Calculer BA.

1408 | Mines-Ponts MP /PSI

Quel est le nombre minimal de coefficients a modifier sur une matrice inversible pour
la rendre non inversible ?

1409 | Mines-Ponts

Soit n € N*; P un polynéme non constant de C[X] et A € M, (C) diagonalisable.
Montrer qu’il existe M € M, (C) telle que P(M) = A.

Mines-Ponts MP 2022

Soit A € M,,(C) telle qu’il existe p € N* vérifiant AP = 0.
1. Montrer que A™ = 0.
2. Calculer det(A + I,,).

3. Soit M € M, (C) telle que AM = M A.
Calculer det(A + M).
On pourra commencer par le cas ou M € GL,(C).

4. Le résultat est-il toujours valable si A et M ne commutent pas?

ENS

Soit E un K-espace vectoriel de dimension n et u un endomorphisme de E ayant
n valeurs propres distinctes. Montrer que u admet un nombre fini de sous-espaces
vectoriels stables. Combien y en a-t-il 7 Décrire ces sous-espaces.

[1412] x

Soit E un K-espace vectoriel de dimension n et v un endomorphisme de E nilpotent
d’ordre n. Montrer que u admet exactement n + 1 sous-espaces vectoriels stables, et
que ce sont les Ker(u*) (0 <k < n).

1413 | Mines-Ponts

Soit E un espace vectoriel réel et u un endomorphisme de E tel que u® +u = 0. On
suppose que le rang de u est fini. Montrer que le rang de u est pair.

XENS

Déterminer 'espace tangent a O, (R) en la matrice identité.
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comr

Soit A € M;5(R) diagonalisable telle que dim(Ker(A)) = 2.
aA PA

Soit B =
oi (’yA 0

) avec a + [ =y et «, §,y non nuls.

1. Montrer que xp = X~y4 - X—-54-
2. Démontrer que dim(Ker(B)) = 2dim(Ker(A)).

3. Justifier que pour a = —1, f = 3, la matrice B est diagonalisable, puis la
diagonaliser.

1416 | Mines/Centrale

Soit ® I'endomorphisme de M, (C) défini, pour tout A € M,(C), par ®(A) = AT.
Déterminer det(®) et Tr(P).

ENS PC 2024

Résoudre dans Ms(R) :

s . (11
e ().

Centrale

Soit F un K-espace vectoriel de dimension finie, g un endomorphisme de E de rang 1
et f € GL(E). Montrer que les deux affirmations suivantes sont équivalentes :

i) f+9€ GL(E)
i) Te(go [ ) # -1

1419 | Mines-Ponts MP 2019

Soit n,p € N* et A € M,,»,(R), B € My,,(R).
Montrer que p + rang(/f,, + AB) = n + rang(I, + BA).

Mines-Ponts 2019
Soit E = C*(R,R) et D : E — E défini par D(f) = f'.
Existe-t-il un endomorphisme ¢ de E tel que @?> = D?

1421 | Mines-Ponts PC 2015
Soit «, 5 € R. Pour tout M € M,(R), on pose :

O(M) =aM + BMT.

1. Montrer que ® induit un endomorphisme de M, (R).

2. Calculer le déterminant de ®. En déduire une condition nécessaire et suffisante
pour que ¢ appartienne a GL(M,(R)).

3. Déterminer sous réserve de sens 1.
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1422] x mP

Soit E, F' deux K-espaces vectoriels de dimension finie et f, ¢ deux applications linéaires
de F vers I'. Montrer que les deux affirmations suivantes sont équivalentes :

i) rang(g) < rang(f)

ii) Il existe un automorphisme h de F' et un endomorphisme k de E vérifiant
Iégalité hog= fok.

X PC 2013

Montrer que toute matrice A de M, (R) est somme de deux matrices diagonalisables.

[1424] x po

Soit A = (a;j)1<i j<on € M2, (R) une matrice antisymétrique et A € R.
Montrer que le déterminant de A est égal au déterminant de la matrice (a;; +\)1<i j<2n-

1425 | Mines-Ponts

Soit E un K-espace vectoriel de dimension finie.

1. Soit u, v deux endomorphismes diagonalisables tels que uov = vowu. Démontrer
qu’il existe une base de E dans laquelle les matrices u et v sont simultanément
diagonales.

2. Plus généralement, soit uq,...,u, une famille d’endomorphismes diagonali-
sables de E commutant deux a deux, m > 1. Montrer qu’il existe une base
de F diagonalisant tous les w;.

1426 | Mines-Ponts PC 2015

Soit n un entier naturel supérieur ou égal a 2.

Soit E un espace vectoriel réel de dimension n et v un endomorphisme de E tel que
2

1. Montrer que n est pair.

2. Montrer que u ne laisse stable aucun hyperplan de F.

Mines
Soit n € N* et A € M,(R) vérifiant A* + A3 + 242+ A+ I, = 0.
Montrer que n est pair et que Tr(A) € Z_.

X-ENS

Soit n € N*, K un corps et A € M, (K) une matrice diagonalisable.
On note Ay, ..., A, les valeurs propres de A et nq,...,n, leur multiplicité.

1. Calculer la dimension de K[A] et celle du commutant de A noté C'(A).

2. Montrer que dim(C(A)) = n si et seulement si 7 = n si et seulement si
C(A) = K[A].

X-ENS

Soit K un corps et E un K-espace vectoriel de dimension finie.
Montrer que 'algebre des endomorphismes de E est simple.
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CCINP PSI 2022

Soit A € M, (R) telle que A(ATA)? = I,,.
1. Montrer que A est inversible.
2. Montrer que A est symétrique.

3. Montrer que A = I,,.

1431 | Mines-Télécom MP

1. Soit A € M,(C) non diagonalisable. Montrer qu'il existe @« € C, N € M,(C)
non nulle, nilpotente et vérifiant A = aly + N.

2. Soit n € N. Résoudre I'équation M" = (? _01>

X par

Soit n € N* et B = (¢;)1<i<n la base canonique de R™. Soit v un endomorphisme de R™
tel que u(e;) = e;41 sii € [1;n — 1] et u(e,) = 0.
Trouver les sous-espaces vectoriels de R™ stables par wu.

Mines-Ponts PSI 2018

Soit P € C[X] de degré n € N. Soit (tg;t1;...;t,) un (n + 1)-uplet de nombres com-
plexes deux a deux distincts. Montrer que (P(X + to); P(X +t1);...; P(X + t,)) est
une base de C,,[X].

1434 | Mines-Ponts

Soit un polynoéme P de R[X], P = ag + a1 X + -+ + a,X™. Soit n + 1 nombres
réels distincts ag, aq,...,a,. Donner une condition nécessaire et suffisante pour que
(P(apX); P(ar X);...; P(a, X)) soit une base de R, [X].

1435 | Mines-Télécom MP 2021

Soit ||-|| une norme sur M, (C) telle que, pour tout A et B appartenant a M, (C),
IABI[ < [l BI|
+00 pAn
A

1. Montrer que la série Z — converge vers une matrice que l'on notera e”.
n!
n=0

2. Montrer que det(e?) = ™),

X ESPCI 2024

Montrer que I'espace vectoriel

{f € D'(J0;4+oo,R) | Vo > 0, f(x) = xf’ ()}

est de dimension infinie.
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1437 | Mines-Ponts PSI 2023

Soit @ €]0;7[. On note E l’ensemble des suites réelles (u,)nen vérifiant, pour tout
n €N,
Upro — 2c08(0)upq + u, = 0.
1. Montrer que E est un espace vectoriel réel. Donner une base.
2. Soit p € N*. Pour quelles valeurs de 6 existe-t-il une suite non nulle de E telle
que Uy = Upp1 =07
3. Soit A € M,(R) telle que pour tout (i;5) € {1;...;p}%, aij = 0ji—jj.1-
Déterminer les éléments propres de A. La matrice A est-elle diagonalisable ?

ENS PC 2019

Résoudre dans M, (R) I'équation e = —1,,.

[1439] x

1. Soit ay,...,a, des réels distincts deux a deux et ¢i,...,c, des réels non tous
nuls. On pose f(t) = ¢e™" + - + ¢,e™'. Montrer que f admet au plus p — 1
7€ros.

2. Soit a; < --- < apet by <--- < b, des réels.
— aib-
On pose M = (e ]>1<i,jgp' Montrer que det(M) > 0.

X-ENS

Pour tout A € M, (C), on définit la suite (Ay)xr>o en posant Ay = A et pour tout k > 1 :
1
A=A (Akl _ kTr(Akl)In> .

Montrer que A, = 0.

1441 | Centrale MP 2007

Soit K un corps, n € N* et A € M,,(K) une matrice de rang 1.

1. Montrer qu’un polynéme de degré inférieur ou égal a deux annule la matrice A.
2. En déduire que si Tr(A) # 0, alors A est diagonalisable. Que dire si Tr(A) =07

3. Montrer que la matrice A = <§)1< _
\Z7J\n

propres et ses vecteurs propres.

est diagonalisable et trouver ses valeurs

1442] x

Soit E une espace vectoriel complexe de dimension supérieure ou égale a 1, et u un
endomorphisme de E. Montrer I'existence d’un unique couple (d;n) d’endomorphismes
de E tel que :

e u=d+n,
e d et n commutent,

o d est diagonalisable et n est nilpotent.

Vérifier en outre que d et n sont des polynémes en wu.
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ENS Ulm MP

Soit A = (a;;) € M,(R) une matrice stochastique. Soit A une valeur propre de A de
module 1 et X = (z1;...;x,) € C" un vecteur propre associé.

1. Si x; est une composante de X de module maximal, montrer que Az; est encore
une composante de X de module maximal.

2. En déduire que A est une racine m®™® de 'unité avec m < n.

3. On suppose que pour tout i € [1;n], a; # 0. Montrer que la seule valeur propre
de A de module 1 est 1.

1444 | Mines-Ponts PSI

Soit la matrice complexe

0 b
b e eee i b a

Pour quelles valeurs de a et b la matrice A est-elle inversible ?

1445 | X MP 2022

Soit ® I’endomorphisme « moyenne de Cesaro » de CN défini par :

®((tn ) =

u0+---+un)
n—l—l nEN.

Déterminer le spectre, les sous-espaces propres et ’expression des vecteurs propres de
I’endomorphisme ®.

X MP 2006
Soit A € M,(C). On pose sim(A) = {P7'AP | P € GL,(C)}.

Montrer que A est nilpotente si et seulement si 0 € sim(A).

Mines

Soit n > 2 et A € M,(C). On pose P4(X) = det(X I, — A) et on note :

n

Pa(X) =Y (—1)fer(A) X"

k=0
1. Rappeler l'expression de x4 en fonction de Tr(A) et det(A).
2. Que valent co(A) et ¢1(A)?

_ Tr(A)? — Tr(A?)

3. Montrer que c3(A) = 5 .
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Mines-Ponts

Cas particulier :

1 0
Soit A= [1| et B=[1]| appartenant a M3y (R).
0 1

Soit encore M = ABT + BAT.
1. Montrer que M est diagonalisable.

2. Calculer les valeurs propres de M.

3. Déterminer le sous-espace propre associé a la valeur propre 0 et montrer qu’il est
orthogonal & Vect({A; B}). (L’espace est muni du produit scalaire canonique.)

Cas général :
Soit A et B appartenant a M, (R) linéairement indépendants.
1. Montrer que M = ABT 4+ BAT est diagonalisable.

2. Montrer que 0 est une valeur propre de M et déterminer le sous-espace propre
associé.

3. Donner une condition (suffisante) pour que A+ B soit un vecteur propre de M.

ENS MP 2023
Soit A € M,,(C). On pose sim(A) = {P~'AP | P € GL,(C)}.
Montrer que A est diagonalisable si et seulement si sim(A) est fermée.

cor vr

1. Soit P(X) = X™— X +1. Montrer que le polynéme P admet n racines complexes

distinctes zq,..., z,.
l+z 1 - 1
2. Soit A = 1
: . . 1
1 )

Montrer que det(A) =2 (—1)".

1451 | Mines-Ponts MP

Soit (€;)ief1;...;ny une famille libre dans un espace préhilbertien (£, (-,-)). On suppose

que :
n

Vo € E> ”xHQ = Z<x7€i>2‘

i=1
1. Montrer que pour tout i € {1;...;n}, |le;| < 1.
2. Montrer que pour tout i € {1;...;n}, |le] = 1.

3. En déduire que (e;)icq1;..;n} €st une base orthonormée de E.
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1452 | Centrale PC 2024

Soit E I'ensemble des fonctions continues de [0;1] dans R.
Pour tout « € [0; 1], on définit G : E — F par :

G(f)(a) = [ min(a:0)f (1) dt.

1. Montrer que G est bien défini et est un endomorphisme de E.
2. Déterminer le noyau et 'image de G.

3. Déterminer les éléments propres de G.

cor vr

On munit R™ de son produit scalaire canonique (-, -).
Soit f un endomorphisme symétrique de R™ a valeurs propres strictement positives.

1. Montrer que pour tout x € R™\ {0}, (f(z),z) > 0.
2. Soit u € R™. On considere :
fORY — R

(a) Montrer que les dérivées partielles de g existent, et les calculer.

N | =

(b) Montrer que g admet un unique point critique z.

(c) Montrer que g admet un minimum en z.

1454 | Mines-Ponts PC 2016

Soit (E, (-, -)) un espace préhilbertien réel et soit f un endomorphisme de E tel que

V(wiy) € E%, (z,y) =0 = (f(2), f(y)) =0.

Montrer qu’il existe k € R tel que, pour tout x € E, || f(z)| = k||z||.

1455 | Centrale MP 2019

Pour tout n € N*, on pose £ = M, (C).
1. Soit r € [1;n]. Calculer com(diag(1,...,1,0,...,0)).
———
2. Montrer que pour tout (4; B) € E?, com(AB) = com(A)com(B).
3. En déduire rang(com(A)) en fonction de rang(A).
4. Soit ¢ : E — E, A+ rang(A).

L’application ¢ est-elle injective ? surjective ? Déterminer Im(¢p).
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CCINP PC 2021

1
On munit R[X] du produit scalaire défini par (P, Q) = / P(t)Q(t) dt.
0

1. Soit n € N. Calculer la norme de P, = y/n(1 — X)™.

2. Montrer qu’il n’existe pas de polynéome T € R[X] tel que, pour tout polynéme
P e R[X], (T, P) = P(0).

CCP MP

1 a ... a/
10 --- 0
Soitae R,n>3et M,=1. . | € M,(R).
10 --- 0
1. Déterminer le rang de M,. Donner une valeur propre évidente de M, et sa
multiplicité.
2. Soit M € M,(C). On note \j,...,\, ses valeurs propres comptées avec leur
multiplicité.
Exprimer Y _ A, et > A{ en fonction de M.
k=1 k=1

3. Donner une condition nécessaire et suffisante sur a pour que M, soit diagonali-
sable dans M, (R).

—

1. Soit z1,...,x, € C. Calculer det ((x}’l)lgi,jgn).

2. Soit A € M,(K) (avec K = R ou K = C) telle que Tr(A*) =0 pour k = 1,...,n.
Montrer que A est nilpotente.

CCINP MP 2023

0 -~ 01
Soitn>2et A= |" - € M,(R).
0 --- 0 1
1 .. 1 1

1. Diagonaliser la matrice A.

2. Déterminer le polynéme caractéristique de A.

1460 | Mines-Télécom PSI 2022

a; ag - Ay,
a 0 - 0

Soitn>2et A= .| € M,(R).
a, 0 -+ 0

1. Diagonaliser la matrice A.

2. Déterminer le polynéme caractéristique de A.
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[1461] x

Trouver une base du C-espace vectoriel des suites complexes périodiques.

1462 x mp

Soit £ = C([0;1],R) muni de la norme |[|-||o. On dit qu'un endomorphisme u de E est
un opérateur positif (ce que 'on note u > 0), si u(f) = 0 pour tout f > 0.

1. Soit u un endomorphisme positif de £. Montrer que u est continu.

2. Soit f € E et ¢ € RY.. Montrer que :
Sc € RY, V(wy) € 0317, [£(y) — F(@)] < &+ cly — 2)°.

3. (Théoréme de Korovkin)
Pour tout € N, on note ej, I'élément de E défini par ey, : x — z*.
Soit (uy,)nen une suite d’opérateurs positifs de E.
On suppose que pour k € {0;1;2}, la suite de fonctions (u,(ex))nen converge
vers e dans (E, ||-|]).
Montrer que pour tout f € E, la suite de fonctions (u,(f))nen converge unifor-
mément vers f.

—

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E. Montrer
que E = Im(f) @ Ker(f) si et seulement si Im(f) = Im(f?).

1464 | Centrale-Supélec PC 2023

Soit n € N* et A € M, (R) une matrice nilpotente.
1. Soit A une valeur propre de A. Montrer que A = 0.

2. On suppose que A commute avec A”. Montrer que A est la matrice nulle.

1465 | Mines-Ponts

Soit n € N* et A € M,(R) une matrice symétrique. On dit que A est positive (resp.
définie positive) si

VX € M, 1(R)\ {0}, XTAX >0 (resp. XTAX > 0)

1. Montrer que A est positive si et seulement si toutes ses valeurs propres sont
positives.

2. Montrer que A est définie positive si et seulement si toutes ses valeurs propres
sont strictement positives.

X ESPCI

Soit f et g deux endomorphismes d’un espace vectoriel E' de dimension finie. Montrer
que les deux affirmations suivantes sont équivalentes :

i) rang(f) + rang(g) = rang(f + g)
ii) Im(f) NIm(g) = {0g} et Ker(f) + Ker(g) = F
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CCINP 2023

Soit E un espace vectoriel réel de dimension finie. Trouver des endomorphismes diago-
nalisables f de E vérifiant 3 — f2 + f — Idg = 0.

X-ENS

Déterminer les matrices de M, (R) qui commutent avec toutes les matrices de permu-
tation.

X BSPOT 2029
Soit n > 3 un naturel impair et A € M, (Z). Pour (o; ) € Z?, on pose M = a A+ BAT.
Montrer que det(M) est un multiple de o + f.

1470 | Mines

Soit (a;b) € R? et

>
s (=

(=
St o

S o

S

R
S

Diagonaliser la matrice A.

CCINP PC 2023

Soit E un espace vectoriel réel ou complexe de dimension finie et v un endomorphisme
de E vérifiant u® = u?. Montrer que u est diagonalisable si et seulement si u est un
projecteur.

CCP MP

Soit £ un espace euclidien muni du produit scalaire (-, -) de norme associée |[|-]|.
Soit f un endomorphisme de E tel que, pour tout = € E, || f(z)|| < ||z

Soit B une base de E et A = (f)5.
Soit g 'endomorphisme de E tel que AT = (g)5.

1. (a) Montrer que :
V(zsy) € B (f(2),y) = (2, 9(y)).
(b) En utilisant I'inégalité de Cauchy-Schwarz, montrer que pour tout =z € E,
lg(@)[| < [l]]-
2. Soity € F.
(a) Si f(y) =y, montrer que ||g(y) — ylI* = lg(W)II* — llyl*.
(b) En déduire que f(y) = y si et seulement si g(y) = y.
3. (a) Montrer que Ker(f) = Im(g)*.
(b) Montrer que F = Ker(f — Idg) B Im(f — Idg).

Mines MP 2024
Calculer dimg (Vect(Us)), ou Us = {e%

0<k<4}




1474 | Mines-Télécom MP 2023
Soit f un endomorphisme de R* tel que f o f = 0. Montrer que rang(f) < 2.

1475 | Mines

Soit E un K-espace vectoriel de dimension impaire. Soit p et ¢ deux projecteurs de F.
Montrer que p et ¢ ont une droite propre commune.

CCINP MP 2022

Soit n € N*, ag,...,a,_1 appartenant a C et
ag ay Qp—1
. . Qp-1 Qo
]\4((107 ceey an_l) =
ai
ax an-1 Qg

On pose J = M(0;1;0;...;0).
1. Déterminer les valeurs propres et les vecteurs propres de .J. Montrer que J est

diagonalisable.

2. Montrer que M(ao; . ..;a,—1) est un polynéme en J. La matrice M (ao;...;an-1)
est-elle diagonalisable ?

3. Soit T = {M(ag;...;an_1) | (ag;...;a,_1) € C"}. Montrer que l’ensemble T
est une sous-algebre de M, (C). Quelle est sa dimension ?

1477 | X PC 2020

Calculer le déterminant de la matrice

0 1 - 1
1
M = € M,(R)
S
1 1 0

Mines-Ponts

Soit f un endomorphisme dun espace vectoriel complexe de dimension finie. On sup-
pose que f? est diagonalisable. Montrer que f est diagonalisable si et seulement si

Ker(f) = Ker(f?).

1479 | Mines-Télécom MP

Soit A € M,(R) antisymétrique et B € M, (R) symétrique telles que AB = BA.
La norme euclidienne sur M, «;(R) est notée ||-||.

1. Soit X € M, »;(R). Montrer que (AX)TBX = 0, puis que :
I(A+ B)X][| = [[(A-B)X||.

Pour la suite, on suppose en plus que B € GL,(R).
2. Montrer que A + B et A — B sont inversibles.
3. Montrer que (A + B)(A — B)™! est orthogonale.
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1480 | Mines-Télécom MP

Soit f un endomorphisme bijectif d’un espace euclidien E tel que, pour tout (x;y) € E?,

1. Montrer que s = f o f est symétrique.

2. Soit a une valeur propre de s et V, I’espace propre associé.
(a) Soit x € V, \ {Og}. Montrer que (s(z),z) = al|z||* = —|| f(x)]].
(b) En déduire que a < 0.
(c) Soit F' = Vect({z; f(x)}). Montrer que F et F sont stables par f.

3. Montrer que dim(F') = 2.

-

Soit E un espace euclidien de dimension n € N* et u un vecteur non nul de £. On
pose H = ut. Soit encore s la réflexion (la symétrie orthogonale) par rapport a H et

feO(E).
1. Montrer que f o so f~! est une symétrie, et déterminer ses espaces propres
caractéristiques.

2. Montrer que f et s commutent si et seulement si v est un vecteur propre de f.

3. En déduire I'ensemble C = {f € O(F) | Vg € O(E), fog=go f}.

-

Soit E un K-espace vectoriel de dimension n. Soit f un endomorphisme de £ admettant
n valeurs propres distinctes, et ¢ un endomorphisme de E tel que fog=go f.

1. Montrer que tout vecteur propre de f est aussi vecteur propre de g.
2. Montrer que f et g sont diagonalisables dans une méme base de vecteurs propres.

3. Montrer qu’il existe un unique polynéme P de degré au plus n — 1 tel que

P(f)=g.

cop

Soit n € N*. Soit f un endomorphisme d’un espace vectoriel ' de dimension n et soit
B = {e1;...;e,} une base de E. On suppose que f(e1) = f(ea) = ... = f(e,) = v, ou
v est un vecteur donné de E.

1. Donner le rang de f.

2. L’endomorphisme f est-il diagonalisable ?

3. Avec les données de ’énoncé, exprimer Tr(f).

Centrale

Trouver les matrices M € M,(R) telles que MM*M = I,.

1485 | Mines-Ponts

Soit A et B deux matrices appartenant a M, (C) n’ayant pas de valeur propre commune.
1. Montrer que y4(B) est inversible.
2. Soit Y € M, (C). Montrer qu'il existe X € M, (C) telle que AX — XB =Y.
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1486 | Mines PSI 2016

Soit n € N* et F, G deux sous-espaces vectoriels de R".

1. Montrer qu’il existe un endomorphisme u de R™ tel que :
Im(u) = F et Ker(u) = G <= dim(F) +dim(G) =n

2. Dans cette question n = 3, F' est le plan vectoriel d’équation x +y 4+ z = 0 et
G = Vect({(1; —1;0)}). Déterminer un endomorphisme u dont l'image est F' et
le noyau est G.

1487 | X PC 2019

Soit £ un K-espace vectoriel de dimension finie. Soit u un endomorphisme de E.
Montrer que les deux affirmations suivantes sont équivalentes :

i) Ker(u) = Im(u)
ii) Il existe une base B de E telle que
O, I
(U)B — ( p P)
y Op Op

ou O, désigne la matrice nulle de M, (K).

ENS PSI 2021

Soit n € N* et 6 €]0;x[. On considére les deux matrices suivantes appartenant a
M,(R) :
0 1

Lo 0

A= E ‘ et By =2cos(0)I, + A.

0

1 0
i 1)6
1. Montrer que det(By) = SIH(S(Z(Z)))
1

2. En déduire que la matrice A admet n valeurs propres distinctes. Calculer ces
valeurs propres.

ENS MP 2023

Soit n € N impair et M € M,(R) telle que, pour toute matrice A € M, (R) antisymé-
trique, det(A + M) = 0. Montrer que M est antisymétrique.

X PC 2012

Soit (g )1<k<n des nombres complexes distincts et pour tout k € [1;n], fi : x — e***,
Montrer que (fx)1<r<n st libre dans CE.
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X PC 2012

Soit K un corps et A € GL,(K). Montrer qu’il existe p € N et ay, ..., a, appartenant
a K tels que
AV =aol, + a1 A+ -+ a,AP.

Autrement dit, montrer que A~! est un polynéme en A.

1492 | X PC 2014

Soit K un corps et F un K-espace vectoriel de dimension finie. Soit u et v deux projec-
teurs de £. On suppose que Idgy —u — v est inversible. Montrer que rang(u) = rang(v).

X PC 2019

Soit A une matrice de M, (R) dont tous les coefficients sont égaux.
1. La matrice A est-elle diagonalisable ?

2. Sous quelle condition la suite (AP),en converge-t-elle ?

X PC 2019

Soit ¢ € R* et

A@):<qq€1)q@21v-

1. Soit p et ¢ deux nombres réels non nuls et distincts. Les matrices A(p) et A(q)
sont-elles semblables ?

2. Méme question pour les matrices B(q) = ¢ 2A(q).

3. On consideére les matrices C' € My(R) telles que C? = (A(q))?. Combien parmi
celles-ci ne sont pas semblables a A(q) 7

X PC 2019

Soit E un espace vectoriel complexe de dimension finie et f, g deux endomorphismes
de E. On suppose qu’il existe a, § € C tels que

feg—gof=af+py

Montrer que f et g ont un vecteur propre commun.

X PC 2019

Soit u un endomorphisme de R? tel que u® = 0 et u? soit non nul. Trouver 1’ensemble
des endomorphismes de R?® qui commutent avec .

CCP 2015

Soit a € R* et

1 a a®> a
a1 a a?

A= -2 -1
a a 1 a
a? a? al! 1

Sans calcul, déterminer les valeurs propres et les sous-espaces propres de A. La matrice
A est-elle diagonalisable ?
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CCP 2015

Soit A € M, (R) vérifiant 243 +3A? +6A — I,, = 0. Justifier les propositions suivantes :
1. A est inversible;
2. A est diagonalisable dans M,,(C);
3. det(A) >0

cop 2013
Soit A € M3(R) telle que A%+ A = 0.
Que peut-on dire du rang de A?

CCP 2015

Déterminer toutes les matrices A € M, (C), de trace égale a 7 et vérifiant I'égalité

A2 — 542+ 64 =0.

1501 | Mines-Ponts 2015

Soit £ un C-espace vectoriel de dimension finie. Soit f un endomorphisme de F sans
point fixe autre que le vecteur nul, tel que f? — 2f est diagonalisable. Montrer que f
est diagonalisable.

1502 | X-ENS 2015

1
Trouver toutes les racines carrées de A = <O g)

Centrale 2015

Résoudre dans M,(C) I'équation M? + M = (; ?) :

1504 | Mines 2015

1 -2 -3 -6
. 0O 3 6 9
Soit A = 7 a3 13 o€ M, (R)
4 2 8 6
1 000
01 00
Trouver P,Q € GL4(R) telles que PAQ = 00 0 0
0000
Mines 2015
1 a b c
A . : 0100 . .
A quelle(s) condition(s) la matrice A = 012 0|€ M,4(R) est-elle diagonalisable ?
010 2
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1506 | Mines 2015

Donner une condition sur z € C pour que la matrice A =

[ )
— O w

z
z | soit diagonalisable.
0

cCP 2015

. 10 a b .
Soit A = (O 2) et M = (c d) deux matrices de Ms(R).

1. Calculer AM — M A.
2. L’endomorphisme f : M — AM — M A est-il diagonalisable dans Ms(R)?

CCP 2015

Montrer qu’une matrice nilpotente de M, (C) a un indice de nilpotence inférieur ou
égal a n. En déduire qu’il n’existe pas de matrice A € M,,(C) telle que

0
0
-2

A? =

o w O
o O O

cop 2015
Soit A € M,(R) telle que A*> = A? — A + I,,. Montrer que Tr(A) = dim(E,), ot E; est
le sous-espace propre de A associé a la valeur propre 1.

CCP 2015

On considére l'application f qui, & tout polynéme de R3[X], fait correspondre le reste
de la division euclidienne de X2 P(X) par X*—1. Montrer que f est un endomorphisme
de R3[X]. Est-il diagonalisable ? injectif ?

Mines-Télécom MP 2024
Soit A € M,,(C) dont le polynéme caractéristique est scindé simple.
1. Montrer que la famille {I,,; A;...; A"} est libre.
2. Soit B € M,(C) telle que AB = BA. Montrer que B est une combinaison

linéaire des matrices I,,, A, ..., A" L.
cor 2013
3 =3 2
Soit A=|[—1 5 —2| appartenant a M3(R).
-1 3 0

1. La matrice A est-elle diagonalisable ?

2. Montrer qu’il existe une matrice R telle que R* = A. (On ne demande pas de
calculer R.)

3. Montrer que toute matrice R appartenant a M3(R) telle que A = R? est diago-
nalisable.
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1513 | Mines 2015

Soit E 1'espace vectoriel des fonctions de classe C! sur l'intervalle [—1;1], a valeurs
réelles. Montrer que 1’application

¢ : ExE — R
(fi9) — FO)g(0)+ [ (gt

définit un produit scalaire sur E. Trouver une base orthonormée du sous-espace vecto-

riel F = {P € Ry[X] | P(0) = 0}.

CCP 2015

On considere 'endomorphisme u de M, (R) défini par :
1
VMeMw®wm@:§@w—Mﬁ

1. Rechercher les éléments propres de u.
2. L’endomorphisme u est-il diagonalisable ?
3. Calculer Tr(u) et det(u).

Centrale 2015

Soit F' et G deux sous-espaces vectoriels supplémentaires d’un espace euclidien E. Soit
f:F —Getg:G— F des applications linéaires telles que :

V(z;y) € F x G, (f(x),y) = (z,9(y))-

1. Montrer que Ker(f) =Im(g)* N F.
2. Montrer que F' = Ker(f) B Im(g).
3. Montrer que f est injective si et seulement si g est surjective.

4. Montrer que g est injective si et seulement si f est surjective.

Centrale 2015

Soit (a;b) € R2 Trouver, sans calculer le polynome caractéristique, les valeurs propres
et les sous-espaces propres de la matrice

a’ ab ab b?
ab a®> b ab
ab b a® ab

b> ab ab a?

A:

1517 | Centrale 2015
a b c

Soit (a;b;c) ER¥et A=|c a b
b ¢ a

Montrer que A est une matrice de rotation si et seulement si il existe h € ]O ; 2%[ tel

que a,b et ¢ soient les racines du polyndéme X2 — X2 + h.
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Centrale 2015

Soit A € GL,(R) et B = A A7
oi n et =, 4
A quelle condition sur A, la matrice B est-elle diagonalisable ?

On pourra commencer par étudier le cas n = 1.

cCP 2015

Soit M € M;3(R) telle que M3 = I3 et M # I3. Soit encore A =

1
0] € M;3(R).

O = O
_ o O
()

On cherche a démontrer que M est semblable a A.

1. Montrer que A est diagonalisable dans M3(C) et donner son spectre. La matrice
A est-elle diagonalisable dans M3(R) ?

2. Montrer que M est diagonalisable dans M3(C) et que Spe(M) C {1;j; 5%}
Montrer que j et j2 ont la méme multiplicité algébrique.
En déduire les valeurs propres de M.

3. Montrer que M est semblable a A dans M;5(C), puis dans M3(R).

1520 | Petites Mines 2015

Soit E' un espace vectoriel euclidien orienté de dimension 3 et B = (e1; e9; e3) une base
orthonormée de E. On considere 'endomorphisme f dont la matrice dans la base B est

L1 -4 8
A=g|4 —7 —4
8 4 1

1. Montrer que f est un automorphisme orthogonal de E.

2. Déterminer la nature de f et ses caractéristiques géométriques.

1521 | Mines-Ponts 2015

On munit l'espace vectoriel R, [X] du produit scalaire

1

(P;Q) — (P,Q) = /0 P(H)Q(t) dt.

Montrer que 'application définie par :
1
VP € R,[X],Vz € R, u(P)(z) = / (t +2)"P(t) dt
0

est un endomorphisme de R, [X], et qu’il est symétrique.

Centrale 2015

On considere les endomorphismes de C" vérifiant :
2 _ .2 _
uw=v"=Iden et uwov=-—-vou.

Montrer qu’il en existe une infinité si n = 4 et aucun si n = 3.
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1523 | Mines-Ponts

Soit A € M, (R) orthogonale.
1. Montrer que Y |ay| < nv/n.

1<i,j<n

Z Qg

1<i,5<n

2. Montrer que < n.

X-ENS PC 2019

Soit E un espace vectoriel complexe de dimension n et f un endomorphisme diagona-
lisable de E. Montrer qu’il existe un élément v de E tel que {v; f(v);...; f* 1 (v)} soit
une base si et seulement si f possede n valeurs propres distinctes.

1525 | X-ENS 2015

Soit (Uy; Us;...;U,) une base de R” muni de son produit scalaire canonique. Montrer
que la matrice A = ((U;, U;))1<i j<n est diagonalisable, et que ses valeurs propres sont
strictement positives.

Centrale 2015

Soit K un corps et A € M,,(K). On considére I'application :

f o My,(K) —  M,(K)
M —— AM - MA
1. Montrer que f est un endomorphisme de M, (K).
2. Montrer que si A est nilpotente, f 'est aussi.

3. Montrer que si A est diagonalisable, f 1'est aussi.

cop mp

Soit n un entier naturel tel que n > 2. Soit F l'espace vectoriel des polynémes a
coefficients dans K (K = R ou K = C) de degré inférieur ou égal a n. Pour tout
P € E,onpose f(P)=P— P

1. Démontrer que f est bijectif de deux manieres :

(a) sans utiliser de matrice de f;
(b) en utilisant une matrice de f.

2. Soit @ € E. Trouver P tel que f(P) = Q.
Indication : si P € E, quel est le polyndéme P+ ?

3. L’endomorphisme f est-il diagonalisable ?

X MP 2021

Déterminer les matrices de M, (K) semblables uniquement a elles-mémes.
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o Mp
0 01
Soit A=11 0 0] € M3(R).
010
1. Déterminer les valeurs propres et les vecteurs propres de A. La matrice A est-elle
diagonalisable 7
2. Soit (a;b;c) € C3 et B = alz + bA + cA? ou I3 désigne la matrice identité
d’ordre 3. Déduire de la question 1 les éléments propres de B.

coP MP

Soit E un espace euclidien.
1. Soit A un sous-espace vectoriel de F.
Démontrer que (Al)L = A.
2. Soit F' et G deux sous-espaces vectoriels de E.
(a) Démontrer que (F + G)t = F- NGt
(b) Démontrer que (FNG)*+ = F++ G+

cop mp

Soit un entier n > 1. On considere la matrice carrée d’ordre n a coeflicients réels :

2 -1 0 - 0
-1 2 -1

An=10 -1 0

L2 1

0 0 -1 2

Pour tout n > 1, on désigne par D,, le déterminant de A,,.
1. Démontrer que D, o = 2D, 1 — D,,.
2. Déterminer D,, en fonction de n.

3. Justifier que la matrice A, est diagonalisable. Le nombre réel 0 est-il valeur
propre de la matrice A, 7

1532 | ccp MP
2 1
On pose A = 4 _1)€ M(R).
1. Déterminer les valeurs propres et les vecteurs propres de A.
2. Déterminer toutes les matrices qui commutent avec la matrice (3 _02> .
En déduire que 'ensemble des matrices qui commutent avec A est Vect({Iz; A}).
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cor vr

Soit E un espace préhilbertien et F' un sous-espace vectoriel de E de dimension finie
n > 0. On admet que, pour tout x € FE, il existe un vecteur unique yq tel que x — yq
soit orthogonal & F' et que la distance de x a F soit égale a ||z — yo||.

a b / al b/ / !/ / / !
Pour A = . d et A\ = ood , on pose (A, A’") = aa’ + bV + cc' + dd'.

1. Démontrer que (-, -) est un produit scalaire sur My(R).

1

2. Calculer la distance de la matrice A = (_ 1 9

> au sous-espace vectoriel F' des

matrices triangulaires supérieures.

X MP 2021

Soit M € M,(C) dont toute valeur propre est de module strictement inférieur a 1.
Montrer que la suite (M*);~q converge vers 0.

o Mp

1. On considére la matrice A = | 0

(a) Justifier, sans calcul, que A est diagonalisable.
(b) Déterminer les valeurs propres de A puis une base de vecteurs propres asso-
ciés.

2. On considere le systeme différentiel

r=x+ 2z
v =y :
2 =2x+z

x,1, z désignant trois fonctions de la variable ¢, dérivables sur R.
En utilisant la question 1 et en le justifiant, résoudre ce systeme.

o Mp

On considere la matrice A = <_11 _34>

1. Démontrer que A n’est pas diagonalisable.

2. On note f 'endomorphisme de R? canoniquement associé & A. Trouver une base

(v1;v9) de R? dans laquelle la matrice de f est de la forme (g l;)

On donnera explicitement les valeurs de a, b et c.

3. En déduire la résolution du systeme différentiel

¥ =—x—4y
y' =x+3y
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cor vr

1. Soit E' un K-espace vectoriel (K =R ou K = C).
Soit v un endomorphisme de E et P € K[X].
Prouver que si P annule u, alors toute valeur propre de u est une racine de P.

2. Soit n € N tel que n > 2. On pose E = M, (R).
Soit A = (aij)1<ij<n la matrice de E définie par

0 sit=y
Qjj = .. .
1 sit#)
Soit u 'endomorphisme de E défini par :
VM € E, u(M) =M + Tr(M)A.

(a) Prouver que le polynéme X? — 2X + 1 est annulateur de w.
(b) L’endomorphisme u est-il diagonalisable ?

Justifier votre réponse en utilisant deux méthodes (I'une avec, 'autre sans
'aide de la question 1).

o MP

On note ¢? I'ensemble des suites x = (2, )nen de nombres réels telles que la série Z ZU?L
converge.

1. (a) Démontrer que, pour & = (Z,)nen € €% et Yy = (Yn)nen € (2, la série > z,y,
converge.

+oo
On pose alors (z,y) = > Tnyp.
n=0

(b) Démontrer que % est un sous-espace vectoriel de 'espace vectoriel des suites
de nombres réels.

Dans la suite de I'exercice, on admet que (-, -) est un produit scalaire dans ¢2.
On suppose que £? est muni de ce produit scalaire et de la norme euclidienne
associée.

2. Soit p € N. Pour tout = (,,)nen € £, on pose ¢(z) = x,.
Démontrer que ¢ est un application linéaire et continue de ¢? dans R.

3. On considere I'ensemble F' des suites réelles presque nulles, c’est-a-dire 1’en-

semble des suites réelles dont tous les termes sont nuls sauf peut-étre un nombre
fini de termes.

(a) Déterminer F*.

(b) Comparer F et (F4)".

1539 | Mines 2015

Rechercher les matrices M € M;3(R), de trace nulle, telles que M? + M7T = I3.
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cor vr

Soit F un espace vectoriel réel ou complexe.
Soit f un endomorphisme de E tel que f? — f — 2Id = 0.

1. Prouver que f est bijectif et exprimer f~! en fonction de f.
2. Prouver que E = Ker(f + Id) & Ker(f — 2Id) :

(a) en utilisant le lemme des noyaux
(b) sans utiliser le lemme des noyaux.

3. Dans cette question, on suppose que E est de dimension finie.
Prouver que Im(f + Id) = Ker(f — 2Id).

o Mp

Soit E un espace vectoriel muni d’un produit scalaire noté (-, ).
On pose, pour tout z € E, ||z|| = /(z,x).

1. (a) Enoncer et démontrer I'inégalité de Cauchy-Schwarz.
(b) Dans quel cas a-t-on I’égalité ? Le démontrer.

2. Soit E={f € C([a;b],R) |Vz € [a;b] f(x) > 0}.
b b1 ‘
Prouver que ’ensemble { /a f(t)dt - /a mdt ’ fek } admet une borne in-

férieure m et déterminer la valeur de m.

cor vr

Soit u et v deux endomorphismes d’un espace vectoriel réel E.

1. Soit A un réel non nul. Prouver que si A est valeur propre de u o v, alors \ est
valeur propre de v o u.

2. On considere, sur E = R[X], les endomorphismes u et v définis par
X
u:Pl—>/ P et v:P+— P
1

Déterminer Ker(u o v) et Ker(v o u). Le résultat de la question 1 reste-t-il vrai
pour A =07

3. Si E est de dimension finie, démontrer que le résultat de la premiere question
reste vrai pour A = 0.

cor wp
1. Soit n e N*, P e R,[X] et a € R.

(a) Donner sans démonstration, en utilisant la formule de Taylor, la décompo-
sition de P(X) dans la base (1; X —a, (X —a)?...; (X —a)").

(b) Soit r € N*. En déduire que :
le nombre a est une racine de P d’ordre de multiplicité r si et seulement si
P")(a) # 0 et pour tout k € [0;7 — 1], P®(a) = 0.

(c) Déterminer deux réels a et b pour que 1 soit racine double du polynéme
P = X5+ aX?+ bX et factoriser alors ce polynome dans R[X].
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cor vr

Soit a un nombre complexe. On note E I’ensemble des suites a valeurs complexes telles
que :
Vn € N, Uy = 20,41 + 4(ia — 1)u, avec (ug;u1) € C%
1. (a) Prouver que E est un sous-espace vectoriel de I’ensemble des suites a valeurs
complexes.

(b) Déterminer, en le justifiant, la dimension de E.

2. Dans cette question, on considere la suite de F définie par ug = 1 et u; = 1.

Exprimer, pour tout entier naturel n, le nombre complexe u,, en fonction de n.

CCP MP
1 -1 1

Soit la matrice A=|-1 1 -1
1 -1 1

1. Démontrer que A est diagonalisable de quatre manieres :
(a) sans calcul,
(b) en calculant directement le déterminant det(Al3 — A), ou I3 est la matrice
identité d’ordre 3, et en déterminant les sous-espaces propres,
(c) en utilisant le rang de la matrice,
(d) en calculant A2
2. On suppose que A est la matrice d’'un endomorphisme u d’un espace euclidien

dans une base orthonormée. Trouver une base orthonormée dans laquelle la
matrice de u est diagonale.

cor vr

Soit p la projection vectorielle de R3, sur le plan P d’équation x + y + z = 0, paralle-

z
lement a la droite D d’équation x = % =3

1. Vérifier que R®* = P @ D.

2. Soit u = (x;y; 2) € R3. Déterminer p(u) et donner la matrice de p dans la base
canonique de R3.

3. Déterminer une base de R? dans laquelle la matrice de p est diagonale.

Mines 2015
On considere 'endomorphisme ¢ de R,,[X] défini par (P (X)) = P(2—X). Déterminer
les éléments propres de .

CCP 2016

Soit A € M,(R) telle que 243 — 7TA% + 9A — 41, = 0. Justifier les assertions suivantes :
1. A est inversible;

2. A est diagonalisable ;
3. det(A) > 0.
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X MP 2021

Soit n € N* pair et M € M,(Z). On suppose que les coefficients diagonaux de M sont
nuls et que les termes en dehors de la diagonale appartiennent a {—1;1}. Montrer que
la matrice M est inversible.

cor wp
Soit n € N*.
On considere E = M, (R) l'espace vectoriel des matrices carrées d’ordre n.
On pose, pour tout (a;b) € E?, (A, B) = Tr(AT B), ott Tr désigne la trace et AT désigne
la transposée de la matrice A.
1. Prouver que (-, -) est un produit scalaire sur E.
2. On note S, (R) I'ensemble des matrices symétriques de E.
Une matrice A de E est dite antisymétrique lorsque AT = —A.
On note A, (R) 'ensemble des matrices antisymétriques de E.
On admet que S,(R) et A, (R) sont des sous-espaces vectoriels de E.
(a) Prouver que E = S,,(R) & A,(R).
(b) Prouver que A,(R)* = S,(R).

3. Soit I I'ensemble des matrices diagonales de E. Déterminer F'*.

CCP MP

Soit u un endomorphisme d’un espace vectoriel F sur le corps K des réels ou des
complexes. On note K[X] I'ensemble des polynomes a coefficients dans K.

1. Démontrer que : V(P; Q) € K[X]| x K[X], (PQ)(u) = P(u) o Q(u).
2. (a) Démontrer que : V(P; Q) € K[X] x K[X], P(u) o Q(u) = Q(u) o P(u).
(b) Démontrer que, pour tout (P; Q) € K[X]| x K[X] :

P polynéme annulateur de u = P polynéme annulateur de u

. -1 -2
3. Soﬂ:A-(1 2).

(a) Ecrire le polyndme caractéristique de A.
(b) En déduire que le polynéme R = X% 4+ 2X3 + X? — 4X est un polynome
annulateur de A.

CCP MP

0 a ¢
Soit la matrice M = [b 0 ¢ | ou a,b,c sont des nombres réels.
b —a 0

1. La matrice M est-elle diagonalisable dans Mj3(R) ?
2. La matrice M est-elle diagonalisable dans M3(C)?

CCP 2016

Soit F et F' deux espaces vectoriels de dimension finie. Soit f et g deux applications
linéaires de E vers F'. Montrer que :

rang(f) — rang(g)| < rang(f + g) < rang(f) 4 rang(g).
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cor vr

Soit E l'espace vectoriel des applications continues et 2m-périodiques de R dans R.
1 21
1. Démontrer que (f,g) = by / f(t)g(t) dt définit un produit scalaire sur F.
m Jo

2. Soit F' le sous-espace vectoriel engendré par f : x — cos(z) et g : x — cos(2z).
Déterminer le projeté orthogonal sur F' de la fonction u : x + sin?(z).

o Mp

Soit n € N* et ag, ay,...,a, des nombres réels deux a deux distincts.

1. Montrer que si n € N* et by, b, ..., b, sont des réels quelconques, alors il existe
un unique polynoéme P vérifiant :

deg(P) < metVie [0;n], Pla;) = b;.
2. Soit k € [0;n]. Expliciter ce polynéme P, que I'on notera Ly, lorsque :

0 sii#k
1 sit=k

Vi € [0;n], bi:{

3. Prouver que, pour tout p € [0;n], Z apLp = X7,
k=0

o Mp

On définit dans My (R) x My(R) I'application ¢ par ¢(A; A’) = Tr(ATA’), ot Tr(AT A")
désigne la trace du produit de la matrice AT par la matrice A’. On admet que ¢ est
un produit scalaire sur My(R).

On note F = {(_ab 2) ‘(a; b) € R2}.

1. Démontrer que F est un sous-espace vectoriel de Ms(R).

2. Déterminer une base de F-=.

3. Déterminer la projection orthogonale de J = G 1) sur Ft.

4. Calculer la distance de J a F.

o Mp

Soit E un espace vectoriel réel de dimension finie n > 0 et 4 un endomorphisme de F
tel que u® + u? + u = 0. On notera Id Papplication identité sur E.

1. Montrer que Im(u) & Ker(u) = E.
2. (a) Enoncer le lemme des noyaux pour deux polynomes.
(b) En déduire que Tm(u) = Ker(u? + u + Id).

3. On suppose que u est non bijectif. Déterminer les valeurs propres de u. Justifier
la réponse.

Mines PSI 2016

Soit A € M5(C). Montrer que A est semblable a —A si et seulement si Tr(A) = 0.
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CCP 2016

Soit f € C(R,R) et U l'application définie par :

Ve € R, U(f)(z) = /0 cos(z — t)£(t) dt.

1. Montrer que U est un endomorphisme de C'(R, R).
2. L’endomorphisme U est-il surjectif ?

3. Déterminer le noyau de U.

cor vr

On consideére la matrice A =

o
_— O 2

1
a 1| ou a est un nombre réel.
a 0

1. Déterminer le rang de A.

2. Pour quelles valeurs de a, la matrice A est-elle diagonalisable ?

1561 | Petites Mines 2016

Soit A la matrice de M, (R) définie comme suit :
VAN o
@ij = (z) sii < j et a;; =0 sinon.

Montrer que A est inversible et calculer A~

CCP MP

0 2 -1
On considere la matrice A= [ -1 3 —1] € M3(R).
-1 2 0

Montrer que A n’admet qu’une seule valeur propre que 1’on déterminera.
La matrice A est-elle inversible 7 Est-elle diagonalisable ?

Déterminer, en justifiant, m4.

- W o

Soit n € N. Déterminer le reste de la division euclidienne de X" par (X — 1)?
et en déduire la valeur de A".

1563 | Mines PSI 2016

Soit A, B, M € M, (C), X\ et u deux nombres complexes non nuls et distincts tels que :

A+ B=1,
M+ puB=M
N A+ p?B = M?

1. Montrer que M est inversible et déterminer son inverse.
2. Montrer que A et B sont des matrices de projecteurs.

3. La matrice A est-elle diagonalisable 7 Déterminer son spectre.
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1564 | Mines 2016

Soit A, B € M,(R) telles que AB = A? + A + I,,. Montrer que A et B commutent.

1565 | Mines 2016

Soit E et F' deux espaces vectoriels de dimension finie sur un corps K, G un sous-espace
vectoriel de E. Déterminer la dimension de W = {u € L(E, F) | G C Ker(u)}.

CCP 2016

Soit E un espace vectoriel réel de dimension finie, H un hyperplan de E et u un
endomorphisme de F.

1. Montrer que :

H est stable par v <= 3\ € C, Im(u — \ldg) C H

2. Déterminer les sous-espaces de E stables par f, f étant un endomorphisme de
E qui a pour matrice

3 1 2

A=10 1 0

-1 1 2

dans une base B.

cor

Soit f: R,[X] = R,[X] telle que f(P)(X) =X(X +1)P'(X)—nXP(X).
1. Montrer que f est un endomorphisme de R, [X].
2. L’endomorphisme f est-il diagonalisable ?

3. Déterminer les valeurs propres de f.

CCP 2016
e -2 1
Soit A = 3 V2 0 —V2| € M3(R).
1 V2 1

Déterminer la nature et les caractéristiques de f, endomorphisme canoniquement as-
socié a la matrice A.

1569 | Mines 2016

On considere l'espace vectoriel £ = C*°(R,R) et le sous-espace vectoriel F' engendré
par les fonctions S : z + sin(x) et C' : x — cos(x). On désigne par D I’application
dérivation.

1. Montrer que F' est stable pour D et qu’il existe un endomorphisme u de F' tel
que uou = D, ou D est 'endomorphisme induit par D sur F.

2. Existe-t-il un endomorphisme v de F tel que vov = D?

cop

Existe-t-il une base de M,,(C) formée de matrices diagonalisables ?
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CCP 2016

Soit £ un espace vectoriel de dimension finie n. A quelle(s) condition(s) existe-t-il un
endomorphisme u de E tel que Ker(u) = Im(u)?

ENSAM 2016

Soit A une matrice non nulle de M, (R) et f: X — X + Tr(X)A.
1. Montrer que f est un endomorphisme de M,(R).
2. Montrer que f est bijective si et seulement si Tr(A) # —1.
3. Dans le cas ou Tr(A) = —1, trouver Ker(f). En déduire rang(f).
4.

On se place dans My(R). Ecrire la matrice de f dans la base canonique de
M;(R). Retrouver le résultat de la partie 2.

1573 | TPE/EIVP 2016
3 1 —1

On considere la matrice A= |1 3 —1| € M3(R).
00 2
Calculer A™ pour tout n € N.

TPE/EIVP 2016

Soit A, B,C € M, (R) telles que

A+B=C
2A+ 3B = (C?
5A+4+ 6B =(C?

Les matrices A et B sont-elles diagonalisables ?

Centrale 2016

1. Ecrire un développement limité & l’ordre 3 de la fonction f : z — /1 + .

2. Soit N € M, (R) une matrice nilpotente d’ordre inférieur ou égal a 4. Montrer
que la matrice I, + N admet au moins une racine carrée dans M,(R), c’est-a-
dire qu'il existe M € M,,(R) tel que M? = I, + N.

1576 | Centrale PSI 2016

Soit F un espace euclidien et p un projecteur de E.

1. Montrer que si p est un projecteur orthogonal, alors p est un endomorphisme
symétrique et est 1-lipschitzien.

2. On suppose que p et ¢ sont des projecteurs orthogonaux.

(a) Prouver que le polynéme caractéristique de p + ¢ est scindé dans R[X].
L’endomorphisme p + ¢ est-il nécessairement un projecteur ?

(b) Montrer que les valeurs propres de p + ¢ appartiennent a l'intervalle [0 ;2].

3. Donner un exemple de probleme faisant intervenir des projecteurs orthogonaux.
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TPE/EIVP 2016

Soit A € M, (R) telle que A*> = A+ I,,. Montrer que A est inversible et que det(A) > 0.

CCP 2016

On considere I’endomorphisme

¢+ My(C) — My(C)
)= 6)

L’endomorphisme ¢ est-il diagonalisable ?

CCINP 2024

1. Soit A € M, (R) symétrique.
Prouver que A est positive si et seulement si Sp(A) C [0; 400].
2. Soit A € M, (R) symétrique. Montrer que A? est positive.

3. Soit A et B appartenant a M, (R). On suppose A symétrique et B symétrique
positive. Montrer que :

AB = BA = A®B est symétrique positive

4. Soit A € M,,(R) symétrique positive.

Prouver qu’il existe une matrice B appartenant a M, (R), symétrique positive,
telle que A = B2

CCINP 2024

Soit E un espace euclidien de dimension n et u un endomorphisme de E. On note (z, y)
le produit scalaire de x et de y, et ||-|| la norme euclidienne associée.

1. Soit u un endomorphisme de E, tel que, pour tout = € F, ||u(x)|| = ||=||.
(a) Démontrer que, pour tout (z;y) € E?, (u(z),u(y)) = (z,y).
(b) Démontrer que u est bijectif.

2. On note O(E) 'ensemble des isométries vectorielles de E.
Autrement dit, O(F) = {u € L(E) |Vz € E,||u(z)| = ||=| }.
Démontrer que O(FE), muni de la loi o, est un groupe.

3. Soit u un endomorphisme de E. Soit e = (ej;es;...;e,) une base orthonormée
de E.
Prouver que u € O(E) si et seulement si (u(ey);u(es);...;u(e,)) est une base

orthonormée de E.

X MP/PSI 2023

Soit A et B deux matrices de M,,(R) symétriques positives.
Montrer que det(A + B) > max(det(A); det(B)).
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X MP/PSI

Soit A et B deux matrices de M, (R) symétriques positives.
Montrer que det(A + B) > det(A) 4 det(B).

Mines-Télécom PC 2018
0 sin(¢) sin(20)
Soit la matrice A(¢) = | sin(¢) 0  sin(20)
sin(2¢) sin(¢) 0

Discuter de la diagonalisabilité de A(¢) suivant les valeurs de ¢ € R.

1584 | Mines-Télécom 2022

On cherche a résoudre cet exercice avec le minimum de calculs possible.

11111
10001

Soit A=[1 1 1 1 1| e Ms(R).
10001
10001

On note f I’endomorphisme canoniquement associé a A.
1. Donner rang(A), Ker(A) et Im(A).
2. Soit g la restriction de f a Im(f). Expliciter g.

3. L’endomorphisme ¢ est-il diagonalisable ?

1585 | Mines-Ponts 2022

A 14 5
Soit j=e% et A=|[j ;% 1
i1

1. La matrice A est-elle diagonalisable ? trigonalisable ?
2. Combien de sous-espaces vectoriels stables par A existe-t-il ?
3. Etudier Cy = {M € M3(R) | MA = AM}.

ENSAM

On considéere I'espace vectoriel £ = R, [X] et D I'application de dérivation :

D : F — FE
P — P

1. Montrer que D est un endomorphisme de . Déterminer son noyau et son image.
2. Montrer que D est nilpotent et calculer son indice de nilpotence.

3. On note I 'endomorphisme identité. Montrer que I — D est inversible et déter-
miner son inverse.

™

n! "’

4. Résoudre dans F, puis dans C'(R,R), I'équation différentielle iy —y =

319




1587 | X ESPCI

Soit f un endomorphisme d'un K-espace vectoriel E. Montrer que :

Vee E,INeK, f(z) =l < INeK Vzx e FE, f(x) =z

ENSIIE 2015

On considére une matrice A € M3(R) telle que :
det(A) =10, Tr(A)=—-6 et A — I3 n’est pas inversible.

Montrer que A est inversible et exprimer A~! comme un polynéme de la matrice A.

CCINP

Déterminer toutes les formes linéaires f de M, (K) telles que f(AB) = f(BA) pour
tout (A4; B) € M, (K)?2.

coF 2017

a; ap --- aq

) ay Qg - a9
Soit A=| . . | € M,(R), non nulle.

an an « e . a/n

1. Quel est le rang de la matrice A?

2. Donner une condition nécessaire et suffisante pour que A soit la matrice d'un
projecteur.

3. On revient au cas général. On pose B = 24 — Tr(A)I,,. Calculer le déterminant
de B.

4. Donner une condition nécessaire et suffisante pour que B soit inversible.

5. Calculer B?. Calculer B~! dans le cas ou B est inversible.

CCP 2017

1. Montrer que I'on définit un produit scalaire sur M, (R) en posant, pour A et B

dans M,(R), (A, B) = Tr(ATB).

0 1 2
2.5t M=1]2 0 1
-1 -1 0

On note S3(R) I'ensemble des matrices symétriques de M5(R).
Calculer la distance de M a S3(R).

3. Soit H l'ensemble des matrices de M3(R) de trace nulle. Montrer que #H est un
sous-espace vectoriel et calculer sa dimension.

4. Soit J la matrice de M3(R) dont tous les coefficients sont égaux a 1. Calculer la
distance de J a H.
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cor 2017

On considére une forme linéaire non nulle ¢ sur un espace vectoriel E et xy un vecteur
non nul de E. On pose, pour tout = € E, u(z) = = + p(z)xo.

1. Montrer que u est un endomorphisme de FE.

2. Montrer que 1 est une valeur propre de u. Donner la dimension du sous-espace
propre associé.

3. Donner une condition nécessaire et suffisante pour que u soit diagonalisable.
Indiquer alors les valeurs propres et les sous-espaces propres de wu.

1593 | Petites Mines 2017

On considere 'application
— R, [X]
P(X) — P(X+1)—P(X-1)

Déterminer 'image de ¢.

1594 | Mines-Ponts 2017
Soit A € M,,(R). Montrer que :

A est symétrique <= ATA = A?

Centrale 2017

1
w
Soit m > 2 un entier. Pour tout w € C, soit X (w) = w?
wn—l
1. Soit wy =1 et wy,...,wn_1 les racines n® non réelles de I'unité.
Montrer que la famille {X (wp);...; X (wn—1)} est libre.
ap Gz as --- Qn,
ap Qa1 Qg - Ap_q
2. Soit A=|0n-1 Qn QA1 - Gp_2
a9 as a4 --- aq

Montrer que A est diagonalisable.

Centrale 2017

1. Montrer que R, [X] est un espace vectoriel.

2. Donner une base de R,[X] dans laquelle la matrice de I'application dérivée
D : P+ P’ est composée seulement de 0 et 1.

3. (a) Montrer que pour tout @ € R,[X], il existe un unique P € R,[X] tel que
P—-—P =Q.
(b) Montrer que si @ > 0, alors P > 0.
(c) Montrer que si P est scindé sur R et a racines simples, alors ) 1’est aussi.
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1597 | Mines-Ponts 2017

Soit n € N*. Etudier la diagonalisabilité des endomorphismes de R, [X] :
T:P—P(X+1) et S:Pw— P(1-X).

Trouver les vecteurs propres.

Mines 2017

1
Montrer que la matrice A = | 2

3

N — W

2
3| et sa transposée sont semblables dans M3(R).
1

X-ENS PSI 2017

1. Montrer que pour toutes matrices de M, (C), les matrices AB et BA ont le
méme polyndéme caractéristique.

2. On considere deux endomorphismes inversibles f et g d’'un espace vectoriel E.
Soit A une valeur propre de f o g. On note E) le sous-espace propre de f o g
associé a la valeur propre A et F) le sous-espace propre de g o f associé a la
valeur propre \.

(a) Montrer que g(E») C Fy et que f(F\) C E\.
En déduire que E) et F) ont méme dimension.
(b) Montrer que si f o g est inversible, g o f l'est aussi.

3. Trouver deux matrices carrées X et Y telles que XY soit diagonalisable mais
pas Y.X.

X ESPCI 2017

1. Trouver une matrice M € M, (R) telle que M? # M et M? = M3 # 0.
2. Soit A € GL3(R) telle que det(A) >0 et At = AT,

Montrer qu’il existe un vecteur colonne X € R" tel que AX = X.

1601 | Mines-Ponts PSI 2017

Soit n € N*, M une matrice réelle de taille 2 telle que M"™ = <_01 (1)>

1. Montrer que M est diagonalisable dans M(C) et donner ses valeurs propres.

2. Montrer qu’il existe k € [0;2n — 1] et P inversible dans M,(C) telle que :

cos ((2k+ 1)) —sin ((2k+1)L)

PMP =
sin ((Qk + 1)%) cos ((Qk +1)5-

3. Montrer qu’il existe P pour la méme relation, mais réelle.
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Mines-Ponts PSI 2024
Soit (ag;...;a,) € C"™ distincts deux a deux et (A; B) € M, (C)?.
On définit :
¢ : C,[X] — Ccrtl
P — (P(ag);...;Play))

1. Montrer que ® est un isomorphisme.
En déduire I'existence de polynémes L; € C,[X] (i € [0;n]) tels que :

2. Exprimer le polynéme caractéristique de A en fonction des L;.

3. Montrer que
f : M,(C) — C"X]
M — XM

est continue.

4. Montrer que x4 = XBA-

1603 | ENSEA/ENSIIE PSI 2017

Soit E un espace vectoriel de dimension n.
Soit p € [1;n] et Hy,..., H, des hyperplans vectoriels de £ deux a deux distincts.

P
Montrer que dim (ﬂ Hk> >n—Dp.
k=1
Indication : considérer

¢ : Hyx---xH, — Ert
(xl,,a;p) — (l’g—.fCl;...;l'p—l'l).

CCP 2017

Soit A € Mg(R) inversible et vérifiant A% —3A4? 424 = 0, ainsi que Tr(A) = 8.
1. Montrer que A est diagonalisable.
2. Que peut-on dire sur les valeurs propres de A?
3. Donner une matrice diagonale semblable a A.
4.

Déterminer le polynéme caractéristique et ’ensemble des polynémes annulateurs

de A.

cor 2017

Soit M une matrice de M, (R) vérifiant la relation M? + MT = I,,.
1. Montrer que M est diagonalisable.
2. Montrer que 1 n’est pas valeur propre de M, et que M n’est pas inversible.

3. Montrer que M admet un polynéme annulateur de degré 2, que M est symétrique
et de trace nulle.
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X MP 2021

Soit E un K-espace vectoriel de dimension finie n > 2 et u un endomorphisme de E.
Montrer qu’il existe une base de E dans laquelle la matrice de u est de la forme

* PR PR PR *
*
0
0 0 * ok

1607 | Mines-Ponts MP 2021

Existe-t-il une norme N sur M, (R) telle que, pour tout (A; B) € M, (R)?,
N(AB)=N(A)N(B)?

X PSI 2023

Déterminer le sous-espace vectoriel de M, (R) engendré par les matrices orthogonales.

CCP 2012

0 —a —b
On considere trois nombres réels a, b, ¢ et la matrice A= |a 0 —c
b ¢ 0

1. Calculer le polyndéme caractéristique de la matrice A.

2. Exprimer, suivant la parité de n € N, A" en fonction de A ou de A2.
On pourra utiliser ’égalité r = v/a? + b? + 2.

. -
3. Montrer que exp(A) = I3 + SIH(T)A + COS(T)AQ'

72

1610 | Mines 2012

Soit A € M,(R) telle que A> + A% + A + I,, = 0. Montrer que Tr(A) < 0.

Centrale 2012

Soit A € M,(R). On suppose qu'il existe n € N* tel que A" = AT et on pose B = A"
1. Montrer que B est symétrique et que ses valeurs propres sont positives.
2. (a) Calculer B™.
(b) En déduire les valeurs propres de B.

(¢) Quelle est la nature de B ? (On assimilera une matrice a son endomorphisme
canoniquement associé.)

3. Montrer que R? = Ker(B) + Im(B) et que la somme est orthogonale.

4. (a) Montrer que Ker(B) et Im(B) sont stables par A.
(b) Montrer que 'endomorphisme induit par A sur Im(B) est une isométrie.

(¢) Que peut-on dire de ’endomorphisme induit par A sur Ker(B)?
5. Caractériser les matrices A € M,(R) telles que A" = AT,
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Centrale 2012

Soit n > 2 un entier et E = R, [X].
1. Montrer que pour tout P € E, il existe () € F, unique tel que :

Ve e R, (z — 1)Q(x) = /1 P(t) dt,

et que l'application f qui a P associe () est un endomorphisme de FE.
2. Montrer que f est diagonalisable.

3. Trouver tous les endomorphismes de E tels que ¢* = f.

1613 | Mines-Ponts 2012

Montrer qu'une matrice A € M, (K) est inversible si et seulement si A admet un
polynoéme annulateur qui prend en 0 la valeur 1.

1614 | Mines 2012

Soit A € M,(R) antisymétrique.
1. Montrer que si n est impair, alors A n’est pas inversible.

2. Montrer que si n est pair, alors det(A) > 0. Sous quelle(s) condition(s) I'inégalité
est-elle stricte ?

1615 | ENSEA/ENSIIE 2012

0 .- 01
On considere la matrice A = O 1 € M,(R).
1 -~ 10

1. La matrice A est-elle diagonalisable ?
2. Calculer A2

3. Donner les valeurs propres de A sans utiliser le polynéme caractéristique.

CCP 2012
A A

On considere une matrice A € M, (C) et la matrice B = (0 N

1. Calculer B* pour k € N, puis, pour P € C[X], exprimer P(B) en fonction de
P(A) et P'(A).

2. Montrer que si B est diagonalisable, alors A I'est aussi, et que ce n’est possible
que si A =0.

> définie par blocs.

CCP 2012
z+1

Soit 7 > 2 un entier. A tout polynéme P € R, [X] on associe ®(P) : z / P(t)dt.

x

1. Montrer que ® est un endomorphisme de R,,[X].
2. Calculer det(®).
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cor 2017

Soit A € R™ une matrice colonne non nulle.
Montrer que B = AAT est diagonalisable.
Déterminer le rang de B.

Calculer B2

Donner les éléments propres de A.

Calculer det(/,, + B) en fonction du vecteur A.

SN R .

CCP 2017

Soit z€Cet A=

O = O
O = O
O = O

1
z
1
0100

1. Montrer que 0 est une valeur propre de A.

2. La matrice A est-elle diagonalisable ?

cor 2017

1 2 0
Soit A=[0 3 0 |eM(R).
2 —4 -1

1. Avec un minimum de calculs, déterminer les valeurs propres de A et une matrice
diagonale D € M3(R) semblable a A.

2. Montrer que si une matrice M commute avec D, alors elle est diagonale.

3. Déterminer toutes les matrices M € M3(R) telles que M" + M + I3 = A.

CCINP PSI 2021

Soit E un espace vectoriel de dimension 4 et v un endomorphisme de £. Montrer que :

1. Sirang(u) = 2 et u? = 0, alors il existe une base dans laquelle u est représenté
0010

par

o O O

0
0
0

o O O

1
0
0
2. Si rang(u) = 3 et u* = 0, alors Ker(u?) = Im(u?) et il existe une base dans

01

0
, , 0
laquelle u est représenté par 1
0

0
0 01
000
000

ENS Rennes 2017

Soit n € N*. Montrer que l’ensemble des matrices de M,(R) de trace nulle coincide
avec l'espace vectoriel engendré par les matrices nilpotentes.
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cor 2017

Soit E un C-espace vectoriel de dimension finie n > 1 et v un endomorphisme de E
ayant n valeurs propres distinctes.

1. Que peut-on dire de u?

2. Montrer que si g est un endomorphisme de E solution de I'équation (E) : g* = u,

alors tout vecteur propre de u est aussi vecteur propre de g.

3. Combien 'équation (E) admet-elle de solutions ?

Centrale PSI

Soit S : C(R,R) — C(R,R) I'application qui a f associe S(f):
1. Montrer que, si S(f) =0, alors f est périodique.
2. L’application S est-elle injective 7 surjective ?

3. Soit n > 2. Montrer que S induit un endomorphisme sur R, [X], noté s. L’en-
domorphisme s est-il bijectif ? diagonalisable ?

Centrale PSI

i1 0 O

. 0i 0 O
Soit M = 00 —i 0 S M4((C)

00 0 —i

1. Déterminer le polynéme minimal 7, de la matrice M.

2. Montrer qu’il n’existe pas de matrice A € M,(R) semblable & M.

Centrale PSI

Soit E un espace vectoriel de dimension finie et f, g des endomorphismes de E tels que
fP=¢*=1Idpet fog+gof=0.
1. Montrer que la dimension de E est paire.

2. Montrer qu’il existe une base de F dans laquelle les matrices de f et g sont

I, O 0 I,
et .
0 -1, I, O

cor
a b 0

Soit A= {0 1 0] e My(R).
00 2

A quelle(s) condition(s) portant sur a et b, la matrice A est-elle diagonalisable ?

cor PO

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E. On suppose
que fo f est un projecteur. Montrer que f est diagonalisable si et seulement si f2 = f.
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1629 | Petites Mines PC

Soit m > 2 un entier, un nombre réel m et la matrice A = (a;j)1<ij<n € My(R) ol
a;; =1si(55) € [1sn] x[I;n—1] et ajp, =msi 1l <i < n.
1. On suppose que m # 1 — n. Montrer que A est diagonalisable.

2. On suppose que m = 1 —n. Montrer que la matrice A est semblable a la matrice
B = (bij)1<ij<n dont tous les coefficients sont nuls excepté byo = 1.

TPE/EIVP PC

Soit A € M,(C) et ®4: M € M, (C) — AM € M,(C).

1. Montrer que ®4 est un endomorphisme de M, (C). Déterminer les matrices A
de M, (C) telles que 4 = 0.

2. Si A e M,(C) et P € C[X], comparer ®p(4) et P(P4).

3. Montrer que ® 4 est diagonalisable si et seulement si A est diagonalisable.

cor PO

Soit (E, (-, -)) un espace euclidien de dimension n, p un projecteur orthogonal de E de

rang r et (e1;...;e,) une base orthonormale de E. Montrer que Y |[p(e;)||* = r.
i=1

Centrale PSI

Soit p et ¢ deux projections orthogonales définies sur un espace euclidien E. Soit encore
u=p-+4q.
1. Soit x un vecteur de norme 1. Encadrer (z,p(x)) et (z,q(x)). En déduire que
Sp(u) € [0;2].
2. Montrer que Ker(u) = Ker(p) N Ker(g).
3. Déterminer Ker(u — Id).

TPE/EIVP PSI

Soit S une matrice symétrique réelle et D une matrice diagonale dont tous les coeffi-
cients sont ceux de la diagonale de S. On suppose que S et D sont semblables. Calculer
Tr(S?) de deux manicres et en déduire que S = D.

CCP 2017

On considére un endomorphisme f de R?, non nul, tel que f3 + f = 0.
1. Montrer que f n’est pas inversible.
2. Montrer que f n’est pas diagonalisable.
3. Montrer que Im(f) et Ker(f) sont supplémentaires.
4. Montrer que pour tout z € R3\ Ker(f), (f(x); f?(x)) est une base de Im(f).
5

. Calculer la trace de f.

TPE/EIVP PSI

Soit (a;b;¢) € R? tel que a® + b® + ¢ = 1. Ecrire la matrice dans la base canonique de

T
la rotation d’angle 7 et d’axe dirigé par le vecteur (a b c) :
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[1636] x

1+a®> ab ac
Soit (a;b;¢c) € R3 tel que a®> + 0> +c* =1et M = ab 1+b  be
ac be 14 c?

Etudier I'endomorphisme f de R? canoniquement associé a la matrice M.

[1637] ccp
1 0 1

SoitmeRet A, = -1 —1 1
2—m m-—2 m
1. Calculer le polynéme caractéristique de A,,.

2. Les matrices A; et Ay sont-elles diagonalisables dans M3(R)? dans M3(C)?

3. Etudier la diagonalisabilité de A,, en général.

X ESPCI

Soit A € M,(R). Montrer que det(A) = 0 si et seulement s’il existe B € M,(R) non
nulle telle que AB = BA = 0.

1639 | Mines-Ponts PSI

Soit E un espace vectoriel, u un endomorphisme de E et f un sous-espace vectoriel de
E stable par u. On suppose que u est nilpotent et que £ = F + Im(u). Montrer que
E=F.

[1640] ccp

Soit n un entier supérieur ou égal a 3. On considere une matrice A symétrique réelle
telle que A3 + 4A% + 5A = 0. Etudier les valeur propres et la diagonalisabilité de A.
Que peut-on en conclure ?

[1641] ccp

Soit f I’endomorphisme de R? dont la matrice dans une base orthonormée est

(2 2 -1
A=-|1 —2 -2
3l 1 9

Reconnaitre f et donner ses caractéristiques géométriques.

On définit 'application :

¢  RJX] — R,[X]
P(X) — P(X+1)

1. Déterminer la matrice A qui représente ¢ dans la base canonique de R,,[X].

2. Justifier que A est inversible, et calculer AL,
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cor par

Soit E un espace vectoriel de dimension finie et f,g deux endomorphismes de F.
Montrer que :

Im(f) + Ker(g) = E <= Im(go f) =Im(g)

1644 | Mines-Ponts PSI

Soit F un K-espace vectoriel de dimension finie et soit f un endomorphisme de E.
Montrer que f? = 0 si, et seulement si, il existe un endomorphisme ¢ de E tel que

fog=fetgof=0.

1645 | X MP MPI

Soit p et ¢ deux projecteurs orthogonaux dans un espace euclidien E. Montrer que :
1. 'endomorphisme p o g o p est autoadjoint positif;
2. E = Im(p) + Ker(q) + (Im(q) N Ker(p)) ;
3. 'endomorphisme p o ¢ est diagonalisable;

4. le spectre de p o ¢ est inclus dans [0;1].

1646 | Mines-Ponts

Soit (a;b;c) € C* et n € N*. On consideére le déterminant de taille n :

a b e oo b
c
Ay(asbye) =
b
C DR DRI C a

1. Montrer que lapplication x — A, (a + z;b+ z; ¢+ z) est une application poly-
nomiale de degré inférieur ou égal a 1.

2. Calculer A, (a;b;c) en fonction de a, b, c et n.

Centrale PSI

Soit A et B dans M, (R) et & : M € M, (R) — AMB. Calculer la trace de ®.

1648 | Centrale PSI 2021

Soit. F' un sous-espace vectoriel de M, (K) tel que toute matrice non nulle de F' soit
inversible.

1. Ici K = C. Montrer que, si les matrices A et B sont inversibles, alors il existe

a € C tel que aA — B n’est pas inversible. Qu’en déduire sur la dimension de
F?

2. Ici K = R. Examiner le cas ou n est impair. Donner un exemple ou la dimension
de F' est 2. Montrer que, si n est pair, alors dim(F) < n.
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TPE/EIVP PSI

1. Soitd e N*,ae Cetu: P e Cy[X] — (x—a)P € Cy[X]. Trouver les éléments
propres de u.

2. En déduire I'ensemble des polynémes de C[X| divisibles par leur dérivée.

1650 | Mines-Ponts PSI

1. Soit n € N*. Trouver inf{\ € R, | VA € M,(R), (Tr(A))> < ATr(ATA)}.
2. Trouver inf{\ € R, | VA € My(R),det(A) < NTr(ATA)}.

1651 | Mines-Ponts PC

Soit A et B deux matrices de M, (R) symétriques.
Montrer que 2Tr(AB) < Tr(A?%) 4+ Tr(B?).

CCP PC

Soit A € M, (R) telle que A* + I,, ne soit pas inversible.
1. Montrer qu'il existe X € M, »1(C) tel que AX =iX et X # 0.
2. Montrer qu’il existe U et V' dans M,,»1(R) libres tels que AU = —V et AV = U.

cor per

Soit A € M3(R) telle que A # 0 et A*> + A = 0.

1. La matrice A est-elle diagonalisable ?

0 0 0
2. Montrer que A est semblablea [0 0 1
0 -1 0

Centrale PC

Soit (F, (-, -)) un espace euclidien.

1. Soit g un endomorphisme de E autoadjoint tel que (g(z),z) = 0 pour tout
z € E. Montrer que g = 0.

2. Soit g un endomorphisme de E autoadjoint tel que (g(z), z) = ||g(2)]?

z € E. Montrer que g est un projecteur.

pour tout

1655 | Mines-Ponts PSI
Soit A, B € M,,(C) et x4, xp leur polyndéme caractéristique respectif.

1. Montrer que si A et B ont une valeur propre commune, alors il existe U et V
non nuls dans M, (C) tels que AUVT =UVTB.

2. Soit M € M,(C). Montrer que si AM = M B, alors xg(A)M = 0.

3. A quelle condition, nécessaire et suffisante, les matrices A et B ont-elles une
valeur propre commune ?

1656 | cCcP PsI
Soit A € M,(R) et S = 3(A+ A"). On note (Ay;...;\,) le spectre ordonné par ordre
croissant de S. Si u est une valeur propre réelle de A, montrer que A\ < p < A,.
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Mines-Ponts

Soit n € N* et M € M, (R) symétrique.
1. Montrer que Tr(M)? < rang(M)Tr(M?).

2. Caractériser par leurs valeurs propres les matrices symétriques réelles vérifiant
le cas d’égalité.

3. Soit M € M,(R) symétrique et définie positive.
(a) Montrer que M est inversible et que pour tous X et Y dans M, (R) :

(MX, XY{M7'Y,Y) > (X,Y)2

(b) En déduire inf{(MX, X) - (M~1X, X) | ||X|| = 1}.

CCP PC

1. On définit 'endomorphisme ¢ de M, (R) par :
VM € M,(R), o(M) =2M + M.

Déterminer un polynéme annulateur de ¢. Montrer que ’endomorphisme ¢ est
diagonalisable. Déterminer ses valeurs propres et ses sous-espaces propres.

2. Soit (a;b) € R? et
Pap i M — al + bMT.

Montrer que ¢, est inversible si, et seulement si, a® # b>.

ENSAM PSI

Soit
0 0 1 ag  Qp_1 as a1
1 0 ay ' Qs
J — O et A == a2
An—1
o --- 0 1 0 Ap—1 -+ Qo ai Qg

1. La matrice J est-elle diagonalisable dans M,,(C)? Quel est son spectre ?

2. La matrice A est-elle diagonalisable dans M,,(C)? Quel est son spectre ?

TPE/EIVP PSI

Discuter, dans M3(R), la diagonalisabilité et la trigonalisabilité en fonction du para-
metre réel a de

0O 1 0
0O 0 1
1 —a a
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Centrale PSI

Soit F un K-espace vectoriel, F' et G deux sous-espaces vectoriels de E. On suppose
que £ = F®G et on note p le projecteur sur F parallelement a G et ¢ = Idg —p. Soit f
un endomorphisme de F. Montrer que F est stable par f si et seulement si go fop = 0.

Mines-Ponts

Soit n € N*. Posons :

0 2 3 n
10 3
A= 2 0 € M,(R).
3
. . . en
1 23 -« .. 0

1. Calculer det(A 4+ ml,) pour chaque entier m avec 1 < m < n.
2. Montrer que x4 est un polynéme scindé.

3. Montrer que, pour toute valeur propre A de A,
"k
P
okt A

4. Calculer la somme et le produit des valeurs propres de A.

ENS MPI 2025

Soit A et B deux matrices appartenant a .S, (R). On dit que A < B si B — A appartient
a S (R). On considere I'application :

foo STTR) — ST(R)

n

A — A1

Montrer que f est décroissante.

1664 | Mines-Télécom MP 2021

Soit E I'ensemble des fonctions continues de [—1; 1] dans R.
On pose, pour tout (f;g) € E? :

1
(f.9) = [ F@g(t
1. Montrer que (-, -) est un produit scalaire.

2. Soit F'={f € F|Vze€l0;1], f(x) =0}. Calculer F*-.
3. Que vaut F + F+?

—

Montrer qu’un sous-espace vectoriel d’un espace vectoriel de dimension finie est de
dimension finie.
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[1666] x

Soit Vi, ..., V, des sous-espaces vectoriels de R" de réunion égale a R". Montrer que
I'un des V; est égal a R™.

1667] x

Donner deux modes de description d’un plan de R*.

[1668] x

On note S;7(R) 'ensemble des matrices symétriques de M, (R) dont les valeurs propres
sont strictement positives. Soit A une matrice antisymétrique de M, (R) et S € S+ (R).
Montrer que S'A est diagonalisable sur C a spectre imaginaire pur.

[1669] x

Soit M € M, (R). Montrer que M est diagonalisable si et seulement si il existe
(S;H) € Sp(R) x SF(R) tel que M = SH.

X MP 2019

Soit A € M, (C).
1. Montrer que les conditions suivantes sont équivalentes :
i) Toutes les valeurs propres (complexes) de A sont égales a 1.
ii) A=Id+ N ou N" = 0.

2. On suppose A a coefficients rationnels. Montrer qu’il existe une matrice B ap-
partenant a M, (Q) telle que A = B2

Indication : on peut commencer par le cas réel.

o Mp

Soit n € N* et

1 11 1
121 - 1

A, =1 1 3 - 1]eM,R).
111 - n

Soit P, le polyndéme caractéristique de A,.
1. Montrer que P, 1(X)= (X —n)P,(X) - X(X —-1)--- (X —n+1).
2. Montrer que, pour tout n € N* et pour tout k € [0;n — 1], (=1)"*P,(k) > 0.

3. En déduire que chaque intervalle |0;1[, |1;2],..., Jn — 1;+o0o[ contient exacte-
ment une valeur propre de A,,.

ENS Ulm

On considere 'application

P Mg(R) — Mg(R)

Déterminer I'image de .
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ENS

Soit K un corps et A, B,C' trois matrices de M5(K). Montrer qu'’il existe un triplet
(a; B;v) € K3\ {0} tel que oA + BB + vC ait une valeur propre double.

1674 | Mines-Ponts PC

Soit un entier n > 2. On note A la matrice de M, (R) dont les coefficients diagonaux
valent 0 et les autres coefficients valent 1.

1. Calculer A%. En déduire que A est inversible et exprimer A~1.

2. Déterminer les valeurs propres de A et les espaces propres correspondants.

1675 | Mines-Ponts PC

-2 01
Soit la matrice A= [ -5 3 0] € M3(R).
-4 4 2

1. Montrer que A est diagonalisable dans M3(R) et déterminer ses valeurs et vec-
teurs propres.

2. On consideére 1’équation
(B): X?-3X =4,
en la matrice inconnue X de M;3(R).

(a) Vérifier que toute solution de (F) commute avec A.
(b) Déterminer toutes les solutions de (F).

3. Calculer A™ oun > 2.

1676 | Mines-Télécom MP 2024

Soit (eq;ez;e3) la base canonique de R? euclidien. Donner la matrice de rotation R
autour de la droite D d’équation x—y+z = x+y+2z = 0 et telle que R(e;) = %(61—%63).

Mines-Télécom MP 2024
Soit f € L(R?,R?) et g € L(R3,R?) tels que rang(f o g) = 2.
Calculer rang(f) et rang(g).

1678 | Mines-Télécom MP 2024

0 2 2—m
1. Soit A=|m—-2 0 1 € M;(R).
2m  m—-2 m—2
Déterminer le rang de A en fonction de m.

2. Résoudre le systeme :

2u+(2—m)z=2-—m
(m—2)z+2=1
2mx 4+ (m —2)y+ (m—2)z=m —2
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X FUF 2024

Soit n € N* et Ny,..., N, dans M, (C) nilpotentes qui commutent.
Montrer que Ny --- N, = 0.

CCINP MP 2021

Soit (a;b;c) € C3, un entier n > 3 et

1. Donner une condition nécessaire et suffisante pour que rang(A) = 2.

2. On suppose que rang(A) = 2.
(a) Montrer que A € Sp(A) si et seulement si A = 0 ou A — a\ — (n — 1)bc = 0.
(b) Donner les expressions des valeurs propres de A.

(¢) Donner une condition nécessaire et suffisante (portant sur a, b et ¢) pour que
A soit diagonalisable.

X FUF 2024

Soit n € N*, A et B dans M,(R) telles que AB = BA. Soit encore p et ¢ dans R tels
que p* — 4q < 0. Montrer que det(A? + pAB + ¢B?) > 0.

1682 | Mines-Télécom MP 2023

Soit A € M, (R) symétrique telle que A?0% = A20%,
1. Montrer que > a?j = rang(A).

I<i,j<n
2. Le résultat reste-t-il vrai si A est seulement diagonalisable ?

CCINP MP 2024

Soit A une matrice de M,(R) non colinéaire a I, telle que (A + I,,)3 = 0.

1. Montrer que A est inversible et expliciter son inverse. Donner un exemple d’une
telle matrice.

2. La matrice A est-elle diagonalisable ?

3. Soit p un entier naturel. Exprimer A? en fonction de A% de A et de I,,.

CCINP MP 2019

1. Montrer que le polyndme P = X° + 2X + 1 admet une unique racine réelle
strictement négative.

2. Soit A € Mi5(R) telle que P soit annulateur de A. Que peut-on en déduire sur
les valeurs propres de A? Montrer que det(A) < 0.
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CCINP MP 2017

Soit n € N*. On considere les deux matrices suivantes de M, (R) :

-n 1 1

) 1 1
A= . et J=1:

1 1 -—n

On note I la matrice identité de M, (R).
1. Ecrire A, puis A? sous forme de combinaisons linéaires de J et I.

2. En déduire un polynéme annulateur de A. Donner son polynéme minimal 74 et
ses valeurs propres possibles.

3. La matrice A est-elle inversible ?

4. Soit E un espace euclidien de dimension n, (-,-) son produit scalaire et ||| la
norme associée. Soit (ey;...;e,) une famille de vecteurs de E tels que, pour tout
i € [1;n], |les]] =1 et pour tout (i;5) € [1;n]?, avec i # j, (&, e;) = —=.
Montrer que (ey;...;e,) est une base de E.

1686 | Mines-Ponts MP 2021

Déterminer I’ensemble des polynomes annulateurs de la matrice :

@ 00000
0b 1000
000b0OO
000 c¢o ofEMR)
0001¢c0
00001 ¢

1687 | Mines-Ponts MP 2021

1 0 1 0 0
zx 1 vy 1 0
Soit D = |22 22 ¢* 2y 2
3 3x% y3 3y* 6y
ot 4xd oyt 4P 1292

Montrer que D = 0 si et seulement si x = y.

1688 | Mines-Télécom MPI 2024

1. Montrer que
+oo
(PiQ)—w(PiQ) = [ POQ(De dt
est un produit scalaire sur R[X].

2. Calculer o(X?; X1) pour tout (p;q) dans N2.

3. Orthonormaliser la base (1; X; X?) de Ry[X] a I'aide du procédé d’orthonorma-
lisation de Gram-Schmidt.
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CCINP MP 2017
Soit A € M, (C) vérifiant A" = I, et telle que la famille {I,,; A; A% ...; A"~} est libre.
Démontrer que la trace de A est nulle.

Mines-Ponts MP
Soit .
A = inf </ (1+x1t+x2t2+"'+$nt”)2dt).
)GR’IL 0

(215520

1
On munit R[X] du produit scalaire (A, B) = / A(t)B(t) dt.
0
On note @ la projection de orthogonale de 1 sur Vect({X;...; X"}).

1. Justifier Pexistence et I'unicité de (gi;...;¢,) € R™ tel que Q@ = — > g X" et

k=1
montrer que

1
A:/O (L+ qit + @t* + - + g,t™)* dt.

2. On pose :
1 q1 dn
F(X) = ST U
(X) X+1+X—i—2+ +X—i—n+1
(a) Montrer que, pour tout k € {1;...;n}, F(k) =0.
1

(b) En déduire que F(0) = CEE

3. Calculer A et (q1;...;qn)-

CCINP MP

Soit @ une application de R,,_;[X] dans lui-méme telle que

1-X

D(P)= P+ —

P

1. Vérifier que ® stabilise R,,_1[X].

2. On admet que P est linéaire. Donner la matrice représentative de ® dans la base
canonique. Est-elle diagonalisable 7

3. Déterminer une base de I’espace propre associé a la valeur propre 1.

4. Supposons A une valeur propre de ¢ associée au vecteur propre P telle que
A # 1. Montrer que 1 est une racine de P et donner sa multiplicité.

CCINP MP 2023

Soit A € M,(R).

1. Soit w € C une valeur propre de A de multiplicité p € N*. Montrer que @ est
une valeur propre de A de multiplicité p.

2. (a) Montrer que le polynéme X3 — 3X — 4 admet une unique racine réelle.
(b) On suppose que A3 — 34 — 41,, = 0. Montrer que det(A) > 0.
3. On suppose que A% + A + I, = 0. Montrer que n est pair.
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CCINP PSI 2021

Dans cet exercice, K =R ou C.
Soit (ag;ar;...;a,) € K™ et

00 O 0 —ag
10 0 0 —a
01 0 0 —as
c=100 : € M1 (K).
0 —Qp—2
1 0 —Qp—1
00 0O 1 -—a,

1. Calculer x¢(X).

2. Soit ¢ un endomorphisme de E, ou dim(E) = n+1. On dit que ¢ est cyclique s’il
existe z € K" tel que (x; o(x); ¢*(2);. . .; ¢"(x)) soit une base de E. Montrer
que si ¢ est cyclique, alors sa matrice est de la forme de C.

CCINP MP 2019

On se place dans l'espace £ = C(]—1;1],R). On pose :

®: (fi9)— [ f@)gla)de.

On appelle P (resp. Z) le sous-espace vectoriel des fonctions paires (resp. impaires).
1. Montrer que P& Z = E.
2. Montrer que ® est un produit scalaire.
3. Montrer que Z = P+.

4. Déterminer I'image de f par la symétrie orthogonale par rapport a P.

1695 | Centrale-Supélec MP 2022

Le but de 'exercice est de montrer que toute matrice carrée réelle de trace nulle est
orthogonalement semblable a une matrice dont tous les éléments diagonaux sont nuls.

3 6 0
1. Soit A= {0 —3 0].Déterminer P € O3(R) telle que P~ AP soit a éléments
0 0 O

diagonaux nuls.

2. Soit E un espace euclidien muni d’un produit scalaire noté (-,-) et u un endo-
morphisme de E. On suppose que u admet deux valeurs propres A et u telles
que Ap < 0. On considere deux vecteurs propres de u, x et y, unitaires, ortho-
gonaux et respectivement associés a A et u. Montrer qu’il existe z unitaire tel
que z € Vect({z;y}) et (u(z),z) = 0.

3. Montrer le résultat souhaité pour une matrice symétrique réelle.

4. Montrer le résultat souhaité pour toute matrice de M, (R).
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1696 | Mines-Ponts MP 2021

On note :
» H Pensemble des matrices de M, (R) de trace nulle;

o N Tespace vectoriel engendré pas les matrices nilpotentes de M, (R).

—_

. L’ensemble N est-il 'ensemble des matrices nilpotentes ?
. Montrer que N' C H.
. At-on N =H?

w N

CCINP MP 2018

Pour tout a € R, soit

0 -1 -1
a
Ala) = |~ € M,(R)
-1
a -+ a 0

Soit encore U la matrice de M,,(R) dont tous les coefficients sont égaux a 1.

1. Calculer det(A(—1)).

2. Onnote P(z) = det(A(a)+zU). Montrer que P est polynomial de degré inférieur
ou égal a 1.

3. Calculer P(—a) et P(1). En déduire det(A(a)).
4. Etudier la continuité de a — det(A(a)) et retrouver la valeur de det(A(—1)).

CCINP MP 2025

Soit € C et n € N*. On considére la matrice A, € M, (C) définie par :

142 0 - e 0
x 1422 =z :
A= &
’ T 0
: r 14 22 x
0 o e 0z 14a?

On note C,, = det(A4,,).
1. Montrer que, pour tout n € N* :

Cn+2 = (1 + x2>0n+1 - xQCn-

2. Calculer les valeurs exactes de C] et Cs, puis déterminer C), pour tout n € N*.
Discuter le résultat obtenu en fonction de x.

3. Etudier 'inversibilité de la matrice A,, en fonction de la valeur de z.
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1699 | Mines-Télécom 2025

Soit n € N*. Déterminer toutes les matrices de M, (R) vérifiant :

MM*MM™M =1,.

CCINP PSI 2025

0
SoitaeRet M, =11

0 a
0 0
1 10
1. (a) Déterminer le polynéme caractéristique y, de M,.
(b) Effectuer la division euclidienne de 3x, par xJ.
(c) La matrice M, est-elle diagonalisable sur C?
2. On suppose que A est une valeur propre complexe de M, telle que [A| > 1.
N
L+ A~ 2
(b) Montrer que la suite ((M,)"),en converge vers la matrice nulle pour a suffi-
samment petit.

(a) Montrer que |a| >

CCINP MP 2025

Soit (a;b) € C? et f I'endomorphisme du R-espace vectoriel C tel que :
Vz e C, f(z) =az + bz.
1. Montrer que I'équation f(z) = 0 admet une solution z € C non nulle si et
seulement si |a| = |b].
On suppose maintenant que a = e'® et b = eiﬁ, avec (a; ) € R2.
2. Déterminer les valeurs propres de f.

3. Déterminer «a et S tels que f soit diagonalisable.

1702 | TPE/EIVP PC 2019

Soit n € N. Pour P dans R,[X], on pose T(P) = P(X + 1) — P(X).
1. Montrer que T" est un endomorphisme de R, [X].

2. Montrer que le spectre de T est {0}. Déterminer le sous-espace propre associé.
L’endomorphisme T est-il diagonalisable ?

3. Montrer que 7" = 0. (On pourra comparer les degrés de T(P) et P pour

P e R,[X].)
4. Soit P € R,[X]. Montrer que :
n+1 1
> (n: )(—1)"“_’“13()( + k) =0.
k=0

(Utiliser 'endomorphisme D = T + Idg,,[x].)

1703 | Mines-Ponts MPI 2024
Soit B et M deux matrices de M3(C) telles que M3 = B. Que dire sur B et M ?
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GOINP PG 2024
Soit A € M,(R) telle que AAT = AT A. On suppose que P = XP est un polyndome
annulateur de A.

1. Montrer que P est annulateur de AT A.
2. En déduire que A = 0.

Mines-Ponts PSI 2022
Soit (ag;as;...;a,_1) € C™
0 -+ -+ 0 —ag
1 - R
On pose A= |
: . . 0 —a,_9
O -~ 0 1 —a,_
1. Déterminer x 4.

2. Montrer que :
A est diagonalisable <= x4 est scindé a racines simples.

Pour le sens direct, on montrera I'implication par deux méthodes différentes.

CCINP PSI

On note E = C*([0;1],R). On définit sur E le produit scalaire :

V(f;9) € E? (f,9) = /01 f®g(t) + f(t)g'(t)dt.

On note :
c V=AfeE[["=[},
« W={feE|[f0)=f(1) =0}
e« H={f€ E| f(0)=cosh(l) et f(1)=0}.
1. Montrer que {cosh;sinh} est une base de V.

2. Montrer que, pour tout (f;g) € F X E :

(f,9) = f'(1)g(1) = f'(0)g(0).

Calculer (cosh, sinh), ||cosh||? et ||sinh]|?.
3. Montrer que pour tout (f;g) € V x W, (f,g) = 0.

4. Soit f € H.
Calculer (f, cosh) et (f,sinh).
En déduire les composantes dans la base (cosh; sinh) de la projection orthogonale
[Ty(f) sur V.

5. Calculer : .
. 2 / 2
inf | ST+ (1) dt.
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1707 | ENSEA/ENSIIE MP 2021

1 4 2
Soit A= [0 —3 —2| e My(R).
0 4 3

1. Montrer que la matrice A est diagonalisable et la diagonaliser.
2. Calculer exp(A).

Mines-Ponts PC 2025

Soit (A; B) € M, (C)>2.

On suppose qu’il existe (a; 3) € C? tel que AB = aA + 3B.

Montrer qu’il existe P € GL,(C) telle que P~'AP et P~'BP soient triangulaires
supérieures.

1709 | Mines-Ponts MP 2016

1. Soit A une matrice antisymétrique réelle de taille n. Montrer que A2 est diago-
nalisable. Montrer que ses valeurs propres sont négatives ou nulles. En déduire
des informations sur A.

2. Montrer que A est orthogonalement semblable & une matrice diagonale par blocs

«Q
) avec a € R.

avec sur la diagonale des zéros et des blocs de la forme (—a 0

1710 | Mines-Ponts MP 2024

Déterminer la dimension du Q-sous-espace vectoriel de C engendré par les racines
cinquiemes de 'unité.

CCINP PC 2022

Pour toute matrice M de My(C), on pose :

1M oo = max {Jmy;] | 1<, < d}.

12 3
1. Onpose A= |0 1 —1]. Cette matrice est-elle diagonalisable ?
00 1

On pose N = A — I3. Calculer N2, puis les autres puissances de N.
Déterminer la limite de ||A"|| quand n tend vers +oc.

Vérifier que [|-]| est une norme sur My(C).

ARl

Pour tout couple (M; N) de matrices de My(C), prouver la majoration :
IMNloo < dl|M][oo|[ Nl oo-

6. On suppose que M est diagonalisable et posséde au moins une valeur propre de
module strictement supérieur a 1. Déterminer la limite de ||M" ||, quand n tend
vers +00.
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1712 | Mines-Ponts PSI 2023

Soit A € My(R) telle qu’il existe k € N tel que A* = 0.
1. Montrer qu'il existe p < 4 entier tel que A? =0 et AP~! £ 0.
2. On suppose que p = 4. Montrer que A est semblable a

o O O O
oSO O
o O = O
O = O O

CCINP MP 2021

Soit K un corps et F un K-espace vectoriel de dimension finie n € N*. Soit encore u
un endomorphisme de E.

1. Montrer que si u est nilpotent, alors u™ = 0.
2. On suppose n > 2, ot n est tel que u™ = 0 et u"~* # 0.

(a) Montrer qu’il existe une base e de F telle que la matrice A de u dans la base
e est de la forme

0 0 0
1 0 0
0 1 0

(b) Résoudre I’équation X? = A, avec X € M, (K).

1714 | Mines-Ponts MP 2022
Soit n € N* et A € M, (R).
1. Montrer que, pour tout A € Ry, det(AA* + I,,) > 0.

2. On suppose maintenant que A est antisymétrique.

Montrer que le résultat précédent est alors valable pour tout A € R.

CCINP MP 2022

a —b —c —d
b a d -—c
: 2 12 _
Soit a,b,c,d € C tels que a® +b°* £ 0 et M = e —d a b
d ¢ -=b

1. Calculer MM7T. En déduire det(M).
2. (a) Sia®+b*+ c* + d* # 0, montrer que rang(M) = 4.
(b) Si a® + b* + ¢ + d*> = 0, montrer que rang(M) = 2
3. Soit w € C tel que w? = b + % + d>.
(a) Quelles sont les valeurs propres de M ?
(b) La matrice M est-elle diagonalisable ?
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CCINP PC 2017

010

0
1

Soit M = 0 0| e Ms(R).

0

0

S OO
— = =
SO O
O OO = O

1. Calculer M2

2. Montrer que M est diagonalisable et donner ses valeurs propres.

1717 | Mines-Télécom MP 2018

31 —1
Soit =1 1 1 | € Ms(R).
2 0 2

Montrer qu’il existe un nombre réel A tel que A — AI3 soit nilpotente.

CCINP MP 2017

Considérons I'ensemble E des suites réelles u = (uy,)nen vérifiant :
Vn € N, Upi3 = 2Upio + U1 — 2Uy,.

1. Démontrer que E est un espace vectoriel. Trouver la dimension de F.
(On pourra utiliser I'application u +— (ug; u1;uz).)

2. Déterminer les solutions de 'équation 2% — 222 —x +2 = 0. En déduire une base
de E.

0 1 0
3. On consideére la matrice réelle A= 0 0 1
1 2

Démontrer que

4. On fixe (ug;ui;us) € R3, définissant une suite u de F.
Ug
Calculer A - Uy, ou Uy = | uy
Ug
En déduire I'expression de u,, en fonction de n ainsi que de ug, u; et us.

1719 | Mines-Télécom MP 2025
Soit A € M5(R) a coefficients strictement positifs.

1. Montrer que A est diagonalisable.

2. Donner une condition nécessaire et suffisante pour que la suite (A™),cn converge
vers une matrice L # 0.
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1720 | Mines-Ponts PSI 2021

Soit A, B € M,,(C) diagonalisables dans M, (C) telles que A% = B? et A% = B3.
Montrer que A = B. Est-ce toujours vrai si A et B ne sont pas diagonalisables?

1721 | Mines-Ponts MP 2024

Soit f un endomorphisme de R? tel que f? = 0. Soit F' un plan vectoriel stable par f.
Montrer que Im(f) C F'.

ENSAE MP 2022

Soit E un K-espace vectoriel de dimension n > 2 et u un endomorphisme n’ayant que
E et {0} pour seuls sous-espaces vectoriels stables.

1. Montrer que u ne possede pas de valeur propre.
2. En déduire que K # C.

3. Montrer que pour tout z € E \ {0}, la famille (x;u(x);u?(z);...;u" ' (x)) est
une base de .

4. Comment est la matrice de u dans cette base ?

1723 | Mines-Ponts MP 2019
Soit £ un K-espace vectoriel de dimension n, f un endomorphisme de E et P = xj.

1. Montrer que si P est irréductible, alors les seuls sous-espaces stables par f sont
E et {OE}

2. La réciproque est-elle vraie?

CCINP PSI 2024

Soit A et B deux matrices de M, (R) ayant le méme polynome caractéristique P.
1. On suppose que P admet n racines. Montrer que A et B sont semblables.

2. Trouver deux matrices ayant le méme polynome caractéristique, mais qui ne
sont pas semblables.

1725 Centrale-Supélec MP 2019

Soit A, B € M, (C) telles que :
Vk € N, Tr(A*) = Tr(B").

1. Les matrices A et B sont-elles nécessairement semblables ?

2. Traduire par une condition sur les valeurs propres de A et B I’hypothese de
I’exercice.

3. Montrer que x4 = XxB-

1726 | Mines-Télécom MP 2019

On note P, I’ensemble des matrices carrées de taille n a coefficients dans {0; 1}, telles
qu’il n’y ait qu'un seul coefficient non nul par ligne et par colonne. Montrer que toute
matrice P, est diagonalisable sur C.
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CCINP PSI 2019

Soit n € N*.

1. Soit u un endomorphisme de R?*" tel que u? = 0 et rang(u) = n.
Montrer que Ker(u) = Im(u) et qu'il existe une base B dans laquelle u a pour

madtrice :
0, I,
0, 0,/

2. Soit u un endomorphisme de R3" tel que u® = 0 et rang(u) = 2n.
Montrer que Ker(u) = Im(u?) et qu'’il existe une base B dans laquelle u a pour

matrice :
0, I, 0,
0, 0, I,
0, 0, 0,

1728 | CCINP MP 2022
1 0 1

Soita e Ret A, = | —1 2 1
2—a a—2 «
1. Pour quelles valeurs de « la matrice A, est-elle diagonalisable ?
2. Calculer A} et A} pour tout n € N.

1729 | Mines-Ponts MP 2021

1. Montrer que si H est un hyperplan d’un espace vectoriel E, alors il existe une
forme linéaire ¢ non nulle de E telle que H = Ker(y).

2. Soit H un hyperplan de M, (C). Montrer que H contient au moins une matrice
inversible.

1730 Centrale-Supélec MP 2021

1. Soit M € M, (C) nilpotente.
Montrer Pexistence de d = min{k € N | M* = 0} et que d < n.

2. Soit M € M,,(R) nilpotente.
Montrer que M? — I,, est inversible et déterminer son inverse.

3. Soit M € M, (R) telle que M* + M3 + M? + M + I,, = 0.
Montrer que Tr(M) < n, puis étudier le cas d’égalité.

1731 | Mines-Télécom MP 2023

1. Soit A € GL,(R) et B € M,(R).
Montrer que det(AB — I,,) = det(BA — I,,).

2. Généraliser le résultat avec A non inversible.

Indication : on pourra considérer la suite (A,)pen+ définie par A, = A — %Ip.
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1732 | Mines-Ponts MP 2022

Pour z € C* et n > 2, calculer le déterminant n x n :

1
Z— — 1 0 0
z
1
1 z— = 1
z
Da(z) = 1
n(z) 0 1 zZ— - 0
z
1
1
0 0 1 z—-
z
GOINP PC 2023
Soit
P ]Rg[X] — R3[X]
1
P — i(P(X)—P(l—X))

1. Calculer ©?.

2. Démontrer que :

Im(y) = Vect ({X ~L(x - ;)3}> et Ker(p) = Vect <{1; (x - ;)2}) .

3. Montrer que ¢ est un projecteur et en identifier les éléments géométriques.

CCINP PSI 2019

Soit E un espace vectoriel de dimension finie n € N*. Soit p et ¢ deux endomorphismes
de E tels que :

p+q=1Idg et rang(p)+ rang(q) < n.

Montrer que p et ¢ sont des projecteurs.

CCINP PSI 2024

Soit A € M3(C) vérifiant A* + A = 0.
1. Montrer que Sp(A) C {0;i; —i}.
2. La matrice A est-elle diagonalisable sur C?

3. On suppose que A € M3(R). La matrice A est-elle diagonalisable sur R ?

1736 | Mines-Télécom MP 2024

On considére dans R? le plan P d’équation = + 2y + z = 0.
Déterminer la matrice de la projection orthogonale sur P.
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CCINP PC 2023

1. On note F' I'’ensemble des matrices triangulaires supérieures d’ordre 2. Montrer
que F' est un sous-espace vectoriel de My(R), stable par produit. Donner la
dimension de F'.

2. Soit F' un sous-espace vectoriel de M, (R) de dimension n* — 1 ne contenant pas
I,, et stable par produit.
(a) Rappeler la valeur de E;; - Ey; avec i, j, k,l € [1;n].
(On rappelle que E;; est la matrice dont tous les coefficients sont nuls, sauf
celui d’indice (i; ) qui vaut 1.)
(b) Montrer que M,,(R) = F & Vect({[,}).
3. (a) Soit M, M’ € M,(R) et p : M,(R) = M,(R) le projecteur sur Vect({I,})
parallelement a F'.
Montrer que p(MM') = p(M)p(M’).
(b) Soit M € M, (R).
Montrer que si M? € F, alors M € F.
4. Déduire des questions précédentes que E;; € F pour tout (i;7) € [1;n]?, puis
conclure.

5. Montrer que I'ensemble des matrices de trace nulle est un sous-espace vectoriel
de M, (R) de dimension n? — 1. Est-il stable par produit ?

1738 | TPE/EIVP MP 2018

Calculer le déterminant de la matrice A = (sin(i +J ))1<' _
SLISN

1739 | Mines-Télécom PC 2022

O «vr vnn 0 1
: : 2

Soit A = € M,(R).
0 «vr ... 0 n-—1
1 2 -+ n-1 n

Trouver les éléments propres de A.
Indication : calculer Tr(A?).

1740 Centrale-Supélec TSI 2021

Soit P le plan d’équation cartésienne x + y + z = 0. Déterminer les endomorphismes f
de R? vérifiant Im(f) = P et Ker(f) C P.

1741 | Mines-Ponts MP 2019

Soit E un espace vectoriel réel de dimension 3 et f un endomorphisme non nul de F
tel que f2 + f = 0. Montrer qu’il existe une base de E dans laquelle la matrice de f

est
0

0
0 -1
1 0

o O O
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CCINP PSI 2022

Soit E un espace vectoriel réel de dimension n € N*,
Soit f un endomorphisme de E tel que la matrice de f dans toute base de E soit égale
a une méme matrice A.

1. Montrer que, pour tout P € GL,(R), PA= AP.

2. Soit B € M,(R).
(a) Montrer qu’il existe A € R tel que B — Al,, € GL,(R).
(b) En déduire que AB = BA.
(¢) Montrer que f est une homothétie.

CCINP PC 2024

Soit n > 2 entier.
1 ... 1
1. Soit J = | : i | e M,(C).
1 ... 1
Déterminer les valeurs propres et les vecteurs propres de J.

2. Montrer qu'’il n’existe pas de forme linéaire ¢ de M, (C) telle que pour toute
matrice M de M, (C), le nombre ¢(M) est une valeur propre de M.

Mines-Ponts MP 2013
Soit A € M, (R) telle que A3 = AT A.
Montrer que A est diagonalisable dans C.

1745 | Mines-Télécom MP 2017

Soit E et F' deux K-espaces vectoriels. Considérons une application linéaire f de E
dans F.

1. Rappeler la définition de Ker(f) et de Im(f).
Démontrer que ce sont des K-espaces vectoriels.

2. Démontrer que f est injective si et seulement si Ker(f) est réduit a {0g}.

CCINP TSI 2019

Soit Ag, la matrice de My, (R) donnée par

a sit=]
Aogp=4b sij=2n+1—1iouaetbsont deux réels
0 sinon

1. Donner A; et Ay.

2. On note Ay, = det(As,).
Calculer Ay et Ay.

3. Calculer Ay, sia = 0.
4. Calculer As, si a # 0.
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CCINP PC 2017

a b ¢

Soit M(a;b;c)=|c a b| et E={M(a;b;c)| (a;b;c) € R3}.

b ¢ «a

. On note J = M(0;1;0). Calculer J2. Exprimer M (a;b;c) en fonction de I3, J
et J2.

. L’ensemble E' est-il un sous-espace vectoriel de M3(R)? Si oui, quelle est sa
dimension ? Est-il stable par produit ?

. La matrice J est-elle diagonalisable sur C? Donner ses valeurs propres en fonc-
2im

tion de 7 = e ainsi que les vecteurs propres associés.

. La matrice M est-elle diagonalisable sur C?

5. Montrer que M est diagonalisable sur R si et seulement si b = c.

6. On note f, ;. 'endomorphisme associé a la matrice M (a; b; ¢). Donner des condi-

tions portant sur a, b, ¢ pour que fq . soit un projecteur. Donner alors son image
et son noyau.

1748 | Mines-Ponts MP 2024

Soit n € N* et ay,...,a, € C. Calculer le déterminant de
a1 +ay ax+az --- ap,+a;
ai+a; a3+az - a4, +aj

A, =
ay +ay ay+ay - a, +ay

CCINP MP 2022

a b ¢

Soit A=|b ¢ al avec (a;b;c) € R3.

c a b

. A quelles conditions sur (a; b; ), la matrice M est-elle la matrice d'une isométrie
vectorielle directe ?

. On pose a =a+b+cet f=ab+ ac+ be, et on donne I'identité suivante :
a® +b* + ¢ —3abc = (a + b+ c)* — 2(ab + ac + be)(a + b + ).

Traduire le systeme de la question 1 avec a et .

. Montrer I’équivalence suivante :

La matrice M appartient a SO3(R) si et seulement si il existe k € [O ; 2%] tel
que a, b et ¢ soient les racines du polynome X3 — X? + k.

. On suppose que M € SO;(R) et que M # I3. La matrice M est donc la

matrice canoniquement associée a une rotation de I'espace R? orienté, notée r.
Déterminer 'axe D de la rotation r.

. Orienter 'axe D et déterminer 'angle de 7.
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ENS MP 2019

Soit A € M, (R) vérifiant A+ AT = I,,. Montrer que det(A) > 0.

Mines-Ponts MP 2018
Soit (ay;...;a,) € R" et A = (|ai - aj\)
Calculer det(A).

M, (R).

(7)€l m]

1752 | ENSEA/ENSIIE MP 2024

Soit A € M, (R) de polynéme caractéristique scindé et P un polynéme réel scindé a
racines simples. Montrer que la matrice P'(A)? — P(A)P"(A) est inversible.

CCINP PC 2019

a b ¢
Soit A= [b ¢ al| € M3(R).
c a b

Onnote S =a+b+cet o= ab+ bc+ ca.
1. Montrer que A € O3(R) <= S=+let 0 =0.

2. Préciser une condition pour A appartienne a SOs.

1754 | Mines-Ponts MP 2017

Soit M la matrice carrée antidiagonale réelle de taille 2n, d’éléments antidiagonaux

ai,as, ..., as,. Trouver une condition nécessaire et suffisante pour que M soit diagona-
lisable.
1755 | Mines-Télécom PSI 2019
1 a a2 a3 o e o o an_l
0 1 a a2 [N [N a]n72
0O 0 1 a e+ ... qn3
Soit a € R* et A =
[ T 1

Montrer que A est inversible et calculer son inverse.

1756 | Mines-Ponts PC 2023

0 —c a
On fixe (a;b;c) e R3etonpose M =| ¢ 0 b
—a —b 0
n Mk
Pour tout n € N, on définit la matrice S,, = R
k=0
1. Trouver un nombre réel 6 tel que M?> = —OM.

2. Pour tout n € N*, montrer I’égalité M>*"* = (—0)"~1M?2.
3. Montrer que la suite (S, )nen converge. Sa limite est notée Sy.

4. Trouver deux nombres réels a et 8 tels que So = I3 + aM + BM?.
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CCINP PSI 2023

Soit A € My(R) telle que A2 = AT A # I, et A inversible.
Déterminer un polynome annulateur de A.
Déterminer le spectre de A.

Montrer que A est une matrice orthogonale.
Calculer det(A).

Déterminer les matrices A.

SN R .

1758 | Mines-Ponts PC 2018

3|e

On fixe a € R. Pour tout n € N*, on pose A, =

= 3o =

1. La matrice A, est-elle diagonalisable dans M(R)? dans M(C)?

Déterminer ses éléments propres.

i
2. On pose z, = 1+ — et u, = (z,)".
n

(a) Montrer que z, posséde un argument 6, dans ]—g : g{

(b) Trouver un équivalent de 6,, quand n tend vers +o0.
(c) Déterminer la limite de w,, quand n tend vers +oo.

1759 Centrale-Supélec PC 2022

1. Donner un exemple de matrice de M,(C) non diagonalisable.

2. Donner un exemple de matrice de M(C) symétrique et non diagonalisable.

1760 | Mines-Ponts MP 2018

On note N l'ensemble des matrices nilpotentes et on prend M € M, (C). A-t-on I’équi-
valence entre les deux propriétés suivantes :

i) M est diagonalisable;
ii) VP € C[X], P(M) e N = P(M) =07

1761 | Mines-Télécom MP 2025

Soit la matrice :

€ M;(R).

b

I
T i -
—_ Ok O
— O R O K
— O R O KR
I T = S

1. Déterminer sans calculs :

(a) I'image et le noyau de A (exhiber une base);

(b) les espaces propres de A (trouver les valeurs propres et une base pour chaque
sous-espace).

2. Diagonaliser la matrice A.
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1762 | Mines-Ponts MP 2022

Soit A € GLy(C) telle que :
IM > 0, Vn € Z, || A" < M.

Montrer que A est diagonalisable.

1763 | TPE/EIVP PSI 2019

—a 44+a —(1+a)
Soita e Ret A==[4+a 1+a a
l+a —-a —(4+a)
1. Donner une condition nécessaire et suffisante sur a pour que A appartienne a

SO5(R).

2. Quel est 'endomorphisme associé a A dans ce cas?

CCINP PSI 2017

Soit D = diag(A1, ..., Ay) avec Aq, ..., A\, des éléments deux a deux distincts d’'un corps
(commutatif) K.

1. Soit M € M, (K). Montrer que M commute avec D si et seulement si M est
diagonale.

2. Soit M € M, (K) une matrice diagonale. Montrer qu’il existe un unique poly-
nome P de degré au plus n — 1 tel que M = P(D).

CCINP PSI 2016

Une matrice a diagonale propre est une matrice de M, (R) dont la diagonale est consti-
tuée de ses valeurs propres en respectant les ordres de multiplicité. On note ¢, 1'en-
semble des matrices a diagonale propre de M, (R).

1. Donner des exemples de matrices a diagonale propre.

0 01
2. Soit la matrice antisymétrique A=| 0 0 0| € M3(R).
-1 0 0

Est-ce que A est une matrice a diagonale propre ?
3. Soit A appartenant a e,, antisymétrique.

(a) Donner les valeurs propres de A.
(b) Montrer qu’il existe p > 2 tel que A = 0.
(c) Calculer (ATA)P et en remarquant que AT A est symétrique, montrer que
A=0.
(d) Déterminer la dimension du sous-espace vectoriel A,,(R) des matrices anti-
symétriques de M, (R).
n(n+1)

(e) Soit I un sous-espace vectoriel de &,. Montrer que dim(F) < 5=

ENS MP 2024

Déterminer les matrices M € M, (R) qui sont semblables a 2.
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Mines-Télécom MP 2024
Soit
¢  M,(R) — M, (R)

A — —A+Tr(A)L,
1. Montrer que ¢ est un endomorphisme de M, (R).
2. Déterminer le spectre de .
3. Montrer que Ker(Tr) est un hyperplan de M, (R).
4. Est-ce que ¢ est diagonalisable ?

Mines-Ponts PC 2023
Soit A € Ms.2(R) et B € Myy3(R).
0 -1 -1
On suppose que AB=|—-1 0 -1
1 1 2

1. Montrer que AB est une matrice de projection.
2. Montrer que BA = I,.

X MP 2017

Soit A = (Z i) € S5(R). On note A < p les valeurs propres de A.

Montrer que A < a < p.

CCINP PSI 2024

Soit M € My(R) telle que MMT = MTM et M? + 21, = 0.
1. Montrer que MT M est diagonalisable.
2. Montrer que Sp(M*M) C {—2;2}.
3. Montrer que, pour tout A € Sp(MTM), A > 0. En déduire Sp(MT M).

1
4. Montrer que —=M est orthogonale.

V2

1
5. Montrer que EM est la matrice d’une rotation d’angle 6 a déterminer.

6. Déterminer toutes les matrices M possibles.

1771 | Mines-Télécom MP 2021
On note £ = C([0;1]). On munit £ du produit scalaire :

fge B (fg) = [ fng(t)at

Soit H={f € E| f’+ f=0}. Déterminer le projeté orthogonal sur H de la fonction
g:T .
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1772 | Mines-Ponts PC 2019

Pour K =R ou K = C, et v dans K, on pose A(u) = (Upy1 — Un)nen-
1. Montrer que A est un endomorphisme de KV,
2. Pour tout p € N, déterminer Ker(AP).
3. Pour tout p € N et u dans KN, expliciter AP(u).

CCINP MP 2017
1. Démontrer que l'application ¢ : R[X] x R[X]| — R définie par
+o00 71
o(P:Q) = [ P@)Qx)e de

est un produit scalaire.
2. Calculer ¢(XP; X7) pour tous p et ¢ entiers naturels.
3. Déterminer le projeté orthogonal de X® sur Ry[X].

1774 | Mines-Télécom PC 2021
1 1 1

1. Soit M = € M;(R).

— =
S
oS O O O
O OO
e

0

Déterminer, sans calcul, le rang, I'image et le noyau de M.

2. Toujours sans calcul, diagonaliser la matrice M.

1775 | X MP 2016

On définit sur un C-espace vectoriel un « pseudo produit scalaire » par
i=1

Soit M € M,(C). Montrer alors 1’équivalence des propriétés suivantes :
i) M est diagonalisable dans une base « pseudo orthonormée » ;
ii) I(y;2) € C* peR, 0 €]0;2n] tels que
i0

: (v ze _
M est diagonale ou M = <Zelg Y+ ,UZ> ;

iii) MTM = MMT.

1776 | Mines-Télécom MP 2025

Soit A une matrice symétrique réelle telle qu’il existe k € N* tel que A* = I,,.
Montrer que A? = I,,.
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CCINP MP 2021

Soit m un entier supérieur ou égal a 3. On définit le produit scalaire suivant : si
X,Y € Myx1(R), (X,Y) = XTY. Soit n un entier supérieur ou égal a 1. Une matrice
A € M,,(R) est dite de type n lorsque AT = A™.

1. Comment appelle-t-on une matrice de type 17

Pour la suite, on prendra n > 2.

2. Pour tout x € R, on définit la matrice N(z) suivante :

0 0 0
N(z) =10 cos(z) —sin(x)
0 sin(z) cos(z)

(a) Montrer que pour tout k > 0, N(z)* = N(kx).

(b) Déterminer les valeurs de x pour lesquelles N(x) est une matrice de type n.
Pour la suite, on prendra m = 3.
Soit A € M,,(R) une matrice de type n. Soit B € M,(R) telle que B = A",

(¢) Montrer que A™ = A.

(d) Montrer que B™ = B puis que B est symétrique. Quelles sont les valeurs
possibles de B ?

(e) Montrer que —1 ne peut pas étre valeur propre.

1778 | Mines-Télécom MP 2021

1. Soit a > 0.

On définit une suite récurrente (x,),en par zo > 0 et z,41 = %(a:n + xi)

Etudier la suite (Zn ) nen-

2. Soit A € S7T(R) (ensemble des matrices symétriques réelles a valeurs propres
strictement positives). Montrer qu’il existe une unique matrice B € S+ (R)
telle que B? = A.

1779 | Mines-Ponts MP 2019

Soit f un endomorphisme de Ms(C) tel que Tr(f(l2)) = 0 et pour toute matrice N
nilpotente, f(NN) = 0. Montrer que f est nilpotente.

1780 | Mines-Télécom MP 2017

Soit P € M, (R) un matrice de projection. Considérons I’application

f @ My(R) — M,(R)
M  +— PM+ MP

1. Démontrer que pour toute matrice M € M, (R), on a

f?(M)=PM +2PMP + MP.

2. Démontrer que [ est diagonalisable.

3. Déterminer la trace de f en fonction de n et du rang de P.
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CCINP PSI 2019
M? —4AM? +4M =0
Soit M € M, (R) et le systéeme (S) *
Tr(M) =0
1. Montrer que si M vérifie (5), alors les valeurs propres de M sont les racines du
polynome P = X3 —4X? +4X.

2. Déterminer toutes les matrices M de M,(R) qui vérifient (.5).

1782 | Mines-Télécom MP 2022

On consideére 'application
u : Ry[X] — RIX]
P X"P(%)
1. Montrer que I'application u est un endomorphisme.

2. Montrer que u est diagonalisable et exprimer son polynéme minimal.

3. Déterminer une base de vecteurs propres de u.

1783 | Mines-Ponts MP 2014

Déterminer toutes les matrices A et B telles que :
1

VM € M,(R), Tr(AMB) = —Tr(AB)Tr(M)?
n

Indication : commencer par le cas B = I,.

CCINP MP 2024

a b c c b a
Soit u l'application de M3(C) qui a [d e f | associe la matrice | f e d
Ty z 2y x

1. Montrer que u est un endomorphisme.

2. Chercher les valeurs propres et les vecteurs propres associés a ’endomorphisme
u.

3. L’endomorphisme u est-il diagonalisable ?

4. Déterminer la trace, le déterminant et le polyndéme caractéristique de wu.

1785 | Mines-Télécom MP 2024

Soit
T : RN — RN
(un>n€N = (wn)neN
avec : . .
VneN w,=——) u.
n+1 k;z::o F

Déterminer les éléments propres de T.
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Mines-Ponts MP 2019
On note A = GL,(C)U{0,}.
1. L’ensemble A est-il un sous-espace vectoriel de M, (C)?

2. Quelle est la dimension maximale d'un sous-espace vectoriel de M,,(C), contenu

dans A7

3. Qu’en est-il dans R? On s’intéressera surtout au cas n = 2.

CCINP MP 2017

Considérons I'application T : M, (R) — M,(R) définie par T(M) = M7T.
1. Etudier le rang de 7.
2. Donner la matrice de T.
3. Déterminer le déterminant de T et sa trace.
4. Etudier la diagonalisabilité de T
5. Que peut-on dire de la matrice M + MT — 21I,, si M € M,(R)?

1788 | Mines-Télécom MP 2019

Soit K un corps et A € M, (K). On note com(A) sa comatrice. On suppose que A est
inversible. Déterminer le spectre de com(A) en fonction de celui de A.

1789 | Mines-Ponts MP 2025
Montrer que pour tout A € C,

A? = A <= rang(A) < Tr(A) et rang(l, — A) < Tr(1, — A).

1790 Centrale-Supélec 2017

1. Rappeler le théoreme du rang.

2. Soit f un endomorphisme d’un espace vectoriel £ de dimension n tel que I'on
ait frt=0et 772 £0.
Montrer que, pour tout 0 < k < n, dim(Ker(f*)) =k + 1.

3. Montrer qu’il existe une base de E telle que I’écriture matricielle de f dans cette

0 0
base est (In_2 0>'

1791 | Mines-Ponts PSI 2021

Soit A et B deux matrices symétriques de M, (R) telles que B = A3 + A + I,,.
Montrer que A € R[B].

1792 | Mines-Ponts MP 2021

Soit f un endomorphisme de Ms(R) tel que :
e f(IN) =0 pour toute matrice nilpotente N ;

« Tr(f(L2)) = 0.
Montrer que fo f = 0.
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CCINP MP 2021
1. (a) Déterminer trois polynémes A, B, C' € Ry[X] tels que :
« A(-1)=1, A(0) =0, A(1) =0,
« B(-1)=0, B(0) =1, B(1) =0,
« C(-1)=0,C(0)=0,C(1) = 1.
(b) Montrer que (A; B; C) est une base de Ry[X].
2. Soit n € N, n > 3. Soit v I'endomorphisme de R, [X] défini par :

VP € R,[X], v(P) = P(—~1)A + P(0)B + P(1)C.

(a) Montrer que rang(v) < 3. Qu’en déduit-on sur Ker(v) ?
(b) Déterminer une base de Ker(v).

(c) Déterminer les valeurs propres de v. L’endomorphisme v est-il diagonali-
sable ?

Mines-Ponts MP 2018
Soit P € C[X]. On définit une application u : C[X] — C[X] telle que :

Vz e C, u(P)(z) = Zj:; P:'l) "

1. Montrer que u est bien définie et que u est un automorphisme.

2. Donner les valeurs propres de wu.

1795 | Mines-Ponts PC 2016

Soit S = (a;;)1<i.i<n une matrice symétrique réelle définie positive d’ordre n.
YESIZVE

1. Pour tout (zi;...;%,) € RL", montrer que :
11
(1w - py)™ < ﬁ(xl +aa+ -+ ay).
2. En déduire que :
Tr(9)\"
det(S) < ( i >) .
n

3. Montrer que pour tout i € [1;n], a; > 0.
4. On note D = diag ( et A= DSD.

1. L1 )
\/all"”7\/ann
(a) Montrer que A est symétrique définie positive.

(b) En déduire que det(S) < [ as.
i=1
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1796 | Centrale-Supélec MP 2017

Soit G I'ensemble des matrices M (a) de la forme

-3 9 —4+43a

-1 1+3a —-1+a avec a reel.

3 9% 4-3a
1. Montrer que G est un groupe multiplicatif. Est-il abélien ?
2. Qu’est-ce que M (0) géométriquement. Déterminer Ker(M(0)) et Im(M (0)).
3. Montrer qu’il existe P € GL3(R) tel que pour tout a € R,

P'M(a)P =

o O =
O~ Q
o OO

1797 | Mines-Télécom MP 2023

Soit n € N* et A € M, (R). Montrer que :

A? = —1, = det(A4) = 1.

1798 | Mines-Ponts PC 2022

Soit A € M,(R).

1. Montrer que :
det(A) =0 <= 3B # 0 telle que AB = BA=0.
2. Montrer que :

det(A) =0 <= 3B # 0 telle que Vk € N*, (A + B)* = A¥ + B*.

CCINP MP 2021

Soit E = R[X].

+oo
1. Montrer que ¢ : (f;g) — / f(t)g(t)e™" dt est un produit scalaire sur E.
0

+oo

Calculer / t"e ' dt pour tout n € N.
0

Donner une base orthonormée de F' = Ry[X].

Déterminer le projeté orthogonal de X3 sur F.

ARl R S

Montrer que :

VP € E, /0 " plt)et dt‘ < \/ /0 (Pt dt.
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CCINP PC 2018

o 1 0 --- 0
1 0 :
Soit A=1¢0 *-. . . 0
: oo 001
0 --- 0 1 0

1. Montrer que, pour tout A € R, rang(A — AIL,) > n — 1.

2. Quelles déductions peut-on faire sur les valeurs propres de A7

CCINP PC 2024

Soit E un espace vectoriel euclidien et a,b € E.
On pose :
f: EFE — E
r — x+ (a,x)b

Montrer que f est bijective si et seulement si (a, b) # 0.

CCINP PC 2024

On munit R™ du produit scalaire canonique. On suppose que A et B sont des matrices
réelles symétriques telles que A2 = B2. On admet que, pour toute matrice diagonale,
rang(D) = rang(D?). L’objectif de I'exercice est de montrer 1'existence d’une matrice
orthogonale P telle que PA = B.

1. Montrer que :
VX € M,y (R), (AX)"AX = (BX)'BX.
2. On suppose que 0 n’est pas valeur propre de A.
(a) Montrer que A est inversible. Montrer alors que BA™! est orthogonale.
(b) Conclure.
3. On suppose maintenant que 0 est valeur propre de A, du multiplicité p.
(a) Montrer que Im(A) = Im(A?). En déduire que Im(A) = Im((B).
(b) Montrer que Ker(A) = Ker(B) et en déduire que 0 est valeur propre de B.
Préciser sa multiplicité.

CCINP MPI 2025

On note T 'endomorphisme de R[X] défini par :
T(P)=(8+3X)P+ (X*>-5X)P' + (X* - X*)P".
1. Déterminer I'expression et le degré de T'(X™) pour tout entier naturel n. Calculer
T(X*) pour k =0,...,4.
2. Montrer que si P est colinéaire a T'(P), alors P est de degré 3.
3. L’endomorphisme T est-il injectif ? surjectif ?

4. Montrer que la restriction de 7" & R3[X], notée T}, définit un endomorphisme
sur cet espace vectoriel. Donner la matrice de 77 dans une base choisie.

5. Donner une base de diagonalisation de 7} dans R3[X].
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1804 | Mines-Télécom PSI 2025
Soit a > 0 fixé. On pose :

a

M = € Ms(R).

S O =
S = O

a2
a3
1. Montrer que M admet une unique valeur propre réelle r.
On pose, pour tout n € N, s, = Tr(M").
S

2. Déterminer lim —.
n—+oo rn

1805 | Mines-Ponts MP 2022

Soit £ un C-espace vectoriel et f un endomorphisme de E. On suppose qu’il existe un
polynéme annulateur P de f vérifiant P(0) = 0 et P’(0) # 0. Montrer que Ker(f) et
Im( f) sont supplémentaires.

1806 | Mines-Ponts MP 2025

Soit n € N et F' une matrice réelle symétrique de taille n. Montrer qu’il existe a € R

tel que :
+o0 4k

Vt € [—a;al, exp <Z t}{jTr(F’“)) = det ((In — tF)_1>.

k=1

ENS MP 2025
Soit A, B € M,(C) telles que AB — BA est de rang 1. Montrer que A et B sont
simultanément trigonalisables.

1808 | Mines-Ponts MP 2016

Soit A et B deux matrices de M,,(Z) telles que, pour tout k € [0;2n], A+kB € GL,(Z).
Quelle est la valeur de |det(A)|? de det(B)?

CCINP PC 2017

4 2 o --- 0
2 :
Soit A, =10 *-. "-. . 0
: .. .. .2
o --- 0 2 4

1. Calculer det(A,,) pour tout n € N*.

2. Les matrices A,, sont-elles inversibles pour tout n > 17
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Mines-Ponts MP 2015
Soit K un corps et A, B € M, (K). On définit M € M;,(K) :

A A A
M=|A B A
A B B

1. Calculer le rang de M.
2. Calculer M1, lorsqu’elle existe, en fonction de A~! et de (B — A)~.

1811 | Mines-Ponts PC 2022

On considere une famille 7 = {F;...; F,} d’éléments de M,y ;(R) et une famille
G ={Gy;...;G,} d’éléments de M, (R).
Pour tout ¢ € {1;...;p} et pour tout j € {1;...;n}, on pose M;; = F; x G .

1. Montrer que la famille {M;; }1<i<p1<j<n €st une base de M,,»,(R) si et seulement
si F est une base de M,,1(R) et G est une base de M, «1(R).
,
2. Soit un entier 7 < min(p; n). Déterminer le rang de la matrice » M.
k=1

1812 | Mines-Télécom MP 2023

Soit la matrice :
1 -1 0
0o —1 1

Pour quels réels a la suite (a™A™),en converge-t-elle vers une limite non nulle ?

Mines-Télécom MP 2022
Soit A € M,(R) telle que A3 = A.
1. Montrer que A est diagonalisable.
2. On suppose que rang(A) = Tr(A). Montrer que A est la matrice d'un projecteur.

1814 | Mines-Télécom MP 2022

Soit E' 'espace vectoriel des fonctions continues de [0;1] & valeurs réelles. On pose
¢: f— I, avec
1 T
F(z) = —/ f(t)dt pour z # 0
x Jo
et F(0) = f(0).
1. Montrer que ¢ est un endomorphisme de F.

2. Déterminer les valeurs propres et les vecteurs propres de ¢.

1815 | Mines 2023

Soit K un corps et N € M, (K) nilpotente. Montrer que exp(N) — I,, est nilpotente.
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1816 | Mines

On considere la matrice de M, (C) :

1

00 O 0 —

n

1 0 0 :
1 0

C = 0

0
1 0

1

00 - 0o 1 —

n

Montrer que C' est diagonalisable.

Mines 2024

Soit A € S;F(R). Montrer que com(A) € S;F(R).

Mines 2023
Soit A € M,(R). On suppose qu'’il existe p > 1 tel que MP™? = M? et que Tr(M) = n.
Déterminer M.

1819 | Mines 2024

1. Soit A € GL,(C). Trouver une relation entre x4 et xa-1.
2. Soit A € M,,(C). Trouver une relation entre x4, x4z €t x_a.

1820 | Mines 2024
Soit P, ..., P, € K[X] et ay,...,a, € K.
Quel est le rang de la matrice (Pi(a;))1<ij<n ?

1821 | Mines 2022

Soit A une matrice symétrique de M, (R). On suppose que la suite (A*)ren converge
vers B € M,(R). Montrer que :

> |bi| < nyfrang(B).

1<i,5<n

CCP 2023

Soit A € M, (R) telle que A* = AT A.
1. Montrer que, pour tout p € R* :

Ker(A? — 1*1,) = Ker(A — pul,) @ Ker(A + ul,).

2. En déduire le polyndéme caractéristique de A, et discuter le caractere diagonali-
sable de A.
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Centrale 2022

On note N, (C) l'ensemble des matrices nilpotentes de M,,(C). Pour M € N, (C), on
désigne par d(M) lindice de nilpotence de M. On note enfin C[M] I'ensemble des
polynomes a coefficients complexes en M.

1. Soit N € N,(C). Montrer que C[N] est un espace vectoriel de dimension d(N).

2. Soit N € N,(C). Montrer que N + I,, € GL,(C), puis que N*> + 2N € N, (C)
avec d(N? +2N) = d(N).

3. Montrer que ¢ : N — N? + 2N réalise une injection de N, (C) dans lui-méme.

1824 | Mines 2024

Soit £ un K-espace vectoriel de dimension n € N. On dit qu'un endomorphisme de E
est une transvection lorsque :

pour une certaine base B de F, un certain A € K et 4,5 € {1;...;n} distincts.
Montrer ’équivalence entre les assertions suivantes :

i) u est une transvection ;
ii) rang(u —Id) =1 et (u —Id)* = 0.

1825 | Mines 2024

On considere A € M, (C) ainsi que :

B= <Z Z) € My(C).

Montrer que si A et B sont diagonalisables, alors il en est de méme pour :

o (aA bA)
cA dA)’
ENS 2023
Pour A € M,,(R), on note w4 : M — AM.
1. Montrer que |[|eall| < ||A4]2-
2. Donner une sous-algebre stricte de M,,(R) stable par transposition.
3. On définit la sous-algebre de M, (R) :

S = {(J\gl ]\042> ‘(Ml;Mg) e M,(R) qu(R),p—l-q:n}.

On admet que B = {p4 | A € S} est une sous-algebre de L(M,(R)). Décrire
I'ensemble des endomorphismes de M, (R) qui commutent avec tous les éléments
de B.
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CCP 2023

On consideére la matrice :
A=|-1 0 1 | € M3(R).

1. Déterminer le polynéme caractéristique de A.
2. Déterminer le polynome minimal de A.

3. Calculer A" pour n € N. En déduire exp(A).
4. Montrer que A est semblable a :

10
B=101
0 0

— = O

5. Trouver une autre méthode pour calculer A™.

CCP 2023

Soit (a;b) € R?\ {0}. On considére la matrice :

0 --- --- 0 a

A= € M,(R)
0 0 a
a a b

1. Justifier que A est diagonalisable.
2. Déterminer le rang de A.

3. Calculer le polynéme minimal et les valeurs propres de A. En déduire le poly-
nome caractéristique de A.

Centrale 2022

Pour A € M, (K), on pose pa: M +— Tr(AM) et 74 : M — MA— AM.
1. On suppose que A est nilpotente. Montrer que Ker(74) C Ker(ga).

2. On suppose qu'il existe B € M,,(K) telle que A = BA — AB.
Calculer BP(A) — P(A)B pour P € K[X]. En déduire que A est nilpotente.

3. Caractériser les hyperplans H de M, (K) vérifiant Im(74) C H. En déduire
I'existence de B € M,,(K) telle que B = BA — AB.

4. Montrer que Aexp(I, + B) = exp(B)A.
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1830 | Mines 2024

Soit n > 1 entier. On consideére le produit scalaire suivant sur £ = R, [X] :
+o0o
(P.Q) = [ POQ)ea.
0
On se donne IT € R[X] de degré n, et pour P € E, on pose :
“+o00
w(P)(z) = / (z + ) P(t)e dt.
0

1. Montrer que u est auto-adjoint et bijectif.

2. On considére une base orthonormée (Py;...; P,) de E constituée de vecteurs
propres de u, chaque P; étant associé a la valeur propre ;. Montrer que pour
tous z,y € R :

M +y) = Z MPu(2)Pi(y).

1831 | Mines 2024

1. Existe-t-il une norme |-|| sur M,(R) telle que pour tout A € M,(R) et pour
tout P € GL,(R), [|[P7AP| = ||4]|?

2. Existe-t-il une norme [|-|| sur M, (R) telle que pour tout A € M,(R) et pour
tout P € O,(R), |[P~TAP|| = ||A]|?

3. Méme question que la premiére avec une semi-norme.

Mines 2023

+o00
Pour P =Y ;X" € C[X], on pose || P|| = sup|ay|.

k=0 keN
On considere b € C vérifiant |b| < 1, et f: P — P(b).

1. Montrer que f est linéaire.
2. Montrer que f est continue pour ||-||.

3. Déterminer ||| f|| sous réserve d’existence.

1833 | Mines 2022

Soit ' un K-espace vectoriel de dimension n € N. On pose, pour x € E :

n

zpth
1

N(z) = sup =5

teR 2k—2
E t
k=1

1. Montrer que N est une norme sur F.

2. Comparer N et |-[|2.
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Centrale 2022

1. Montrer que si U € S;(R), alors U admet une unique racine carrée.
2. Montrer que si U,V € S} (R), alors Tr(UV) > 0.
3. Soit I un intervalle non vide de R.

On considere une fonction dérivable f : I — M, (R) ainsi que P € R[X]. Montrer
que Tro P o f est dérivable sur I et calculer sa dérivée.

1835 | Mines 2024

Soit S une partie non vide de R? et f un endomorphisme de R?. On suppose que, pour
tout v € R? :
flv)eS et v— f(v) €St

Montrer que S est un espace vectoriel et que f est la projection orthogonale sur S.

Centrale 2023

Soit F un espace euclidien et s un endomorphisme de F.
1. Etablir Iidentité du parallélogramme et I'identité de polarisation.
2. Montrer ’équivalence entre les assertions suivantes :
i) Je20,Vo,y € E, (s(x),s(y)) = c{z,y);
ii) Ve,y € E, (z,y) =0 = (s(z),s(y)) = 0.

3. Trouver tous les endomorphismes u de E tels que u(V1) C u(v)t pour tout
sous-espace vectoriel V de F.

CCP 2023

Soit f € L(R?) vérifiant f # 0 et f3 = —f. On pose F = Ker(f) et G = Ker(f* +1d).
1. Montrer que F' # {0} et G # {0}.
2. Soit v € G\ {0}. Montrer que R?> = F & G et que (v; f(v)) est une base de G.
3. Soit A € M3(R) telle que A% = —A. Montrer que A est semblable 4 :

0 0 0 00 0
0 0 1 ou 00 -1
0 -1 0 01 0

Mines 2024

Soit E un K-espace vectoriel et f € L(E). On pose :
G={ueLE)|uof=fouu’of=f IpeN " ou= [}

1. Soit u € G et k € N. Montrer que u*™! o f*¥ = w.
2. Soit u,v € G et k € N. Calculer u* o ff™l ov et vo fF1 ok,

3. En déduire que G posséde au plus un élément.
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CCP 2024

Soit £ un C-espace vectoriel de dimension n € N. On considere f, g € L(E) telles que :
feg—gof=1F
L’objectif est de montrer que f est nilpotente de trois manieres différentes.
1. (a) Montrer que, pour tout k € N, f¥og—go fk = kf*.
(b) Conclure en étudiant 1'application :

u : LE) — L(FE)
h +—> hog—goh

2. Montrer que pour tout P € C[X], P(f)og—goP(f) = foP(f), puis conclure.

3. (a) Montrer que pour tout k > 1, Tr(f*) = 0.
(b) Montrer que f ne posseéde qu'une seule valeur propre, puis conclure.

1840 | Mines 2022

Soit n > 2 et p < n. On considere M = (A B

C D) € M,(R) avec A € GL,(R).

1. (a) Montrer que l'application <§> +— Y induit un isomorphisme de Ker(M)
vers Ker(D — CA™'B).
(b) Montrer que rang(M) = p si, et seulement si, D = CA™1B.
2. Soit V un sous-espace vectoriel de M,,(R). On pose p = max rang(M).
On souhaite majorer dim (V).

(a) Montrer que I'on peut supposer J, € V, condition que 'on supposera vérifiée
pour la suite.

(b) On pose W = {(BOT g) ‘ (B; D) € M,_px,p(R) x Mn_pxn_p(R)} .

Etudier VN W.

1841 | Mines 2022

Soit A, B € M, (R). Montrer que 'application f : z — det(A+ xB) est polynomiale et
donner son degré.

Mines 2024

Soit aw > 0 et uw € L(C™). Montrer qu’il existe une base ordonnée B de C" telle que,
pour tous i,j € {1;...;n} :

i#j = |((w})

| <
(¥

1843 | Mines 2022

Trouver une matrice M € M, (R) vérifiant M* — M = I,,. Montrer que M vérifie
nécessairement det(M) > 0.
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X 2022

Soit A, B € M,,(C). Montrer 1’équivalence entre les assertions suivantes :
i) B est nilpotente et BA =10
ii) VM € M,(C), xam = Xam+B

1845 | X 2023

Soit E un C-espace vectoriel de dimension n > 1.
On considére a,b € L(FE) et on pose [a,b] = ab— ba. On suppose que [a,b] = fowv, ou
feL(CE)etve L(E,C) vérifient vo f = 0.

1. Calculer det([a,b]).

2. Montrer que a et b sont trigonalisables dans une méme base.

1846 | Mines-Ponts MP 2021

Soit E un espace euclidien et z,y deux vecteurs non nuls de E. Quelle(s) condition(s)
y a-t-il sur = et y pour que le projeté orthogonal de x sur Vect({y}) soit égal au projeté
orthogonal de y sur Vect({z})?

1847 | Centrale-Supélec MP 2013

Soit E l'espace vectoriel des suites réelles. On étudie I'application qui a une suite u
associe la suite v définie par :

ug + 2uy + -+ (n+ Luy,

VneN, v, =
netv (n+1)

Montrer que si u converge, alors f(u) converge également. Préciser sa limite.
Montrer que f est un automorphisme de E.

Trouver les valeurs propres et les vecteurs propres de f.

=W

On note F' le sous-espace vectoriel de E constitué des suites bornées. On le
munit de la norme infinie. Montrer que F' est stable par f, que f est continue
pour la norme considérée et préciser sa norme subordonnée.

1848 | Mines-Télécom MP 2023

On pose E = C([0;1]) que 'on munit de la norme ||-||». On pose :

Vfe B, u(f)(z) = /01 inf(a; £) £(¢) dt.

Montrer que u est un endomorphisme continu de E et calculer ||ul.

1849 | Mines-Télécom PSI 2023

. -5 3
Soit A = ( 6 _2) € M,(C).

1. Montrer que A est diagonalisable.
2. Résoudre B? = A dans M,(R), puis dans M, (C).

3. Résoudre X' = AX avec X(t) = <x§2)
)
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1850 | Mines-Télécom PSI 2023

12 -3
Soit A=[2 4 —6 | € My(R).
48 —12

1. Déterminer le rang de A. En déduire sans calcul le polynéme caractéristique de
la matrice A.

2. Déterminer les éléments propres de A.

3. La matrice A est-elle diagonalisable ?

1851 | Mines-Télécom MP 2022

Soit A € M,(R) telle que A? est diagonalisable & valeurs propres strictement positives.
Montrer que A est diagonalisable.

CCINP MP 2018

Soit F un espace vectoriel euclidien, u un endomorphisme orthogonal de E (i.e. tel que
Ve, y € E, (u(x),u(y)) = (z,y)). On considere v = Idg — u.
1. (a) Montrer que Ker(v) = (Im(v))*.
(b) En déduire que Ker(v) et Im(v) sont des supplémentaires orthogonaux.
2. Soit p le projecteur orthogonal de E sur Ker(v).
(a) Montrer que pou =wuop=p.
(b) Pour tout x € E, montrer qu’il existe y € E tel que p(z) = x + u(y) — y.
(c) En déduire que :

vz € B, p(z) = lim (17121&(1;)).

n—-4o00

1853 | Mines-Télécom MP 2018
Soient n € N*, (as;...;a,) € C" et (by;...;b,) € C".

-----

Dans quels cas la matrice A est-elle diagonalisable? Déterminer alors ses éléments
propres.

CCINP MP 2018

On cherche & déterminer les matrices A € M, (R) telles que A* = A% et Tr(A) = n.
1. Montrer qu’'une telle matrice est diagonalisable.

2. Conclure.

1855 | Mines-télécom MP 2018

1
Soit A € S;F(R). Montrer que {/det(A) < ETr(A).
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1856 | Mines-Télécom MP 2018

I, |
0 . :

Soit A=1|: .. .. o | € M, (R).
o --- ... 0 1

Calculer A3.

CCINP MP 2025

Soit F un espace vectoriel de dimension 4.
1. Enoncer le lemme des noyaux pour deux polyndmes.

2. Soit f € L(E) tel que son polynéme minimal s’écrive : P(X) = (X2+1)(X2+4).
Montrer qu'il existe x,y non nuls dans F tels que f?(z) = —z et f?(y) = —4y.

3. Montrer que la famille (z; f(z);y; f(y)) est une base de E.

4. Exprimer la matrice canoniquement associée a f dans cette base.

1858 | Mines-Ponts MPI 2025

1. Donner le polynome caractéristique de :

0 -+« -+ 0 —a

L
0
: . .0 —a,_o
O -+ 0 1 —ap_

2. Trouver les n € N tels qu’il existe M € M, (Z) vérifiant M3 + M + I,, = 0.

1859 | Mines-Ponts MP 2025
Soit n € N et F' € S,(R). Montrer qu’il existe o € R tel que :

400 1k

Vt € [—a;al, exp (Z tkTr(F’“)> = det (([n — tF)—l).

k=1

Mines-Ponts MP 2025
Soit F un espace euclidien et v € L(E) tel que Tr(u) = 0.
1. Montrer qu’il existe un vecteur = € E \ {0} tel que (u(z),z) = 0.

2. Montrer qu’il existe une base orthonormée de F dans laquelle la matrice de u a
une diagonale nulle.
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CCINP MP 2025

On définit les deux matrices de M3(R) :

0
N=10
0

o O =

0 1 2 3
1| e T=|0 1 2|,
0 00 1

ainsi que C(N) = {M € M3(R) | NM = MN}.
1. Montrer que C(N) est un espace vectoriel. Déterminer-le.
2. Montrer que N est un polynome de degré 2 en T'.
On définit £ = {M € M3(R) | M® =T}.
3. Montrer que pour tout M € E, M est un polyndéme en N.

4. Déterminer F.

CCINP MPI 2025

On note T' 'endomorphisme de R[X] défini par :
T(P)=(8+43X)P+(X* - X)P' +(X* - X*)P".
1. Déterminer l'expression et le degré de T(X™) pour tout en entier naturel n.
Calculer T'(z*) pour k =0,...,4.
2. Montrer que si P est colinéaire a T'(P), alors P est de degré 3.
3. L’endomorphisme T est-il injectif ? surjectif ?

4. Montrer que la restriction de 7" & R3[X], notée T3, est un endomorphisme sur
cet espace vectoriel. Donner la matrice de T} dans une base choisie.

5. Donner une base de diagonalisation de T} dans R3[X].

Mines-Ponts MP 2018
Soit A et B dans M, (R) telles que ABAB = 0. A-t-on nécessairement BABA =07

1864 | Mines-Télécom MP 2021

Soit A € M, (R) telle que Tr(A) = 0. Montrer qu’il existe deux matrices nilpotentes
Np et Ny telles que A = Ny + Nos.

1865 | Mines-Télécom MP 2021

On note (eq;...;e,) la base canonique de R"™. Si o € S,,, on note f? 'unique endomor-
phisme de R" tel que, pour tout i € [1;n], f7(e;) = ey(;). Enfin, on pose :
1 ag
p= nl Z fe.
€Sy

1. Soit (o;7) € S2. Calculer f7 o f7.
2. Montrer que 'application 7 — ¢ o 7 est une bijection de 5,,.

3. Montrer que p est un projecteur.
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X ESPCI 2023

Soit A € M, (C). A quelle condition existe-t-il deux matrices A et B diagonalisables,
de rang 1, telles que M = A+ B?

CCINP MP 2021

Résoudre le systéme suivant d’inconnue (z:1; z) € R3 en fonction du parametre m :
) )

2mx +y+ 2 =2
T+ 2my + 2z =4m
r+y+2mz = 2m?

1868 | Mines-Ponts MP 2021

Soit A et B deux matrices de M,,(R) qui commutent. On suppose qu’il existe n+ 1 réels
deux a deux distincts ¢4, ts,...,t,41 tels que, pour tout ¢ entre 1 et n + 1, la matrice
C; = A+ t;B soit nilpotente. Montrer que les matrices A et B sont nilpotentes.

Mines-Ponts MP 2021
Soit M € M, (C) et I = {P € C[X] | P(M) est nilpotent}.
Déterminer I.

CCINP PSI 2021
Soit A € M,(R) et B = <61 é) € My, (R).

1. Donner le rang de B en fonction du rang de A.
2. Montrer que, pour tout P € R[X],

P(B) = (P(OA) PE)A)> + P(0) (8 _[i"> .

3. On suppose que A est diagonalisable. Montrer que B 1’est aussi, et donner ses
valeurs propres.

1871 | Mines-Ponts MP 2021

Soit A € Mg(@)
Montrer que A et —A sont semblables si et seulement si Tr(A) = 0 et det(A) = 0.

1872 | Mines-Télécom MP 2018

1
Soit n € Net A € R,[X] tel que / A(t)dt # 0. On pose :
0

VP € R,[X], p(P) = /01 P(t)dt-A— ./01 A(t)dt - P.

1. Montrer que ¢ € L(R,[X]).
2. Déterminer les éléments propres de .

3. L’endomorphisme ¢ est-il diagonalisable ?
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Mines-Télécom MP 2018
Soit E un espace vectoriel réel de dimension finie n € N*,
1. Si dim(F) = 2, montrer qu'il existe f € L(E) tel que f? = —Idg.
2. On revient au cas général et on suppose l'existence d’'un endomorphisme f de
E tel que f% = —Idg.
(a) Montrer que f n’admet pas de valeur propre et que dim(F) est paire.
(b) Montrer que pour tout z € E \ {0g}, Vect({x; f(x)}) est stable par f.

(¢) En posant dim(E) = 2p, montrer qu’il existe une famille de vecteurs de E,
{e1;...;e,}, telle que {eq; f(e1);...;ep; f(ep)} soit une base de E.

1874 | Mines-Télécom MP 2018

On donne les deux matrices réelles :

-1 -4 2 2 1 1
A=11 3 -1 et B=0 0 -2
-1 =2 2 -1 0 2

Les matrices A et B sont-elles semblables ?

1875 | Mines-Télécom MP 2018

Soit n € N* et F un espace euclidien de dimension n. Soit (e;;...;e,) une famille de
vecteurs unitaires de E tels que, pour tous ¢,j € [1;n] tels que ¢ # j, ||e; — e;||=1.
Démontrer que (eg;...;e,) est une base de E.

1876 Centrale-Supélec MP 2018

Soit r et s deux rotations vectorielles de R3.
1. Montrer que si les axes de r et s sont identiques, alors r et s commutent.

2. Montrer que si r et s sont des rotations d’angles 7 et d’axes orthogonaux, alors
r et s commutent.

3. Trouver une condition nécessaire et suffisante pour que r et s commutent.

1877 | ENSEA/ENSIIE MP 2018

Soit M une matrice de M3(R) telle que M* = 0. Montrer que M3 = 0.

CCINP MP 2023

On considere un espace euclidien £ dont le produit scalaire est noté, pour tous vecteurs
z ety de E, (x,y). On fixe deux vecteurs non nuls u et v de E.

1. Pour tout vecteur x de E, on pose : (u ® v)(x) = (v, z)u.
(a) Justifier que u ® v est linéaire et donner son rang.
(b) Déterminer les éléments propres de u ® v.
(¢) L’endomorphisme u ® v est-il diagonalisable ?
2. Calculer (u ®v)? = (u®v) o (u®v) et retrouver le résultat de la question 1.c.

3. Soit g un endomorphisme de E. On note g* son adjoint. Montrer que g commute
avec u ® v si et seulement si il existe un réel a tel que g(u) = au et g*(v) = awv.
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1879 | Mines-Télécom MP 2023

1. Rappeler le théoreme spectral.

2. On munit M, «;(R) du produit scalaire usuel. Soit A € S,,(R). Montrer que les
sous-espaces propres de A sont deux a deux orthogonaux.

3. Soit A € M,(R) et on suppose que A + AT est nilpotente. Montrer que A est
antisymétrique.

1880 | Mines-Télécom PSI 2023
Soit A € M,(R) telle que :

4 sii=j

Vie [l;n], V5 €[l;n], a;j = {1 S0

Etudier la diagonalisabilité de A et donner ses éléments propres.

CCINP MP 2023

Soit a, b, c,d, e, f des réels et

1 a b ¢
0O -1 0 O
Gl 0 d 1 e
0O f 0 -1

1. Montrer que la matrice A est trigonalisable.

2. Trouver une condition nécessaire et suffisante pour la matrice A soit diagonali-
sable.

3. Dans ce cas, trouver une base de vecteurs propres.

CCINP PSI 2024

1. Rappeler la forme d’une matrice de Vandermonde et I'expression de son déter-
minant.

2. Pour tout k entier naturel compris entre 1 et n, on pose fi(x) = e**. Montrer
que la famille {fi;...; f.} est libre.

3. Montrer, sans les calculer, que le polynome P(X) = X3 + X + 1 admet trois
racines distinctes dans C, que 'on notera «, 3, 7.

4. Résoudre le systeme suivant, composé de 3 équations a 3 inconnues :

rT+y+z =0
ar + By + vz =0
olr+ By +922 =0
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1883 | Mines-Ponts MPI 2023
Soit n > 2 et S € S,(R). Notons :

E={||X]|| X € Mpx1(R) et Tr(XTSX) =1}

1. Montrer que & posséde un maximum si et seulement si S € S} (R).

2. Déterminer le maximum de € si S € S;FF(R).

Mines-Télécom MP 2024
Soit A € M,,(C) admettant une unique valeur propre \.
1. Montrer que A — \I,, est nilpotente.

2. Soit le systeme différentiel (E) : Y/ = AY. Montrer que les solutions de (E)
sont bornées si et seulement si A = A\, et A € iR.

1885 | Mines-Ponts PSI 2024

Soit F un espace vectoriel normé de dimension finie et f € L(E).
Montrer qu’il existe C' > 0 tel que || f?(z)|| = C||f(z)]| pour tout z € E si, et seulement
si, Ker(f) = Ker(f?).

1886 | Mines-Télécom 2024

Soit € une partie de M, (R). On appelle centre de € 'ensemble des matrices commutant
avec tous les éléments de £.

1. Déterminer le centre de M, (R).
2. Démontrer que Vect(GL,(R)) = M, (R). En déduire le centre de GL,(R).

1887 | Mines-Télécom 2025

On étudie les matrices de M,,(R) qui vérifient la condition :
Xa(X) = [I[(X —aw) (1),

c’est-a-dire les matrices pour lesquelles les valeurs propres sont réelles et sont exacte-
ment les coefficients diagonaux de la matrice.

100 1 11
1. Onpose My =10 0 1|etMy=|1 1 1
010 1 11
Les matrices M; et My vérifient-elles la condition (1) 7
u ovow
2. Soit (u;v) € R% On pose M, = |v u v
vovou

A quelle condition nécessaire et suffisante la matrice M, , vérifie-t-elle la condi-
tion (1)7
3. Quelles sont les matrices de Ms(R) qui vérifient la condition (1) 7

378




1888 | Mines-Ponts MP 2024

Soit A € M,(C) telle que :
Vk € [1;n—1],Tr(A*) =0 et Tr(A™) #0.

Montrer que A est diagonalisable.

CCINP 2025

2 20 z(t)
Soit A= 2 3 0]eM(R)et X(t)=[y(t)| € Msx1(R).
1 0 3 2(t)

1. Etudier la diagonalisabilité de A.

2. Trouver les matrices D et P telles que A = PDP!.
On souhaite résoudre le systeme différentiel suivant :

¥ =—2x—2y
(S): ¢y =22+ 3y
2 =x+3z

3. On pose U(t) = P71X (t).
Trouver un systéme d’équations vérifié par U(t) et effectuer la résolution de ce
systeme.
On souhaite maintenant résoudre le systeme différentiel suivant :

= —=2x—2y
(S7) : {y" =22 + 3y
2 =x+3z2

4. On pose V(t) = P71 X(t).
Trouver un systeme d’équations vérifié par V' (¢).

5. Montrer que ’ensemble des solutions bornées de (S’) est un espace vectoriel réel.
Quelle est sa dimension ?

Mines-Ponts MP 2025
Soit E un espace vectoriel euclidien et f € L(E) tel que :

Ve e B, ||f(@)] < =],

1. Montrer que :
Vee B, f(z) =2 = [*(z) =ux,
ou f* est 'adjoint de f.
2. Etudier la suite u de L(E)Y définie par :
1 n

N, u, = —— k
VneN, u n+1]§f
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CCINP TSI 2019
1

Soit ¢ définie pour tout (P; Q) € R3[X]* par ¢(P; Q) = / P(t)Q(t) dt.

—1
1. Montrer que ¢ est un produit scalaire.
2. Construire une base orthonormée (Qo; Q1; Q2; @Q3) de R3[X].

3. Soit M; = sup |Qi(t)], i € [0;3]. Montrer que M; = Q;(1).

te[—1;1]

CCINP MP 2025

Soit E un espace vectoriel muni d’'un produit scalaire. Soit f un endomorphisme de FE
tel que :

Vr,y e B, (r,y) =0 = (f(2), f(y)) = 0.
1. (a) Montrer que :

Ve,y € B, |lz| = [lyll = [lf (@) = [F @)l

(b) Montrer que Ker(f) = E ou Ker(f) = {0}.
2. Supposons E de dimension finie n. Soit {e;}1<i<n, une base orthonormée de E.

(a) Montrer que les ||f(e;)|| sont tous égaux & un méme entier (1 < i < n).
(b) Montrer qu’il existe un entier k tel que :

Ve e B, [[f(x)| = k||

3. Montrer que le résultat précédent reste valable en dimension infinie.

4. Montrer que :
Va,y € B, (f(2), f(y)) = k*(z,y).

1893 | MP ENS 2025

Une matrice carrée a coefficients réels ou complexes est dite de Bourdeaud si tous ses
coefficients diagonaux sont ses valeurs propres comptées avec leur multiplicité.

1. Montrer qu’une matrice réelle est semblable a une matrice de Bourdeaud si et
seulement si elle est trigonalisable.

2. Existe-t-il une matrice complexe, symétrique et de Bourdeaud qui ne soit pas
diagonalisable ?

3. Une matrice est dite normale si elle commute avec sa transposée. Quelles sont
les matrices réelles, symétriques et normales de Bourdeaud ?

1894 | ENSEA/ENSIIE MP 2022

On pose E = R[X] et on définit f € L(E) par :
VP e E, f(P)= (X —3)(X +1)P' — XP.

Donner les valeurs propres et les vecteurs propres de f.
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1895 | Mines-Télécom MP 2024

Soit E' un espace euclidien. Soit {ey;...;e,} une famille liée génératrice de vecteurs
unitaires de F, deux a deux distincts, pour laquelle il existe a € R tel que :

Vi,jelin], i#j = (e e) =

1

n—1

1. Montrer que Zei =0eta=—
i=1
2. Montrer que dim(E) =n — 1.

1896 | Mines-Ponts PC 2023
Soit A € S,,(R). On note :

Ca={z eR"| (Az,z) = 0}.

010
1. Dans cette question, on prend n=3et A= |1 0 0
0 0

=

Déterminer 'ensemble Cy.
2. Montrer que les trois assertions suivantes sont équivalentes :
i) Ca = Ker(4);
ii) C4 est un sous-espace vectoriel de R";
iii) A€ SHR) ou —A € ST (R).

CCINP MP 2025

Soit n € N* et U,, la matrice carrée réelle de taille n dont tous les coefficients sont
égaux a 1.
1. Sans calculer le déterminant, trouver les valeurs propres de U,, avec leur multi-
plicité.
2. Soit (e;)1<i<n la base canonique ordonnée de R"™. On définit :
-1 q
Vi€ HQ;nﬂa fz = Z .

k:12_1

€L — €;.

Montrer que (f;)a<i<n est une base orthogonale du sous-espace propre associé a
la valeur propre 0 de U, pour le produit scalaire canonique.

3. En déduire une base orthonormée formée de vecteurs propres de U,,. Donner la
formule de diagonalisation de U,,.

1898 | Mines-Ponts PC 2023

Trouver tous les couples (u; v) d’isométries qui anticommutent dans un espace euclidien
de dimension 2.
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1899 | Mines-Ponts MP 2017

0 a b
Soit a,b,c € R} et A= i 0 ¢
poe 0

1. Donner une condition sur a,b et ¢ afin que A soit diagonalisable.

2. Soit f I'endomorphisme associé & A. Quels sont les sous-espaces vectoriels de R?
stables par f7

1900 | Mines-Télécom PSI 2019

On considere :

¢ @ RX] xR, [X] — R
(F;Q) — > Pk)QK)
k=—2017

Quelles sont les valeurs de n pour lesquelles ¢ est un produit scalaire ?

CCINP MP 2018

Soit
1 0 -1 0 0
00 0 =3 0
c=]00 0 0 —6|eMR).
00 0 1 0
00 O 0 3

1. Calculer y¢ et mc.
2. Montrer qu’il existe A et B dans M5(R) telles que :

C=A+B, A=A B*=3B et AB=BA=0.

3. Déterminer le rang de A et le rang de B.

4. Montrer que, pour tout n € N* C" g’écrit comme une combinaison linéaire de
A et B dont on déterminera les coefficients.

1902 | Mines-Ponts MP 2018

Soit A une matrice réelle symétrique, B une matrice réelle antisymétrique et M une
matrice réelle inversible telle que A = M~'BM. Montrer que A = B = 0.

X MP 2018

Soit A = (Z i) € M5(R) et Ay, A2 ses valeurs propres.

Trouver le lieu de (a; ¢) sachant que les deux valeurs propres de A sont fixées.

1904 | Mines-Ponts MP 2018
Soit n > 2 entier. Résoudre dans M,,(C) :

M? — Tr(M)M + det(M)I,, = 0.
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CCINP MP 2018

Soit z un nombre réel et E, l'ensemble des matrices M € M, (C) vérifiant I’égalité
M?+ M+ 2z, =0.

1. Si x # 0, montrer qu’une matrice M € F, est inversible et exprimer son inverse.
Quelles sont les matrices inversibles appartenant a Ey?

2. Trouver « réel tel que, si z < «, alors M € E, est diagonalisable dans M, (R).

3. Ici, x = —2. Déterminer I'ensemble T des traces des éléments de E,. Quel est
son cardinal 7

1906 | TPE/EIVP PC 2018

Soit £ = Ry[X]. Pour tous P,Q € E, on pose :

(P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2).

1. Montrer que (-, ) est un produit scalaire sur E.

2. Calculer la distance entre le polyndme X? et le sous-espace vectoriel Ry[X].

TPE/EIVP MP 2018
Soit
f @ My(R) — M,y(R)
X — XT_— X

L’endomorphisme f est-il diagonalisable ?

1908 | Mines-Ponts PC 2022

Soit A € My, (R). On suppose que A3 = 0 et que rang(A) = 2n.
Montrer qu’il existe P € G Ls,(R) telle que :

0
0

0
PAP = |1,
0 I,

o O O

CCINP PSI 2022

Soit f, g des endomorphismes de R? tels que f = ¢g o g. On note B la base canonique
de R3.

On suppose que A = (f)B =

=

0 0
2 1
1 2
1. L’endomorphisme f est-il diagonalisable ?

2. Soit e; et ez des vecteurs propres de f associés respectivement aux valeurs
propres 1 et 3. Montrer que g(e1) et g(es) sont aussi des vecteurs propres de f
associés respectivement aux valeurs propres 1 et 3.

3. Montrer que e; et e3 sont aussi des vecteurs propres de g.
4. L’endomorphisme g est-il diagonalisable ?

5. Quelles sont les valeurs propres possibles de g7
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1910 | Mines-Ponts MP 2018
Etudier les classes de similitude de Mjs(R).

1911 | Mines-Télécom MP 2022

Soit F un espace vectoriel de dimension n muni du produit scalaire (-, -), et a un vecteur
normé de E. Soit o € R et f, :  — = + a{a, xr)a, endomorphisme de E.

1. Montrer que :
V(Oé;ﬂ) € R27 fa o f,B = foz+6+o</5'
2. Déterminer les « tels que f, soit bijectif.

3. Trouver les valeurs propres de f,.

CCINP PSI 2023

Soit A € M,,(R) une matrice qui vérifie la relation :

AP +94A=0 (1)
Montrer que le spectre de A est inclus dans {0; 3i; —3i}.
La matrice A est-elle diagonalisable dans M,,(C)?
La matrice A est-elle diagonalisable dans M, (R)?

On suppose n impair. Montrer que A n’est pas inversible.

AR BRI e

Montrer que si A est une matrice symétrique réelle non nulle, alors elle ne vérifie
pas la relation (1).

1913 | Mines-Ponts MP 2021

Soit £ = C*°(R,R) et u 'application qui & f de E associe x — f(pr+q), avec p €]0;1]
etg=1—np.

1. Montrer que u est un automorphisme de E.
2. Montrer que les valeurs propres de u sont dans | — 1;1].
3. Montrer que si f est un vecteur propre, alors il existe k € N tel que f* = 0.

4. Trouver les valeurs propres de u et les vecteurs propres associés.

CCINP MP 2023

Soit
f : M2 (R) — MQ (R)

a b d 2b

c d 2c a
1. Montrer que f est un endomorphisme.
2. Redéfinir la base canonique de My(R). Ecrire la matrice de f dans cette base.
3. Donner les éléments propres de f.
4. L’application f est-elle inversible ? Est-elle diagonalisable ? Si c¢’est le cas, expri-

mer la matrice de f dans la base canonique en fonction d’une matrice diagonale.
5. Pour n € N, définir f™.
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1915 | Mines-Ponts MP 2022

Soit 7 € N. On note E,, ’ensemble des f € C*°(R,R) telles que Z (Z) &) = 0.
k=0
1. Montrer que E,, est un espace vectoriel.

2. Donner la dimension de E,,.

3. Donner une base de E,,.

1916 | Mines-Ponts MP 2023

Soit F C M,,(C) une partie non vide stable par produit.
Montrer qu’il existe A € F telle que Tr(A) € {0;...;n}.

1917 Centrale-Supélec PSI 2023

3 -1 1
Soit A= 2 0 1]|¢€ M;R).
1 1 2

1. Montrer que A admet une valeur propre simple notée b et une valeur propre
double notée a. La matrice A est-elle diagonalisable ?

2. Soit f: R — R de classe C'! sur R. Montrer qu’il existe un unique polynéme P
de degré 2 tel que :

P(b) = f(b), Pla)= f(a), P'(a)=f"(a).

On note Py ce polynome.

x x
3. Donner P; dans le cas ou f est I'application x > puis x > 3

CCINP MP 2023

1. Soit A = (2 b) avec a,b € R.

0

Démontrer que la matrice A est diagonalisable sur R si et seulement si ou bien
ab > 0, ou bien a = b = 0.

2. On note u 'endomorphisme de R™ dont la matrice dans la base (eq;...;e,), de
taille n, est :
G,

ai
avec n pair.

(a) Donner les sous-espaces vectoriels u-stables de dimension 2.
(b) Montrer que u est diagonalisable si et seulement si

a; = apy1-i = 0 ou a;an+1-; > 0 pour tout i € [1;n].
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CCINP MP 2021

On se place dans M(R). On note :

A:<a11 Cl12> ot B:<bn 512>'
a21 A22 bar  ap

i aiily  ainls 5 B 0,
A_<CL21[2 CL22]2> ot B_<02 B>‘

/
On suppose A et B diagonalisables. Si <i1> est un vecteur propre de A et (i}) un
2 2

On pose également :

vecteur propre de B, on pose :

Ty 0 x) 0

. 0 . T i CL’IQ . 0
Ul - Ty ) U2 - 0 3 ‘/1 — 0 ; ‘/2 - xll
0 ) 0 Z'IQ

1. Montrer que U; et U, sont des vecteurs propres de A et que V; et Vi sont des

vecteurs propres de B.
2. Montrer que W = z1V; 4+ x5 V5 est vecteur propre de A et de B.
3. Comment former une base de R?* avec des vecteurs propres communs a A et a
B?
an B apB

4. La matrice M = (ang 9y B

) est-elle diagonalisable dans My(R)?

Mines-Télécom MP 2021
Soit E' = C[X]. Pour tout P € E, on pose :

T(P)=(-3X +8)P +5(X*+ X)P' —2(X* — X?)P".

1. Soit P € E de degré n. Déterminer le coefficient de X"+ de T'(P). En déduire
que les vecteurs propres éventuels de 7" sont tous de méme degré.

2. Montrer que C3[X] est stable par T. On note alors T3 I’endomorphisme induit
par T sur C3[X]. Déterminer la matrice de T3 dans la base canonique de C3[X].

3. La matrice T3 est-elle diagonalisable ? inversible ?
4. On note :
(E) : 2(2* — 2%)y" — 5(2* + 2)y' + (32 + 14)y = 0.
(a) Déterminer les solutions polynomiales de (F) sur R.

(b) Comment peut-on trouver des solutions non polynomiales de (E) sur |0;1[7

1921 | Mines-Ponts MP 2021

Soit S € 5, (R) une matrice symétrique dont les coefficients diagonaux sont nuls et D
une matrice diagonale non nulle. Montrer que S+ D est semblable a D si, et seulement
si, S est nulle.
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Mines-Télécom MP 2021
Soit n € N. Soit f,g € L(C") tels que fog=0et f+ g soit bijective.
Montrer que rang(f) + rang(g) = n.

1923 | Mines-Télécom MP 2021

Soit ¢ : M,(R) — L(M,(R),R)
A — M~ 13(14A4)

Montrer que ¢ est un isomorphisme.

Mines-Ponts PSI 2016
Soit
[ RJX] — R, [X]
P — (X2+X)P(1)+ (X%2-X)P(-1)
1. Déterminer des bases de Ker(f) et Im(f).
2. Trouver les éléments propres de f.

3. L’endomorphisme f est-il diagonalisable ?

CCINP PC 2016

Soit E un espace vectoriel euclidien. Soit a et b des vecteurs de E avec a et b non nuls.
On consideére :
f FE — E
r +— x—{a,z)b
1. Montrer que f est bijective si et seulement si (a,z) # 1.

2. Si f est bijective, calculer f1.

1926 | Mines-Télécom MP 2016
Soit f la fonction définie sur Ry[X] par :

fla+bX +cX?) =2a+c)(1-X*)+(a+b+c)X.

1. Montrer que f est un endomorphisme de Ry[X] et écrire sa matrice dans la base
canonique.

2. Quelles sont les valeurs propres de A? La matrice A est-elle inversible ?
3. Trouver les vecteurs propres de A.

4. Déterminer le polynéme minimal de A.

1927 | Mines-Télécom MP 2016

Soit A € M,(R) symétrique telle que A0 = A2016,
1. Montrer que »_ af; = rang(A).

1<i,j<n

2. Ce résultat demeure-t-il vrai si A est seulement diagonalisable sur R ?
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1928 | TPE/EIVP MP 2016

Soit u un endomorphisme d’un C-espace vectoriel et P € C[X]. On note 7, le polynéme
minimal de u.

1. Montrer que P(u) est inversible si, et seulement si, P et m, sont premiers entre
eUX.

2. Montrer que si P(u) est inversible, alors P(u)~! € C[u].

TPE/EIVP MP 2017
Soit t € R et
1 1—t 1-—t
Ay ={1-t 1 1-t
t—1 t—1 2t—1
1. La matrice A(t) est-elle diagonalisable ? Donner ses sous-espaces propres.

2. Résoudre le systeme :

Centrale-Supélec MP 2017
) (=22 +3y —6x+ 6y . 9
1. Onnoteé'—{( r—y 32 — 2y ‘(w,y)EC :
Montrer que £ est un plan vectoriel d’éléments tous diagonalisables.

2. Soit A = (g g) et B = (Z Z),aveca;«éﬁ.

On suppose que pour tout nombre complexe t, B + tA est diagonalisable.
Montrer que b = ¢ = 0.
3. Si K est un corps, on note d,(K) la dimension maximale d'un sous-espace vecto-

riel de M, (K) dont tous les éléments sont diagonalisables. Calculer dy(C), puis
dn(R).

CCINP PSI 2017

12 0
Soit A= [0 3 0 | € My(R).
40 -1

1. Montrer que A est diagonalisable et donner ses valeurs propres.

2. Soit D la matrice diagonale portant les valeurs propres de A. Montrer que si
une matrice de M3(R) commute avec D, alors elle est diagonale.

3. Soit P(X) = X"+ 4X3 + 1. Trouver toutes les matrices M € M3(R) telles que
P(M) = A.
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1932 | Mines-Ponts MP 2017

Soit E un espace vectoriel euclidien et p, ¢ deux projecteurs orthogonaux.
1. Montrer que p + q admet des vecteurs propres.

2. Montrer que E peut se décomposer en somme directe de plans ou de droites
stables par p et q.

CCINP MP 2019

Soit E un espace vectoriel euclidien de dimension n. Soit f un endomorphisme symé-
trique de E. On note a la plus petite valeur propre de f, b la plus grande.

1. Montrer que :
allz||* < (@, f(2)) < bll]*.
2. Montrer que s'il existe un réel r tels que, pour tout x € E, (z, f(z)) < r|lz|?
alors r > b.

3. Soit k un réel fixé. On pose :

k1 0 --- 0
1
A=|o ol € M,(R).
T |
o --- 0 1 &k
Montrer que b < k + 2.
CCINP MP 2019
Soit
o R4[X] — ]R4[X]
1
P(X) — P(X)+2X'P (X)

1. Montrer que ® est un endomorphisme de Ry[X].

2. Déterminer les éléments propres de .

1935 | Mines-Télécom MP 2019

1. Montrer que ’ensemble E des suites
{(tn)nen | Fa € R, Vn € N, uy,, + o = 2a}

est un espace vectoriel réel.
2. Montrer que ¥ : u — (a;up; u;) est un isomorphisme de £ dans R3.

nm nm
3. Montrer que les suites n — 1, n — cos (2> et n — sin <2> forment une

base de E.
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1936 | CCINP MP PSI 2019

Soit M € O,(R) telle que 3(1,, + 2M) € O, (R).
1. Montrer que pour tout z € R™, (Mz, z) = ||=|].

2. Conclure sur M.

1937 | Mines-Ponts MP 2019
On munit R[X] du produit scalaire (f, ) = Y anby, 00 f = > a,X" et g=>_ b, X".
neN neN neN

On pose F' = {P € R[X] | P(1) = 0}.
1. Trouver F* et vérifier que 'on n’a pas F @ F+ = E.
2. Montrer qu’il n’existe pas de polynéme P tel que dist(1; F') = ||1 — P

Indication : on pourra s’aider des polynomes définis par P, =1 — >}, Xt

n
ENS MP 2012

Soit p un nombre premier. Est-ce que toute matrice carrée a coefficients dans Z/pZ est
trigonalisable 7

1939 | Mines-Ponts PC 2013

Soit deux formes linéaires indépendantes f; et f; de R* dans R. Montrer qu’il existe
deux vecteurs x; et x5 de R* tels que fi(xy) =1, fi(xs) =0, fo(xy) =0, fo(xs) = 1.

1940 | Mines-Ponts MP 2013
Soit M une matrice de GL3(R) vérifiant MT = —M?. Que peut-on dire de M ?

1941 | Mines-Ponts MP 2014

Soit
o . RX] — R[X]
P s (X24+1)P"—2XP

On munit R[X] du produit scalaire :

1

(P,Q) = / P(z)Q(x)V1 — 22 dx.

-1

1. Montrer que ® est un endomorphisme symétrique.

2. Prouver qu’il existe une base orthonormée de vecteurs propres de .
3. Prouver :

sin((n + 1)0).

Vn e N, T, € R[X], V0 €]0; x|, T, (cos(d)) = sn(0)

4. Montrer que (T},),en est une base orthonormée de vecteurs propres de ®.

Mines-Ponts MP 2014
Soit A, B € M, (R) telles que AB = BA et det(A+ B) > 0.
Montrer que, pour tout p € N, det(AP + BP) > 0.
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1943 | Mines-Ponts MP 2013

Soit A € S, (R). On suppose que tous ses coefficients sont égaux a 0 ou 1, et que

A= |!
o
1 1 «

Trouver des conditions sur n et «.

Mines-Ponts MP 2014

Soit «, B, trois réels tels que o + 5 + v = . Calculer :
1 cos(a) tan (%)
1 cos(f) tan (g) :
1 cos(y) tan (%)

1945 | X PC 2023

Soit A, B € S,(R).
1. Montrer que Tr(ee?) > 0.
2. Montrer que Tr(e?*B) < Tr(ee?).

1946 | Centrale-Supélec PSI 2015

Soit m un entier naturel supérieur ou égal a 2.
1. Soit M € GL,(R). Montrer que MT M est inversible et symétrique, de spectre
inclus dans R7 .
2. Montrer qu’il existe une matrice orthogonale ) et une matrice symétrique S a
valeurs propres strictement positives telles que M = €2S.

3. Trouver €2 et S telles que M = Q.S lorsque :

1 0 0
M=[0 1 —=v2
0 v2 0

4. Montrer qu’il existe une matrice orthogonale {2’ et une matrice triangulaire T" a
valeurs propres strictement positives telles que M = Q'T.

5. Trouver €V et T telles que M = Q'T lorsque :

— = =N
— =N
— N = =
N — = =
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1947 | Mines-Ponts MP 2014

On considere le systeme :

M?*+1,=0
MMT = MTM

1. Résoudre le systeme dans M, (R) pour n impair.

2. Résoudre le systeme dans M,,(R) pour n pair.

1948 | Mines-Ponts MP 2015

Soit A € M,,(R) une matrice diagonalisable.
1. Existe-t-il un polynéme P tel que P(A%) = A?
2. Que dire pour P(A*) = A, avec k impair ?

CCINP MP 2016

Soit n > 2 entier, a € R* et A € M,,(R) dont tous les coefficients sont égaux a a.
1. La matrice A est-elle inversible ?
2. La matrice A est-elle diagonalisable sur R ?
3. Le polynéme X" — (na)" !X est-il un polyndéme annulateur de A?

4. Quel est le polynome caractéristique de A7

1950 | Mines-Ponts MP 2016

Soit M une matrice symétrique de M, (R) & valeurs propres positives. Montrer que :

det(I, + M) > 1+ (/det(M).

1951 | Mines-Télécom MP 2016

On considere I’endomorphisme

u : RX] — R[X]
P +— P)X + P(2)X?

Trouver les éléments propres de u.

1952 | Mines-Télécom MP 2016

Trouver toutes les matrices M € M,(R) vérifiant :

M? =

o O OO
o O O
o O = O
O = O O

1953 | Mines-Ponts MP 2016

Soit A et B dans M,,(C) telles que AB = BA?%. En supposant que A admet des valeurs
propres de module différent de 1, montrer que A et B ont au moins un vecteur propre
commun.
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1954 | TPE/EIVP PSI 2017

Soit A, B,C € M,(R) telles que :
C=A+DB, C?*=2A+3B, C®=5A+6B.

Les matrices A et B sont-elles diagonalisables ?

1955 | ENSEA/ENSIIE MP 2018

On consideére les deux matrices suivantes :

cos(a) —sin(a) _ (cos(a)  sin(a)

_<sin(a) cos(a)> ot _<sin(a) —cos(a)>'

1. On se place dans C. Déterminer si A est diagonalisable ou non.

2. Méme question si on se place dans R.

3. Refaire les deux premieres questions pour la matrice B.

Mines-Télécom MPI 2025
Soit A € STT(R) et B € ST(R).
T

XTAX

1. Montrer que la fonction f: X € R" — admet un maximum M et un

minimum m.
2. Montrer qu'’il existe V tel que A = V2.

3. Montrer que la matrice A™'B est diagonalisable.

CCINP MP 2022

On considere dans R™ deux vecteurs non colinéaires (ay;...;a,) et (by;...;by).

1. Montrer que le systeme d’équations :

a1+ -+ apxr, =0
bll‘1+"'+bnl‘n =0

ou (z1;---;x,) est un vecteur inconnu de R", définit un espace vectoriel noté
F. Donner sa dimension.

2. Application :

Dans R* muni du produit scalaire canonique, on note ¢ = (eg;...;¢e4) la base
canonique. Soit le systeme :

r—y+z+tr =0
rT4+2y+2z2—t =0

(a) Donner une base orthonormale de F'.
(b) Calculer dist(u; F') lorsque u = e; — e3 + 2e.
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ENS MP 2018

Soit o une permutation de S,, et P, la matrice de permutation associée. Donner une
condition nécessaire et suffisante pour que P, soit diagonalisable dans M, (R).

1959 | Mines-Ponts MP 2019

Soit s une symétrie d'un espace vectoriel réel E. On considere :
® . FE — E
1
f o= Jsof+ros)

Déterminer les éléments propres de .

1960 | Mines-Ponts MP 2018

Soit A € M,,(R) et S4 I'ensemble des matrices semblables & A. Trouver ’ensemble des
matrices A € M, (R) telles que Sy soit fini.

CCINP TSI 2022

Reconnaitre I’application linéaire de R? associée a la matrice suivante :

1 5 2 -1
MZ@ 2 2 2
-1 2 5

Mines-Ponts MP 2019
Soit n € Net A, B € M,(R). On suppose que AB = A+ B.
Montrer que rang(A) = rang(B).

1963 | Mines-Ponts MP 2018
Soit N un opérateur nilpotent. Comparer Ker(N) et Ker(exp(N) — Id).

X MP 2015

Soit L un endomorphisme de M, (R). Montrer que L est un morphisme d’algebre qui
conserve la transposée si et seulement §'il existe U € O,(R) tel que L(X) = UTXU.

1965 | Mines-Ponts MP 2017

Soit n € N*. On considére deux matrices A et B de M, (C) telles que Ker(A) = Im(A)
et Ker(B) = Im(B). Montrer que A et B sont semblables.

CCINP MP 2025

1 0 O
Soit A=12 3 1
4 -4 -1

1. Trouver le polyndéme caractéristique et les valeurs propres de A.
2. La matrice A est-elle diagonalisable dans M, (R) ? dans M, (C)?
3. Trouver une matrice triangulaire 7" semblable a A.

4. Quelle est la limite de ‘2—7; quand n — +o00?
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1967 | Mines-Télécom MP 2025

Résoudre I'équation matricielle suivante d'inconnue M € M, (R) :

M(M*M)?* =1,.

1968 | Mines-Télécom MP 2025

On note u = (uy)pen- € RY". Soit ¢ : u +— v définie par :
1 n
Vn € N* v, = —Zuk.
=

1. Montrer que ¢ est un automorphisme de RY". Que peut-on dire de son spectre ?

2. Déterminer les valeurs propres de .

1969 | Mines-Télécom MP 2025

Soit M, (R) muni du produit scalaire canonique et A € S,(R). Montrer que || A||? est
égal a la somme des carrés des valeurs propres de A.

CCINP MP 2025

Soit A € M, (R) telle que ATA = AAT et A% = —1,.
1. Calculer Tr(A).
2. Montrer que (ATA)? = I,,.

3. Montrer que AT A est symétrique, et en déduire que A est orthogonale.

CCINP MP 2018

Soit A € M, (C).

1. Montrer que si A est diagonalisable, alors A% ’est aussi.

00

3. Donner une condition nécessaire et suffisante faisant intervenir un polynéme
annulateur pour que A soit diagonalisable.

1
2. Montrer que la réciproque est fausse a 1’aide la matrice A = (O )

4. On suppose que A et A% sont diagonalisables. Montrer que Ker(A) = Ker(A?).

5. On suppose que A? posséde n valeurs propres distinctes. Montrer que A est
diagonalisable.

6. On suppose que A% est diagonalisable et que A est inversible. Montrer que A
est diagonalisable.

1972 | ENS MP 2017
Soit A et B deux matrices de M, (C). Montrer qu’il existe une base (ej;...;e,) de C"
et une permutation o de .5, telles que :

» A soit triangulaire dans la base (ey;...;¢e,);

+ B soit triangulaire dans la base (€5x1);- .-} €s(n))-
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1973 | Mines-Ponts

Soit £ un K-espace vectoriel. Une involution de L(E) est un endomorphisme f € L(FE)
tel que :

fof=Idg.

1. Soit a et b deux automorphismes de L(FE) vérifiant :
aoboa=0b et boaob=a.

Montrer que a? = b? et que a? est une involution.

2. On suppose maintenant que la caractéristique de K est différente de 2.
Soit a et b deux involutions de L(E). Montrer que :

Im(aob—>boa)=Im(a—0b)NIm(a+b).

1974 | Mines-Ponts MP 2014

On définit le produit scalaire hermitien sur C,[X] :

1

(PQ) =5 [ PR .

On pose M (P) = sup|P(z)].
|z]=1
1. Montrer que (1; X;...; X™) est une base orthogonale de C,[X] pour ce produit
scalaire.

n—1
2. Soit Q@ = X"+ Y b X*. Calculer ||Q|| et montrer que M(Q) > 1. Montrer qu'il
k=1
existe un unique polynéme unitaire @ tel que M (Q)

=1
3. Soit maintenant P € C[X] tel que P(0) =1 et P(1) = 0.

1
Montrer que M(P) > /14 —.
n

Mines-Télécom MPI 2024
Soit X € M, 1(R) \ {0}. Démontrer que :

det(l, + XXT) =1+ XTX.

1976 | Mines-Ponts MPI 2023

On note J la matrice de M, (R) dont tous les coefficients valent 1. Soit A € M, (R) a
coefficients positifs, de diagonale nulle, et telle que :

VZ,jG[[l,n]],Z#j — aij+aji:1.

Exprimer A + AT en fonction de J et I,,.
Evaluer Ker(A) N Ker(.J).
En déduire que rang(A) > n — 1.

=W o

Existe-t-il un n € N* tel que toute matrice vérifiant les propriétés de A soit
inversible ?
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1977 | Mines-Télécom MPI 2023

(301
Soit A=-[0 4 0| € M3(R).
10 3

1. La matrice A est-elle diagonalisable ?
2. Calculer les valeurs propres de A.
3. On considere 'application

W : R — ngl(R)
t —  W(t)

telle que W' = AW.
Exprimer W en fonction de t et d’autres parametres que I’'on précisera.

1978 | Mines-Télécom MPI 2025

Soit f : M,(R) — R. Montrer '’équivalence entre :
i) VA, B € M,(R), f(AB) < min(f(A); f(B)):
ii) Jp : R — R croissante telle que f = ¢ o rang.

CCINP PSI 2024

Pour tout a € C*, soit A = (&"™72)1¢; j<n.
1. Si @ € R, montrer que A est diagonalisable.

2. Déterminer le rang de A. Quelles sont les valeurs propres de A7

1980 | Mines-Ponts PSI 2023
Pour tout (a;b;c) € R3, on définit :

fa,b7c R — R3
be! + ce™!
t — 2a — be'
a-+cet

Soit F' = {fape | (a;b;c) € R3}.
1. Montrer que F' est un espace vectoriel, en donner une base et la dimension.
2. Déterminer B € M3(R) vérifiant pour tout f € F et tout t € R, f'(t) = Bf(t).

1981 | Mines-Ponts PSI 2022
Soit E un espace vectoriel euclidien de dimension n. On souhaite montrer qu’il n’existe
pas de famille obtusangle de n+ 2 vecteurs, c’est-a-dire une famille {u;...; u, 2} telle
que :
V(i;5) € [L;n]? i #j = (w,u;) <O0.
1. Etudier les cas n =1 et n = 2.
2. Etablir la propriété par récurrence pour tout n.

3. Montrer qu’il existe une famille obtusangle de n 4 1 vecteurs.
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1982 | Mines-Ponts PSI 2022

On note B la base canonique de R?, (-,-) le produit scalaire sur R* et A le produit
vectoriel.
Soit
f: R — R
r — WAZ

oll w est un vecteur non nul de R?.
On pose P = Vect({w})*. On rappelle que la formule du double produit vectoriel n’est
pas au programme et est donc a proscrire.

1. (a) Montrer 'existence d’un endomorphisme ¢ induit par la restriction de f a
P.

(b) Montrer que det(g) > 0.
2. (a) Trouver tous les polynomes ) € R[X], unitaires de degré 3, annulateurs de
f.
(b) Sans faire de calculs, exprimer x, le polynéme caractéristique de f.
3. (a) Redémontrer la propriété du cours suivante pour ¢ € L(FE) : le polynéme
caractéristique d’un endomorphisme induit par ¢ divise x,.
(b) Montrer-le dans le cas de f et g.

X ESPCI 2019

Soit n € N. Trouver les polynémes P € R[X] tels que :

P(X +1) — P(X) € Vect({X"}).

X ESPCI 2018

Pour tout couple (P; Q) d’éléments de R, [X], on pose :

L P@)Q(t)
-1 /1 —¢2
1. Montrer que cette intégrale existe et qu’on a défini ainsi un produit scalaire sur

R, [X].

2. Montrer lexistence d’une base orthonormale {Fy;...;P,} de R,[X] pour ce
produit scalaire telle que pour chaque i € {0;...;n}, la famille {Py;...; P;} soit
une base de R;[X].

3. Soit ¢ € [1;n]. Montrer que le polynéme P; est scindé, a racines simples, et que
toutes ses racines sont dans [—1;1].

(P,Q) = dt.

X ESPCI 2017

Soit A = (CCL b) ot (a;b;c;d) € Z*.

d )
On suppose que det(A) est impair. On considere (e1;¢e9;e3;64) € {—1;1}* et on pose
b . . .
A, = @1 %2 Montrer que la matrice A, est inversible.

ces dey
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X ESPCI 2015

Soit A est une matrice carrée réelle. Montrer que A est antisymétrique si et seulement
si, quelle que soit P orthogonale, P~1AP est a diagonale nulle.

CCINP PC 2024

Soit la matrice M € My, 1 (R) définie par :

0O --- 010 --- 0
0 01 0
0 01 0
0 010 0

1. Calculer M?.
2. La matrice M est-elle diagonalisable ?

3. Donner une valeur propre de M.

Mines-Ponts

Soit M € M,,(R). Montrer que I’on peut écrire M sous la forme M = A+ S +cI,, avec
Ae A,(R), S € S,(R) avec Tr(S) =0, et ¢ € R. Montrer, de plus, que :

Tr(M?) = Tr(A%) + Tr(S?) + TllTr(M)Q.

CCINP PSI 2019

Soit M € M,,(C) telle que M? + MT = I,,.

1. Montrer que, si P est un polynome annulateur de M, alors les valeurs propres
de M sont forcément racines de P.

2. On suppose que M est symétrique. Montrer que M est diagonalisable et que
Tr(M) det(M) # 0.

3. On ne suppose plus M symétrique. Montrer que M est diagonalisable.

4. Montrer que M est inversible si et seulement si 1 ne fait pas partie de son
spectre.

CCINP MP 2022

Soit A et B deux matrices orthogonales de M, (R) avec n > 2.
1. Que peut-on dire de A+ B, de AB et de com(A)?

2. On suppose de plus que est orthogonale.

Calculer AT B + BT A. Montrer que toute matrice du segment [A ; B] est ortho-
gonale.
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1991 | Centrale-Supélec MP 2022

Soit K un sous-corps de C et E un K-espace vectoriel de dimension finie.

1. Montrer que tout endomorphisme de £ admet au moins un polynéome annula-
teur.

2. Soit pe N, p > 2 et Fi,..., F, des sous-espaces vectoriels de E tels que :
p
E = U Fy.
k=1

Montrer qu’il existe ko € [1;p] tel que Fy, = E.

Mines-Ponts MP 2025
Soit § € S (R).
1. Montrer qu'il existe une matrice A € S/ (R) telle que A% = S.
2. Montrer que A™' € SFH(R) et que (A7!)? =S~
3. On note (-, -) le produit scalaire canonique de M, (R). Montrer que pour toute
matrice X € M, (R) on a :

(X, X) < (SX, X)(S'X, X).

4. Dans quel cas a-t-on 1'égalité ?

1993 | Mines-ponts

Soit n € N* et w = e™n . Soit encore Q = (w(i—l)(j—l)) . € M,(C)
1<i,5<n
1. Soit (ay;...;a,) € C" et :
aq Ao Q3 Qp,
a, a; a Ap—1
A= |1 an @ an—2 | € M,(C).
a9 as Qq aq
Calculer det(A€2) et en déduire la valeur de det(A).
2. Soit 6 € R. Calculer :
cos(f) cos(20) cos(nb)
cos(nf) cos(6 cos((n —1)0
I R e
cos(260) cos(36) cos(0)

CCINP TSI 2023

Soit A = (:? ?) € Ms(R). Calculer A™.
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CCINP MP 2022

On note &£ 'espace vectoriel des polynomes réels de degré au plus n. Soit F' et G deux
polynomes de degré n + 1. On considere f I'application de £ dans £ qui a P associe le
reste de la division euclidienne de F'P par G.

1. Montrer que f est un endomorphisme.

2. L’application f est-elle un automorphisme ? (Discuter selon que F' et G sont
premiers entre eux ou pas.)

3. Supposons que F'A G =1 et que G soit scindé a racines simples. Quelles sont
les valeurs propres de f 7 L’endomorphisme f est-il diagonalisable ?

1996 | Centrale-Supélec MP 2021

1. Soit N € M,(C) nilpotente. Justifier I'existence de d = min{p € N | N? = 0}.

2. Soit M € M, (C) nilpotente. Montrer que M? — I,, est inversible et déterminer
son inverse en fonction de M.

3. On suppose maintenant que M € M, (C) vérifie :
M*+ M? + M? + M+ 1, =0.

Montrer que |Tr(M)| < n. Etudier les cas d’égalité.

1997 | Centrale PC 2022

0 --- 0 ay

Soitn > 2et A= : : : € M,(R).
0 -+ 0 a,.
ap -+ QGp-1 an

1. Diagonaliser la matrice A.

2. Déterminer le polyndéme caractéristique de A.

CCINP MP 2023

Soit n > 2 entier. On munit R™ du produit scalaire usuel : pour = = (x1;...;2,) et
y = (y1;-..;yn) dans R™, on pose (x,y) = En:xzyz
Soit F' = {x = (1;...;2,) | 1 = 2, }. -

1. Montrer que F' est un hyperplan.

2. Trouver une base orthonormée de F'.

3. Déterminer F*.

4. Ecrire la matrice de la projection orthogonale sur F' dans la base canonique de

R™.
5. Calculer dist(eq; F).
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1999 | Mines-Ponts MP 2025

Soit E un espace vectoriel euclidien et p un projecteur de E. Montrer que les deux
affirmations suivantes sont équivalentes :

i) p est orthogonal;
ii) Vo € B, |lp(z)| <[]

Mines-Télécom PSI 2023
Soit
¢ : R? X] — R*
P (P(0); P'(0); P(—1); P'(—=1))
1. Montrer que ¢ est linéaire.
2. Déterminer Ker(¢). L’application ¢ est-elle bijective ?
3. Exprimer M, matrice de ¢ dans la base canonique.

4. (a) Montrer que M est diagonalisable.
(b) Donner un polynéme annulateur de M.

(c) La matrice M est-elle inversible ? Si oui, donner son inverse.
(

d.
(b) Déterminer Q.

n

(c) En déduire la valeur de la somme Z k>,
k=0

)
)
a) Montrer qu’il existe un unique polynéme @ tel que ¢(Q) = (0;1;0; 1).
)
)

X MP MPI 2024

+o0o 1"
La matrice (é 20124> peut-elle s’écrire nz:% MAQnH avec A € My(R)?

2002 | Mines-Ponts PSI 2023

Soit M € My(R) telle que M? + 41, =0 et MMT = MTM.
1
Montrer que §M € O2(R) et en déduire M.

2003 | Mines-Ponts MP 2023
Soit E' un espace vectoriel de dimension finie. Soit © un endomorphisme de E tel que
I'on ait Im(u?) = Ker(u?). Montrer que Im(u) = Ker(u?). Le résultat est-il toujours
vrai en dimension infinie ?

CCINP MP 2025

Soit K le corps des réels ou des complexes. On considere la matrice

€ My(K).

S~ 0 O

b
d
1
0

o O O -
O O = Q

—1

Donner une condition nécessaire et suffisante sur a, b, c,d, e, f pour que A soit diago-
nalisable. Dans I’hypothese ou A est diagonalisable, diagonaliser A.
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2005 | Centrale-Supélec MP 2024

2 -1 0 - 0 -1
-1 2 -1 0
Soit A= | Y 7L S e ).
Lo 210
0 o1 2 -1
1 0 -+ 0 -1 2

1. (a) Montrer que toute matrice symétrique réelle admet des sous-espaces propres
orthogonaux. Enoncer le théoréme spectral.

(b) Justifier que A est diagonalisable et que Sp(A) C R.
2. Montrer que Sp(A) C [0;4].
3. Lister les éléments de Sp(A).

CCINP MP 2024

Soit E = R3 muni du produit scalaire usuel noté (-, -).
Soit u un vecteur unitaire de F et pour a dans R on pose :

fao:x— z+alx,u)u.

1. Montrer que f, est un endomorphisme de F.

2. (a) Montrer qu’il existe un unique o’ € R* tel que :
Ve e B, |[fu(@)] = [l

(b) Montrer que Ker(f, +Idg) et Im(f, + Idg) sont supplémentaires dans E.

3. On se replace dans le cas général. Déterminer les éléments propres de f,.

CCINP MP 2024

Soit M € M, (R) une matrice de rang 1.

1. Montrer que M = C'L, ou C' une matrice colonne non nulle et L une matrice
ligne non nulle.

2. Soit A, B € M, (R) telles que rang(AB — BA) = 1. Calculer (AB — BA)2.

ENS MP 2024

Soit n > 1 entier et Z,, = {A € M,,(R) | 3\ € Sp(A), Im(A) C E\(A)}.
1. Montrer que si A € Z,,, alors pour tout P € GL,(R), on a P~'AP € Z,,.
2. Soit A, B € Z,,. Montrer que :

A semblable & B <= rang(A) = rang(B) et Tr(A) = Tr(B).
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2009 | Centrale-Supélec MP 2019

Soit E un espace préhilbertien réel, F' un sous-espace vectoriel de E.
1. Ici, E = R[X]. Pour tous P,Q € R[X], soit

(P.Q) = POQO) + [ Pr)Q(s)d.

(a) Montrer que (-, -) est un produit scalaire.

(b) Montrer que F C (FL4)".
2. Soit F'={Q € R[X] | Q(0) = 0}. Montrer que I'inclusion précédente est stricte.
3. Soit E = C([0;1],R) avec comme produit scalaire :

()= [ ' b (2)g(a) da.

Soit. F' I’ensemble des fonctions de E qui sont nulles sur [O' 1}. Montrer que

)
FoF++E.

CCINP MP 2019

0 a b ¢

Soit A = € My(R).

o O
S o

a c
b 0
c a

(=l
(@]

1

€1
1. On cherche des vecteurs propres de la forme - | avee,
2

€3
pour tout i € {2;3;4}, |&;| =1 et eqe3e4 = 1.
Donner les éléments propres de A.
Que peut-on dire des sous-espaces propres de A ?
Donner y 4.
Sia=b=c=1, donner 7y4.
Sia=1,b=2et c=3, donner 4.

Donner une condition nécessaire et suffisante pour que deg(ms) = 4.

N O N

Donner une condition sur a, b et ¢ pour que deg(ma) = 3.

Mines-Télécom PSI 2019

Soit A et B deux matrices de My(C) telles que A* = B* =1, et AB+ BA=0.
1. Montrer que A et B sont diagonalisables.
2. Donner Tr(A) et Tr(B).
3. Donner les valeurs propres de A et B avec leur ordre de multiplicité.

4. Montrer que C' = iAB est diagonalisable et déterminer ses valeurs propres.

404




2012 | Mines-Ponts MP 2019

Soit A € M,(C). On note A la matrice conjuguée de A. Montrer 1’équivalence entre les
deux propriétés suivantes :

i) AA=1,;
i) 35 € GL,(C) telle que A = S5 .

Indication : on pourra, pour une des implications, prendre w € C bien choisi et poser
S =wA+wl,.

Mines-Télécom MP 2022
Soit ' un K-espace vectoriel non réduit a {0}. Soit f € L(E) nilpotent d’ordre p.
1. L’application f est-elle injective ? surjective ?
2. On suppose que dim(E) = n et que p = n.
(a) Montrer qu'’il existe zy € E tel que B = (x¢; f(xo);...; [ (xg)) soit une
base de E.
(b) Quelle est la matrice de f dans cette base B? On note A cette matrice.
(c) La matrice A est-elle diagonalisable ?
3. On choisit £ = K,,_1[X]. Donner un exemple de f dans L(F) nilpotent d’ordre
n, et d’'une base telle que la matrice de f dans cette base soit la matrice A.
4. (a) Pour t € R, calculer exp(t(1, + A)).
(b) Résoudre :

X'(t) = X(t) + AX(t)
xo)=| "

2014 | Mines-Ponts MP 2022

Soit £ = {f € C*([0;1],C) | f(0) = f(1) =0} et F 'ensemble des fonctions continues
sur [0;1].

1. Montrer que ¢ : f — f” est un isomorphisme de FE dans F.
2. Soit g € F. On pose :

vz € [0:1], Glz) = /01|x — tlg(t) dt.

Montrer que G est de classe C? et calculer G”.

3. Déterminer une fonction continue k telle que :
1
07 (9)@) = [ k(it)g(t)dt.

4. Etudier lexistence et la valeur de  sup ||¢"1(g)]/oo.
llglloo<1
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CCINP PSI 2024

1 01 a b a
Etudier la diagonalisabilité de M = |0 1 0| € M3(R), puisde N=|b a b | avec
1 01 a b

a,b e C.

2016 | Centrale-Supélec PC 2016

Soit A € M3.2(R) et B € May3(R) telles que AB =

0
0
0

o

0

10
0 1
1. Montrer que AB est la matrice d’un projecteur.

2. Déterminer rang(A) et rang(B).
3. En déduire que BA = Is.

2017 | Centrale-Supélec MP 2016

1. Soit P € C[X] non constant et n € N*. Existe-t-il toujours M € M, (C) telle

que P(M) =07
2. Soit P € R[X] non constant et n € N*. Existe-t-il toujours M € M, (R) telle
que P(M) =07

3. Soit P = X? 4+ X + 1. Donner une condition nécessaire et suffisante pour qu’il
existe M € M, (Q) telle que P(M) = 0.

2018 | Mines-Ponts PC 2016

Soit A, B € M,(C) telles que AB = 0. Montrer que A et B ont au moins un vecteur
propre commun.

Mines-Ponts MP 2017

Trouver dans M, (R) et M, (C) les implications entre les propositions suivantes :
i) Les matrices A et B sont diagonalisables et AB = BA;
ii) pour tout A € K (K =R ou C), A+ AB est diagonalisable.

2020 | Mines-Télécom MP 2017

Soit E un espace vectoriel réel. On définit un systéme générateur positif sur E par le
fait qu’il génere tous les éléments de E et que tous les éléments de E peuvent étre
générés par ce systeme en utilisant uniquement des coefficients positifs. Montrer que si
dim(F) = n, le cardinal d’un systéeme générateur positif est supérieur ou égal a n + 1.

2021 | Mines-Télécom MP 2017

1. Donner la définition d’un polynéme annulateur d’un endomorphisme.

2. Enoncer le théoreme de Cayley-Hamilton.
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2022 | Centrale-Supélec MP 2017

On note L 'espace vectoriel des suites réelles indexées par N*. On introduit I’endomor-
phisme D : L — L qui réalise un décalage d’indexation : D(u), = 1.

1. Soit P € Ry[X]. Déterminer Ker(P(D)).

2. Soit d € N* et P € Ry[X] fixé. Soit (un)nen € Ker(P(D)). Soit Q € Ry[X] tel
que, pour tout i € [1;2d], Q(D)(u); = 0. Montrer que (uy,)neny € Ker(Q(D)).

3. Connaissant (uq;...;usq), proposer une méthode pour retrouver P.

2023 | Mines-Ponts MP 2017

Soit aq,...,a, des nombres complexes. Calculer le déterminant d’ordre n :
1 al a® - a}? a}
1 a) a2 - ay™? a
1 2 n—2 n
1 a, a; -~ a™ = a;

Attention, ce n’est pas un déterminant de Vandermonde, il n’y a pas de colonne avec
des puissances n — 1.

2024 | Centrale-Supélec MP 2017

On considere une fonction continue f de R dans R telle que toute matrice carrée d’ordre
n > 0 réelle inversible A = (a;;), la matrice A = (f(a;;)) soit également inversible.

, L . 11 . .
1. Montrer que pour tous réels distincts x, y la matrice (a: y) est inversible. En

déduire que f est injective.

1 01
2. On suppose que f est surjective. En considérant les matrices [0 1 1| pour
x oy z

x,y, z réels avec z # x + y, montrer que f(x +y) = f(x) + f(y).

3. Montrer que f est surjective. Conclure quant a f.

ENS MP 2019

Soit A € M,(Z). Montrer que soit le spectre de A contient un nombre complexe de
module supérieur & 1, soit il existe & € N* tel que A¥ — I,, soit nilpotente.

CCINP PC 2019

Soit A € M, (R) vérifiant A2 = A et AT = A.
1. Montrer que rang(A) = Tr(A).

2. Montrer que » Y la;;| < ny/rang(A).

i=1j=1
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2027 | Mines-Télécom PC 2019

Soit E un espace vectoriel de dimension finie, u un endomorphisme de F et A sa matrice
associée dans une base B.

1. Donner la définition de u est diagonalisable et donner la version matricielle de
cette définition.

2. Donner une caractérisation de u diagonalisable.

3. On suppose E = R", u diagonalisable et u* = Idg. Montrer que u est une
symétrie vectorielle.

4. On donne Tr(u) = n — 2. Préciser le résultat précédent.

2028 | Mines-Télécom PC 2019

Soit F = R?® muni de son produit scalaire usuel et u une isométrie vectorielle.
1. Définir une isométrie vectorielle.
2. Quelles sont les valeurs propres possibles de u ? Justifier.

3. L’isométrie u admet-elle nécessairement une ou plusieurs valeurs propres réelles 7
Justifier.

1 00

4. La matrice de u dans la base canonique est A= 10 0 1

10

e}

Caractériser géométriquement wu.

2029 | ENSEA/ENSIIE MP 2013

Soit K la matrice définie de la fagon suivante : pour tout (p;q) € [1;n]?, le coefficient
K,, vaut e*™% On définit K’ la matrice dont les coefficients sont les conjugués de
ceux de K.

1. Calculer KK".
2. Montrer que K est inversible et donner son inverse.
3. Calculer |det(K)|.

2030 | Centrale-Supélec PSI 2013
Soit A et B deux matrices non nulles de M3(C) telles que A? = B? = 0. Montrer que
A est semblable & B. Est-ce vrai en dimension 4 7

2031 | Centrale-Supélec PSI 2014

Soit A € M,(R) dont tous les coefficients valent exclusivement 1 ou —1.
1. Montrer que det(A) est un multiple de 2"~

2. Calculer det(A) pour A comprenant —1 dans la diagonale et 1 partout ailleurs.

CoINP P 2014
Soit n > 3 entier et A € M, (C). On suppose rang(A) = 2, Tr(A) = 0 et A — I, non
inversible. Quel est le spectre de A? La matrice A est-elle diagonalisable ?
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2033 | Centrale-Supélec PSI 2014

Soit £ = R?® muni du produit scalaire usuel. Soit f un endomorphisme de E tel que :

V(z;y) € E?, (z,y) =0 <= (f(2), f(y)) = 0.

1. Montrer que f est inversible.
2. Montrer que I'image d’un plan est un plan.
3. Montrer que I'image d’une sphére est une sphere.

4. Montrer que pour tout (x;y) € E?, il existe k € R tel que {x,y) = k({f(x), f(y)).

2034 | Mines-Ponts 2016 PC

a 2 ... 9
10 --- 0

Soit A=|. . | € M,(R).
10 --- 0

Déterminer les éléments propres de A.

CCINP PC 2014

On considere ’ensemble

AQ:{<Z —bc> ’(a;b;c)GRg}.

Le but de cet exercice est de prouver que toute matrice de My(R) est semblable a un
élément de As.

Dans tout 'exercice, on considere un élément M de My(R) et on note f l'endomor-
phisme de R? qui lui est canoniquement associé.

1. Démontrer la propriété attendue dans le cas ou M est diagonalisable.

10

(a) Prouver que M n’est pas diagonalisable.

2. Dans cette question, on prend M = (0 0).

(b) Trouver un vecteur e; qui n’est pas dans le noyau de f.
On pose es = f(e1) — €.

(c) Vérifier que (ey;es) est une base de R2.

(d) Trouver une matrice de Ay semblable a M.

3. On se place dans le cas général ou M n’est pas diagonalisable.

(a) Montrer qu'’il existe un vecteur e; de R? tel que le couple (e1; f(e1)) soit une
base de R?.

(b) Montrer que la matrice de f relativement a cette base est de la forme <(1) Z)

pour un certain couple (a;b) de R2.
(¢) Montrer que le coefficient a est forcément négatif.
(d) Si a est nul, montrer que b I'est forcément aussi. Conclure dans ce cas.

(e) Traiter enfin le cas ou a est strictement négatif.
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2036 | Mines-Ponts PSI 2014

1. Soit E un espace vectoriel réel ou complexe de dimension finie. Pourquoi le rang
d’un projecteur est-il égal a sa trace?

2. Soit A € M,(K) (avec K =R ou C) telle que A? = I,,. Montrer que :

dim (Ker(A — 1)) = ;:ﬁ: Tr(Ab).

CCINP MP 2016

Soit F un espace vectoriel, u € L(F) et P un polynéme admettant une racine simple,
tel que P(u) = 0. Montrer de deux manieres différentes que Ker(u) = Ker(u?), dont
une utilisant le théoreme de Bézout.

2038 | Mines-Ponts MP 2016

Soit (ar;...;a,) € R" tel que Y af = 1.
i=1
Soit A = (a;;) € M,(R) définie par a;; = a;a; pour i,j € {1;...;n}.

1. Montrer que A est la matrice d’'un projecteur orthogonal.

2. Montrer que I,, — 2A est la matrice d'une symétrique orthogonale.

2039 | Mines-Télécom MP 2016

Soit f un endomorphisme d’un K-espace vectoriel E et a € K* tel que :
f2=3af* +ad’f =0.

Montrer que E = Ker(f) @ Im(f).

X MP 2016

Définissons pour A = (aij)1<ij<n € My(R) et B = (b;)1<ij<n € Mp(R) :
Ax B = (aij - bij)i<ij<n-

Montrer que si A et B appartiennent a S (R), alors A x B appartient aussi a S, (R).

CCINP PSI 2016

3 -1 1 100
Montrer que les matrices réelles A =[2 0 1| et B=|[0 2 1] sont semblables.
1 -1 2 0 0 2
Mines-Télécom MP 2017
1 0 0
Considérons la matrice A= |0 0 1| € M;(R).
0 —1 2

1. La matrice A est-elle diagonalisable ? La réduire.
2. Résoudre I'équation exp(M) = A, d’inconnue M € M;(R).
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Mines-Télécom MP 2017
Considérons H = {AB — BA | (A; B) € M, (R)?}.

1. Démontrer que Iapplication trace Tr : M, (R) — R est une forme linéaire non
nulle.

2. Notons (E;;);; la base canonique de M, (R). Calculer E;; Ejy,.

3. Démontrer que pour tout (A; B) € M,(R)?, Tr(AB) = Tr(BA). En déduire que
Ker(Tr) = H.

4. Soit ¢ une forme linéaire sur M, (R) vérifiant :
Y(A; B) € My(R)?, o(AB) = p(BA).

Démontrer que {p;Tr} est liée.

5. Déterminer un supplémentaire de Ker(Tr).

2044 | Mines-Ponts PSI 2017

. 5 3
Soit A = (1 3> € MQ(R)

1. Diagonaliser A.
2. On cherche les matrices M € Ms(R) solutions de 'équation :

(E): M* + M = A.

(a) Si M est solution de (£), montrer que Sp(M) C {—3;—2;1;2} et que M est
diagonalisable.
(b) Trouver toutes les solutions de (£).

Centrale-Supélec PC 2017
Soit A € M,,x,(R). On pose B = AAT et C' = AT A. Soit A un réel non nul. Montrer que
si A est valeur propre de B, alors elle est valeur propre de C' avec la méme multiplicité.

X ESPCI 2017

Soit n € N*, E un espace vectoriel de dimension n et (v;)ic1;n) une famille de vecteurs
de E. Montrer que dim(Vect({v; —v; |1 <i,7<n})) <n—1.

2047 | Mines-Ponts MP 2017

Soit A et B des matrices symétriques réelles d’ordre n. On suppose que pour tout X
appartenant a M, (R) \ {0}, XTBX > 0. Montrer que A + iB est inversible.

2048 | ENSEA/ENSIIE MP 2017

Soit A, B € M,,(C). Montrer que :
xa(B) € GL,(C) <= Spc(A) N Spe(B) = 0.

Dans M, (R), I’équivalence est-elle conservée ?
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2049 | Mines-Ponts MP 2017

On se place dans un espace préhilbertien réel. On définit, pour des vecteurs quelconques
ei1,...,en, la matrice M des produits scalaires (e;, €;).

1. Montrer que :
det(M) #0 <= {e1;...;e,} est libre.

2. Montrer que :
0 < det(M) < H||e,~||2.
i=1

3. Etudier les cas d’égalité.

Mines-Ponts MP 2017
Soit (ay;...;a,) € R" et (by;...;0,-1) € (R*)"1. On pose :

aq bl
bl a9 b2 O
bg .

€ M,(R).

O apn—1 bnfl

bn—l Qn,

Montrer que A admet n valeurs propres distinctes.

2051 | Mines-Télécom MP 2017
Soit E un espace vectoriel de dimension finie.
1. Donner la définition d’un sous-espace vectoriel stable par un endomorphisme u.

2. Soit F' un tel sous-espace vectoriel. Que dire de la matrice de v dans une base
adaptée & F = F @ G (G étant bien évidemment un supplémentaire de F') ?

2052 | Mines-Ponts PC 2019
Soit M et N deux matrices de Mo, 1(R). On suppose que M N est nulle et que M + M7
est inversible. Montrer que N + N7T n’est pas inversible.

TPE/EIVP PSI 2019
Soit
M : R — My(R)
t —  M(t)
On suppose que M est de classe C! sur R et que pour tout t € R, M?(t) = M(0) = I,,.
1. Montrer que M(t) est diagonalisable pour tout réel t.
2. Montrer que MM' = —M'M et M' = —MM'M.
3. Montrer que l'application ® : ¢ +— Tr(M(t)) est constante sur R.
4. Déterminer M (t), pour t € R.

412




CCINP PSI 2019

Soit f un endomorphisme de R3. Montrer que Ker(f?) & Ker(f — 2Id) = R?.

2055 | Mines-Ponts MP 2019

1 111

. 0111
Soit A = 001 1 € M4(R)

0001

1. La matrice A est-elle diagonalisable ? Calculer les puissances de A.
2. Trouver B telle que A = B2

2056 | Mines-Télécom MP 2019

Soit P, I'ensemble des matrices de M, (R) a coefficients dans {0;1}, telles qu’il n’y
ait qu’'un seul 1 par ligne et un seul 1 par colonne. Montrer que les matrices de cet
ensemble sont diagonalisables sur C.

2057 | Mines-Ponts MP 2019

Soit A € M,(C). Montrer 'équivalence entre :
i) AA=1,;
ii) il existe S € GL,(C) telle que A = S5

2058 | Mines-Ponts MP 2018

Soit E un espace vectoriel de dimension n € N*, et f, g € L(E).

1. On suppose qu’il existe h € L(E) de rang r > 1 tel que ho g = f o h. Montrer
que xs et x4, ont un facteur commun de degré 7.

2. La réciproque est-elle vraie ?

2059 | Mines-Ponts MP 2018

Soit E un espace préhilbertien. Soit (e;);en+ une suite d’éléments de E telle qu’il existe
une fonction f de N dans R vérifiant :

Vi,j €N, (es, e;) = f(li —jl).
On pose :
Vn € N*, M, = ((ei, €;))1<i,j<n-

1. Montrer que M, est inversible si, et seulement si, la famille {e;;...;e,} est libre.

2. On suppose M,, inversible et M,, ;1 non inversible.
Montrer que la famille {eg;...;e,} est liée pour tout r > n + 1.

3. On suppose M, inversible et M,, 1 non inversible.
Montrer que e, € Vect({e1;...;e,_1}) pour tout r > n + 1.

4. On suppose f(0) # 0 et 1_1)I£ f(n)=0.

Montrer que M,, est inversible pour tout n € N*.
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CCINP MP 2019

01 --- 1
10 --- 0

Soit M = | . . .| € M,,(R) et f 'endomorphisme associé.
10 -0

1. Quel est le rang de M ?
2. Déterminer les valeurs propres et les sous-espaces propres de M.

3. Déterminer la matrice de la projection orthogonale sur 'image de f.

2061 | Mines-Ponts MP 2018

Soit n un entier naturel supérieur ou égal a 2. Soit € ’ensemble des matrices A € M,,(R)
telles que AT = A%2+A—1,. On appelle a 'endomorphisme de R” canoniquement associé

a A
1. Décrire a si A est symétrique, avec A € €.

2. Décrire a si on ne suppose plus A symétrique, avec A € £.

CCINP PC 2018

On travaille dans 'espace E = R, [X]. On définit un produit scalaire dans E par :

1

(P.Q) = [ POQ@L

-1

On note ||-|| la norme associée.
Sur E on définit également :

1
o(P) = / Pt)dt et fu(P)= P+ ap(P)X.
-1
1. (a) Montrer que ¢ est linéaire.

(b) On admet que f, est un endomorphisme de E. Pour cette question, on sup-
pose n = 3. Donner la matrice A, de f, dans la base canonique de R3[X].

(¢) Donner le spectre de f,. En déduire si f, est bijectif ou non. L’endomor-
phisme f, est-il diagonalisable?

On définit I'endomorphisme g, sur E par ¢g,(P) = P + agp(P).
Donner le rang de . Montrer que (Ker(p))t = Ro[X].

b
—~ o~
o

Donner le spectre de g,. L’endomorphisme g, est-il diagonalisable ? bijectif ?
Montrer que [|ga(P)| < (1 + 2[af)| P
En déduire qu’il existe M tel que :

e gy (100

per,p£o \ | P|

—
@
NN N NG

—~
o,

Donner la valeur de M.
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2063 | Mines-Ponts MP 2018

On note N I'’ensemble des matrices complexes nilpotentes et T' I’ensemble des matrices
complexes de trace nulle.

1. A-t-on Vect(N) = N?
2. Montrer que Vect(N) C T.

3. A-t-on l'inclusion réciproque ?

2064 | Mines-Ponts MP 2018

100
Soit E=R*et A=|0 3 p| e M(R).
00 3

On note f I’endomorphisme associé a A dans la base canonique de F.

1. Déterminer une condition sur p telle que 'on ait :

VX € M3(R), [[AX]l2 < [|X][2-

2. Soit z € E. Déterminer la limite éventuelle de > f¥(x) quand n tend vers +o0.
k=0

2065 | Mines-Télécom PC 2018
3 —4

Soit A = (2 3

) € M5(R). Calculer A™ pour tout n € N.

2066 | Mines-Ponts MP 2018

On identifie M, 1 (R) et R™. Soit B € R™ et A € S,,(R) a valeurs propres strictement
positives. On définit f : R” — R par la relation :

f(X)=XTAX —2BTX.

1. Donner I'expression du gradient de f.

2. Montrer que f admet un minimum. Calculer ce minimum.

Mines

Soit A, B € M,(R) et

1. Donner une condition nécessaire et suffisante sur A et B pour que M soit inver-
sible.

2. Si M est inversible, calculer M1,
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CoINp PG 2018
Soit une matrice M € My(C), M = (Cy | Co | C3 | Cy) (C; étant la ™ colonne de M).
Montrer que :

det((CH + Cg ‘ CQ + 04 ‘ Cl - Cg | CQ — 04)) = 4det(M)

CCINP PC 2018
On munit My(R) du produit scalaire défini par (M, N) = Tr(MTN).
Pour tout z € R, soit

cosh(z) — 1 4 cosh(z) 3
A= ( —2 sinh(w)) et B= ( 6 - sinh(x)) '
1. A-t-on (A,B) =07

2. Montrer que I'espace des matrices symétriques et celui des matrices antisymé-
triques sont supplémentaires et orthogonaux dans Ms(R).

3. Déterminer la distance de A a I’espace vectoriel des matrices symétriques.

Mines-Télécom MP 2018
Soit (z;y;2) € C3 et
2? a1y a2
A=|zy y* yz
rz yz 22
1. Quel est le rang de A?

2. Donner une condition nécessaire et suffisante pour que A soit diagonalisable.

2071 | TPE/EIVP MP 2018

Soit E un espace euclidien de dimension 3 orienté et u un vecteur unitaire de E. On
définit 'application f de E dans E par f(x) =u A (u A ) pour tout = € E.

1. Montrer que f est symétrique.

2. Déterminer les valeurs propres et les sous-espaces propres de f.

2072 | Mines-Ponts PC 2024

Soit n € N* et E un sous-espace vectoriel de M, (R) ne contenant que des matrices
diagonalisables.

n(n+1)

—

2. Quelle est la dimension maximale de E 7

1. Montrer que dim(E) <

2073 | Mines-Ponts MP 2018

Soit E un espace vectoriel réel de dimension finie et u € L(FE).

3 = u2. Montrer que u? est diagonalisable et que u — u? est

1. On suppose que u
nilpotent.

2. On suppose u**! = u* pour k > 0. Montrer qu’il existe un entier p tel que u?

est diagonalisable et que u — u” est nilpotent.

3. Conclure.
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2074 | Mines-Ponts MP 2018
Soit n € N*.

1. Soit A= {Me M,(C) | M = <1 0

0 2
2. Soit B ={M € M,(C) | M?* = I,}. Déterminer la dimension de Vect(B).

) } Déterminer la dimension de Vect(A).

2075 | Mines-Ponts MP 2015

1 - 1
Soit A= | ¢ € M,(R) et J = (1) € M,(R).

1

c .. C xn

On définit P(z) = det(A + X J).
1. Majorer « fortement » le degré de P.
2. Que vaut det(A)? (On distinguera les cas ¢ # 1 et ¢ = 1.)

CCINP MP 2012

Soit E un espace vectoriel réel de dimension 4, f un endomorphisme de E tel que
Ker(f —Idg) # Ker((f — Idg)?), Ker(f) # {0} et Tr(f) = 4.
1. Montrer que 0 et 1 sont valeurs propres de f et que f n’est pas diagonalisable.

2. Montrer lexistence d’un vecteur zo € Ker((f — Idg)?) \ Ker(f — Idg) tel que
F = Vect({xo; f(x0)}) soit un plan de E.

3. Montrer que 1 est valeur propre de multiplicité 2.

4. Montrer 'existence d’une base de E dans laquelle la matrice de f est

O O O N
o O OO
o= O O
e )

2077 | Centrale-Supélec MP 2015

On consideére 'ensemble
Un(C) = {M € M,(C) | M ' M = I,}.

1. Soit u et v deux endomorphismes tels que uov = vowu. Montrer que tout espace
propre de 1'un est stable pour 'autre.

2. Soit M € U,(C) tel que MT = M. Montrer qu’il existe U et V symétriques
réelles telles que :
e M =U+iV
e UV =VU
 UP+ V=1,
3. Montrer qu’il existe une matrice S symétrique réelle telle que M = exp(iS).

4. Montrer que M € U,(C) si et seulement s’il existe P orthogonale (réelle), S
symétrique réelle telle que M = Pexp(iS).
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2078 | Mines-Ponts MP 2013

Soit A € M,(R) fixée. On note :

oA Sy (R)

Montrer que det(p4) = (det(A))" .

Mines-Ponts PSI 2024
Soit A € M,,(C). On suppose Tr(A) = 0, rang(A) = 2 et A™ # 0.
Montrer que A est diagonalisable.

CCINP PC 2017

Soit A une matrice réelle symétrique telle que A% + A% + A3 + A% + A = 0.
1. Montrer que A est diagonalisable.
2. Soit A une valeur propre de A. Montrer que \> + \* 4+ A3 4 X2 4\ = 0.
3. En déduire que A = 0.

CCINP PSI 2022

Soit E un espace euclidien et f un endomorphisme de E. Soit encore z € E.

1. Montrer que Hélgl” f(x) — z|| existe et expliquer la méthode de calcul.

2. Calculer min ||AX + BJ| avec :
X€M3><1(]R)

1 7
A=|2 8
3

© Ot =~

1
et B=11
1

—_

5

2082 | Mines-Ponts MP 2016

On note J la matrice carrée de taille n dont tous les coefficients sont égaux a 1, et e
le vecteur de R™ dont toutes les composantes dans la base canonique sont égales a 1.
Soit M une matrice carrée symétrique de taille n telle que :

o Sur chacune de ses lignes, d coefficients sont égaux a 1 et les autres sont nuls.
e Ses coefficients diagonaux sont tous nuls.

« Pour tout ¢ # j : si m;; = 0, alors il existe un unique k tel que my; = my; =1
et si m;; = 1, alors il n’existe pas de tel k.

Quelles sont les valeurs propres de J 7
Ecrire MJ, JM et M? comme combinaison linéaire de M, J et I,,.

Montrer que Ker(M — dI,,) = Im(J). En déduire une relation entre d et n.

=W o

Montrer que les valeurs propres de M autres que d sont racines du polynéme
X2+ X +1—d.
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2083 | Mines-Ponts MP 2016

Soit E I'espace vectoriel des fonctions réelles continues sur le segment [0; 1], muni de
la norme uniforme. Soit u I'application définie sur E par :

u(f) = [ Crwd- [

1. Montrer que u est une forme linéaire continue sur F.

2. Montrer que sup [u(F)]

—— =1, mais que cette valeur n’est pas atteinte.
20 |Ifll

2084 | ENSEA/ENSIIE MP 2016

Soit P = X3 — 12X — 12 et P, = X3+ 12X — 12.
1. Soit P € R[X], o € R et n € N*. Rappeler ce que signifie « a est racine de
multiplicité n de P » et donner une condition nécessaire et suffisante pour que
a soit racine de multiplicité n de P.
2. (a) Combien de racines réelles admet P; 7 Donner leur ordre de multiplicité.
(b) Soit M € Mj3(R) telle que Py (M) = 0. La matrice M est-elle diagonalisable ?

3. Soit M € M;3(R) telle que Po(M) = 0. Montrer que M est diagonalisable si et
seulement si M est une matrice scalaire.

CCINP PC 2017

Pour tout polynéme P de R[X], on pose :
f(P)=P(X+1)—-P(X).

Pour tout entier n, on note f,, 'endomorphisme de R, [X] induit par f.
1. Donner la matrice de f3 relativement a la base canonique de R3[X].

2. Soit P € Ker(f). Montrer que P— P(0) admet une infinité de racines. En déduire
Ker(f).

3. Déterminer le noyau et I'image de f,.
4. Prouver que f est surjectif.

5. Trouver tous les polynémes P tels que :

P(X+1)— P(X) =X~

6. En déduire une expression simple de Z k2.
k=0

X ESPCI

Soit n € N impair. Montrer que —I,, n’est pas la somme de deux carrés de M, (R).
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Mines-Ponts MP

1. Soit Eq, Es, E5 des espaces vectoriels de dimension finie.
Soit f € L(Ey, Esy), g € L(E, E3) tels que Ker(f) C Ker(g).
Montrer qu’il existe h € L(Fs, E3) tel que g = ho f.
2. On suppose ici £ = M, (R).
(a) Soit ¢ une forme linéaire de E. Montrer qu’il existe C' € E telle que :

VM e E, (M) =Tr(CM).
(b) Soit A une matrice nilpotente de E. Montrer qu'il existe C' € E telle que :
VM € E, Tr(AM) = Tr(C(AM — MA)).

En déduire que A = CA — AC.

2088 | Centrale-Supélec PSI 2025

Soit E un espace euclidien, f € L(E) bijective vérifiant pour tous x,y € E :

(f(@),y) = —(z, f(y)).
On définit s = f o f.

1. Montrer que s est un endomorphisme auto-adjoint.

2. Soit A une valeur propre de s. Montrer que A < 0. En déduire que la dimension
de E est paire.

3. Soit & un vecteur non nul appartenant au sous-espace propre relatif a A. On
pose F' = Vect({z; f(z)}). Montrer que F' est un plan vectoriel stable par f et
que F* est stable par f.

4. Montrer alors que dans une base orthonormale B bien choisie, ()5 = <2 —()b)

2089 | Mines-Ponts MP 2017

Soit A € M,(R) et
A:Me M,(R) — AM — MA.

1. Montrer que A est un endomorphisme de M,(R) et que :

Vi € N*, V(M: N) € M,(R)%, A"(MN) = 3 (Z) AF(M)A™F(N).

2. Soit H € M,(R). On suppose que B = A(H) commute avec A. Montrer que
A?(H) = 0 et que, pour tout n € N*, A"*1(H™) = (.

3. Montrer que A"(H™) = n!B".

4. En déduire que B est nilpotente.
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2090 | Mines-Télécom MP 2017

010 0 0010 000 1 0 ab c
. 100 0 000 1 0010 @ 0 ¢ b
St U=10 09 0 1"V =11 000/ "=lo10 0|t ¢ 0 a
0010 010 0 1000 cboa o

des matrices réelles.
1. Calculer U2, Déterminer les éléments propres de U.
2. Déterminer les éléments propres de V et W.

3. Montrer que 'on peut trouver une base de vecteurs propres commune a U, V et
wW.

4. La matrice A est-elle diagonalisable ? Quels sont les éléments propres de A? A
quelle condition nécessaire et suffisante A est-elle inversible ?

2091 | Mines-ponts MP 2023
Soit n € N*. On pose N = A — I, avec :

1 1 0 - - 0
0o . . .0
. . . . 0
A= € M,(R).
0
0 .. o1
0 «ov cov oo 0 1

1. Déterminer I'ensemble des matrices de M, (R) qui commutent avec N.
2. Soit (E) : A= X? d’inconnue X € M, (R).

(a) Montrer que si X est solution de (F), alors il existe des réels aq, ..., a, 1
tels que :
1 al a2 .. .« .. &n—]_
0o . (0%} 9
X ==+

Q2

: 0 . . Qaq

0 «cv wer e 0 1

(b) Montrer qu’il existe au plus deux solutions de (FE).

3. (a) Donner le développement limité au voisinage de 0 de v/1 + x a la précision
o(x™).
(b) Résoudre (F).

2092 | Mines-Ponts MP 2016

Soit M € M, (R). Montrer que M € S, (R) si, et seulement si, le polynéme caractéris-
tique de M est scindé sur R et si MTM = MMT.
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CCINP PC 2024

Soit (a;b) € R? et

A:

SR o R
Q@ Tt e o
Qe o Qe
SRS I~

1. Déterminer le rang de la matrice A.

2. La matrice A est-elle diagonalisable ? Déterminer les valeurs propres de A.

2094 | Mines-Ponts PSI 2016
Soit a,b € R et

a b 0 -+ 0 b
b a b 0 0
0 b
A= € M,(R).
0 0
0 : . . a
b 0 -+ 0 b a
La matrice A est-elle inversible ?
CCINP PSI 2016
a c b
Soit M = |c a+b c| € MsR).
b c a
010
1. Soit K =1 0 1] € M;(R). Montrer que K est diagonalisable.
010

2. Montrer que M s’écrit en fonction de puissances de K.
3. Diagonaliser M.
4. En déduire M™.

2096 | Mines-Ponts PSI 2013
Soit f un endomorphisme de C".

1. Supposons que rang(f) = 2. Exprimer le polynéme caractéristique de f en
fonction de Tr(f) et Tr(f?).
2. Supposons que rang(f) = 3. Exprimer le polyndéme caractéristique de f en

fonction de Tr(f), Tr(f?) et Tr(f?).

2097 Centrale-Supélec PSI 2016

Soit S, (R) I'ensemble des matrices symétriques réelles de taille n et S;7T(R) celui des
matrices symétriques réelles a valeurs propres strictement positives.

1. Enoncer le théoréme spectral.
2. Soit A € ST(R). Montrer qu'il existe B € S/ (R) telle que A = B>.

3. Soit M € GL,(R). Montrer que MT M € S;(R). Montrer alors qu'il existe O
orthogonale et S € ST+ (R) tel que M = OS.
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ENS 2025

Soit F un K-espace vectoriel de dimension finie n et v un endomorphisme de E. Montrer
que :
u est simple <= x,, est irréductible dans K[X].

CCINP PC 2015

Soit n un entier strictement positif, £ = R muni de sa structure euclidienne canonique,
u un vecteur fixé de F, A une matrice symétrique de M, (R) et ¢ 'endomorphisme de
E de matrice A dans la base canonique. On étudie la fonction f de E dans R qui a
tout vecteur x = (z1;...;x,) associe f(x) = (z,¢(x)) — 2(z,u).

3

1. Iein=2, A= ( 1 _31> et u = (b;1). Vérifier que :

f(z) =323 + 325 — 21109 — 1077 — 274.

Montrer que Xy = (2;1) est un point critique de f.

2. Avec les conditions de la question 1, soit h = (hy; hy). Montrer que
f(Xo+h) — f(Xo) = ahi + bh3 + chihs,

ol a,b,c sont trois réels que l'on déterminera. En déduire que f admet un
extremum en Xg.

3. On revient au cas général et on suppose de plus que pour tout x non nul de F,
(x,p(x)) > 0. Montrer que les valeurs propres de ¢ sont strictement positives.
En utilisant une base orthonormée de vecteurs propres de ¢, montrer que f
possede un extremum que 'on précisera.

CCINP PC 2019

Soit A € M,(C). On note :

1<i<n =

|A]| = max (Z\aiﬂ) et p(A) = max{|A| | A valeur propre de A}.

1. Déterminer la norme de ||A|| et p(A) lorsque A = <(1) 16—12 1).

2. Montrer que ||AB|| < ||Al|||B|| pour A, B € M,(C).

3. (a) Soit z un vecteur propre associé a la valeur propre A. Montrer que :

Azi| <) lajay|
j=1
pour tout ¢ € [1;n].
(b) En déduire que p(A) < [|4]|.
4. Montrer que la suite (A¥)zen converge vers la matrice nulle dans M, (C) si et

seulement si p(A4) < 1.
5. Montrer que p(A)* = p(A*) pour tout k € N*.
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CCINP PSI 2021

01 1
Soit H= |1 0 1| e Ms(R).
110

1. La matrice H est-elle diagonalisable ?
2. Si (a;b) € R?, on pose :

a b b
R(a;b)=1b a b,
b b a

notée plus simplement R.
Exprimer R en fonction de H et I3. La matrice R est-elle diagonalisable ?

3. Pour tout n € N, on pose u,, = Tr(H"). Montrer que la suite (u,)nen est a
valeurs entieres et diverge.

4. Pour tout n € N, on pose v, = Tr(R"). Peut-on trouver a et b tels que la suite
(Un)nen converge ?

CCINP PSI 2021

Pour tout m € N, on définit :

-m—-1 m 2
A, = -m 1 m
—2 m 3—m

1. Donner les valeurs propres et les sous-espaces propres de A,,.

2. Donner, si existence, les valeurs de m telles que A,, soit diagonalisable. Méme
question pour l'inversibilité.

3. Si A, est diagonalisable, déterminer la matrice de passage P.

CCINP MP 2015
1. Soit A € M, (R). Comparer det(A) et det(—A).

2. (a) Soit B € M,(R) antisymétrique. Discuter de la parité du polynoéme caracté-
ristique de B.

(b) Retrouver le fait que si n est impair et B € M,,(R) est antisymétrique, alors
det(B) = 0.

2104 | Mines-Ponts MP 2017
Soit A, B € M, (C).

1. On suppose que 0 est la seule matrice qui vérifie AM = M B. Montrer que toute
matrice s’écrit de facon unique comme AN — N B.

2. On suppose que Sp(A) N Sp(B) = (. Montrer que la seule matrice qui vérifie
AM = M B est la matrice nulle.

3. Est-ce encore le cas dans M, (R)?
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2105 | Centrale-Supélec MP 2016

1. Donner le polynéme caractéristique de A € My(R) en fonction de sa trace et de
son déterminant.

2. Soit E I’ensemble des nombres premiers p tels que :

HAGMQGR), Ap++A:p[2
T 1 0 -3 =2
Montrer a l'aide de Ay = 0 _of et As = 5 o | aue {2;3} C E.

3. Montrer que pour tout p € E et A associé, XP™!' —(p+1) X +p annule A. Montrer
que A est diagonalisable sur C et que 1 est sa seule valeur propre réelle.

2106 | Centrale-Supélec MP 2017

On se donne un espace vectoriel de dimension finie E et u € L(E). On consideére les
deux propositions :

e (P)) : Il existe F' et G deux sous-espaces vectoriels supplémentaires tels que
uw(F) C Getu(G) CF.

o (P,) : Tl existe a et b des endomorphismes de E tels que u = a+b et a®> = b? = 0.

1. Montrer que (P;) implique (P,).

2. On suppose ici que u est un automorphisme. Montrer que si (P») est vérifiée
alors E = Ker(a) @ Ker(b) = Im(a) & Im(b).

3. Montrer que (P,) implique (P;) dans chacun des cas suivants :

(a) u est un automorphisme ;
(b) u est nilpotent.

CCINP PSI 2017

On se place dans R, [X]. On définit le produit scalaire :

VP,Q € Ru[X], (P.Q) = > PP1)QM(1).
k=0
1. Justifier qu’il s’agit bien d’un produit scalaire.

2. Soit E = {P € R,[X] | P(1) = 0}. Montrer que E est un sous-espace vectoriel
et donner sa dimension.

3. Que vaut dist(1; £) 7

CCINP MP 2017
(3 1 Ve
Soit A=~ 1 3 —6|¢eM;(R).
-6 V6 2

1. Montrer que A est orthogonale.

2. Etudier la nature de A et ses éléments caractéristiques.
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2109 | Mines-Ponts MP 2017

1. Déterminer une condition sur A réel tel qu’il existe A une matrice antisymétrique
réelle vérifiant A2 = \I,,.

2. Déterminer les matrices B symétriques réelles telles qu’il existe A une matrice
antisymétrique réelle vérifiant A2 = B.

2110 | Mines-Ponts MP 2019
Résoudre I'équation e = I,, pour A € M, (C).

2111 | Mines-Télécom PSI 2018

0 0 -1
L’endomorphisme f a pour matrice | =1 0 0 | dans une base orthonormée d’un
0 1 0

espace euclidien. Déterminer la nature de f.

CCINP PC 2022

Soit (p;q) € R?. On considére I'équation (E) suivante :
M?* +pM +ql, =0
d’inconnue M € M, (R).
1. On pose A = p? — 4q. Vérifier I'identité :

2
M2+ pM + ql,, = (M + 7291”> - i[n.

On suppose désormais que A > 0.

2. Montrer que résoudre (E) revient a résoudre 1'équation Y2 = [, d’inconnue

Y € M,(R).

1 0
par blocs mais pas diagonale, solution de Y? = I,,.

3. Elever la matrice (O 1) au carré. En déduire une matrice de M,,(R) diagonale

On considére une solution de (FE), notée A, et on suppose que A n’est pas
colinéaire a I,,.

4. Soit (a; 8) € R% On pose M = oA + B1,.

(a) Montrer que 1'égalité M? = M équivaut au systéme suivant :

al26—ap—1)=0
B2 —B—a*q=0
(b) Montrer que ce probleme a exactement quatre solutions.
Les matrices correspondantes différentes de 0 et de I,, sont notées U et V.

(c) Calculer les produits UV et VU. Commenter.
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2113 | Mines-Ponts MP 2024

1. Trouver une condition nécessaire et suffisante sur A € M,,(R) pour qu’il existe
S € S,(R) telle que A2 = S? + S + I,,.

2. Déterminer A € M, (R) telle qu’il existe une unique matrice S € S,(R) telle
que A2 =52+ S+1,.

CCINP PC 2018

. -1 a
Soit A = (—a 3> € My(R).

1. Pour quelles valeurs de a la famille {A; A%} est-elle liée ?

2. Pour quelles valeurs de a la matrice A est-elle diagonalisable ?

CCINP PC 2018

Soit F un espace vectoriel tel que dim(F) = 2p + 1 ou p € N. Soit encore f € L(E).
1. Si A est une valeur propre et x un vecteur propre associé, que vaut f"(x)?

2. Supposons f2 — f2 + f —Idg = 0. Justifier que f admet au moins une valeur
propre réelle et la donner.

2116 | Centrale-Supélec PC 2022

Pour tout («; 3) € [0;1]%, on définit la matrice

MmmIC;alf&.

1. Etudier la convergence de la suite (A(a; 5)P)pen-

2. Dans le cas de convergence, déterminer le rang de la matrice limite.

2117 | CCINP PC 2022
1 a b

Soit (a;b;c;d) € RY. Onpose A= 0 1 ¢

0 0 d
Trouver une condition nécessaire et suffisante sur (a; b; ¢; d) pour que la matrice A soit
diagonalisable.

CCINP PSI 2022

~1 3 -2
Soit A= [—-3 5 —2| e My(R).
—3 4 -1

1. Etudier la diagonalisabilité de A.

2. Résoudre le systeme différentiel suivant :

= —x+3y— 2z
y' = —3x+ by — 2z
2= -3r+4y— =z
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2119 | Mines-Ponts

Soit K un corps commutatif fini a ¢ éléments. Soit E un K-espace vectoriel et f € L(E).
Montrer que f est diagonalisable si et seulement si f¢ = f.

2120 | Mines-Ponts MP 2022
Soit £ un C-espace vectoriel de dimension finie n € N et u € L(E).

1. Montrer que si u est de rang r, alors son polynéme minimal a un degré inférieur
ou égal a r + 1.

2. Dans le cas général, peut-on améliorer cette majoration ?

2121 | Centrale-Supélec MP 2016

Soit P = X2+ aX + 3 un polyndme n’ayant pas de racine réelle, E un espace vectoriel
réel de dimension n, et f € L(F) telle que P(f) = 0.
On cherche a prouver qu’il existe une base dans laquelle la matrice de f est

A 0 - 0
0

0
0 0 A

ou A= <—05 —1a>'

1. Montrer que n est pair et que f n’admet pas de valeur propre.

2. Soit z € F et y = f(x) + ax. On pose H, = Vect({z;y}). Montrer que H, est
stable par f.

3. Démontrer le résultat annoncé.

2122 | Mines-Ponts MP 2019

Calculer :

lim

sin{ —] cos|—
n n
CCINP MP 2019
Soit E un espace vectoriel réel de dimension n. Soit f € L(FE) de rang 1.
1. Montrer que Im(f) C Ker(f) si et seulement si f est non diagonalisable.

2. Donner un exemple concret d’'une matrice a coefficients réels de taille 3 x 3 de
rang 1 qui ne soit pas diagonalisable. Justifier par une autre méthode qu’elle
n’est pas diagonalisable.
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2124 | Mines-Ponts PC 2019

On considére une suite complexe (a,),>1 telle que ay # 0. Pour tout n € N*, on
introduit la matrice

al a2 ... PR an

a9 0 0
A, = :

an, o ... ... 0

et son polyndme caractéristique et noté y,,.
1. Déterminer xo et xs.
2. Montrer que Y,, est divisible par X"2.
n
3. On pose b, = Y _ a;. Montrer alors que x, = X" ?(X? — a; X — b,).

k=2
4. Selon que b, est nul ou non, étudier la diagonalisabilité de A,,.

2125 | Mines-Télécom PSI 2019

2 0 1
Soit A=| 1 1 0| e Ms(R).
-1 1 3

1. Trouver les éléments propres de A.
2. La matrice A est-elle diagonalisable ?

3. Montrer que A est semblable a la matrice

T =

S OO
SN =
N = O

4. Calculer T" puis A", pour tout n € N.

2126 | Mines-Ponts PC 2019

Soit T" € N*. On note Er ’ensemble des suites réelles T-périodiques. On note o 1'en-
domorphisme (uy,)neny — (Uni1)nen de Er. Cet endomorphisme est-il diagonalisable ?

2127 | Mines-Télécom MP 2019

Soit A € SFH(R) et B € S,(R). Montrer que AB est diagonalisable.

ENS MP 2019

Soit X,Y € S,(R). Montrer que Tr(XY XY) < Tr(X?Y?).

Mines-Ponts PC 2015
Soit f un endomorphisme de R™ avec rang(f) = rang(f?).
1. Montrer que R" = Ker(f) & Im(f).

2. Etudier la réciproque.
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2130 | ENSEA/ENSIIE PSI 2015

- A A A
SoitA:(l 2>€M2(]R)etB: A A A
A A A

Donner les valeurs propres de la matrice B.

2131 | ENSEA/ENSIIE MP 2015

Soit A une matrice de M, (R) telle que A* + A + 41, = 0.
1. Montrer que A ne peut pas avoir de valeurs propres réelles.
2. Montrer que n est nécessairement pair.

3. Trouver le déterminant et la trace de A.

2132 | Centrale-Supélec MP 2015

Soit (a; B) € C?. On définit :

a+B 1 0 - 0
An: 0 0 EMn<C)
: STl T 1
0 o 0 af a+p

1. Rappeler la forme des solutions de au,,_o + bu,_1 + cu,, = 0 pour a # 0.
2. Etudier I'inversibilité de A,,.
3. Etudier la diagonalisabilité de A,, dans C puis dans R.

2133 | ENSEA/ENSIIE MP 2015

1 2 4
Soit M=[-2 1 0 |eM(R).
1 -1 -1
1. Montrer que le polyndme caractéristique de M est (X — 1)*(X + 1).

2. La matrice M est-elle diagonalisable ?

3. Montrer que M est semblable a

1 1 0
A=101 0
0 0 -1
Mines-Ponts MP 2015
Trouver 'inverse de
1 2 n
0
: € M,(R)
SU
0 0 1
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2135 | Centrale-Supélec PC 2015

Soit n un entier supérieur a 3 et a € R. On consideére la matrice

2 1 e v 1 a
1
A, = € M,(R)
1
1 1 2
a o a

Déterminer les éléments propres de A,,.

CCINP MP 2015

Soit £ un espace euclidien muni d’un produit scalaire (-, -) et p un entier naturel, avec
p = 2. Soit eq,...,e, p vecteurs de E tels que, pour tous 1 < 4,7 < p, si i # j, alors
<€z’7 €j> < 0.

1. Pour 1 <i,j < p, comparer \;\j(e;, e5) et [Ni||A\;](es, e;).
2 2

p—1 p—1
2. Comparer Z Awerl|l et Z\)\k|ek
k=1 k=1
p—1 p—1
Montrer que Z e =0 — Z|)\k|€k =0g.
k=1 k=1
3. Montrer que toute sous-famille de p—1 vecteurs extraite de {ey;...;e,} est libre.

Mines-Ponts

Soit E un C-espace vectoriel de dimension finie n € N*. Si (u;v) € L(F)? on note
[u, v] = uv — vu. soit f,g € L(E)>.
1. On suppose qu’il existe v € C* tel que [f, g] = af.

(a) Calculer, pour tout p € N*| [P, g] et en déduire que f est nilpotente.
(b) Montrer que f et g sont trigonalisables dans la méme base.

2. On suppose qu'il existe (o; 3) € C** tel que [f, g] = af + Bg. Montrer que f et
g sont trigonalisables dans une méme base.

X MP 2017

Soit f un endomorphisme de R[X] et deux polynémes A = ayX? + ;X + ag et
B = 51X + By. Pour tout P € R[X], on pose :

f(P) = AP" + BP'

On suppose de plus que :
Vk €N, as + [ # 0.

Montrer que f est diagonalisable.
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X PC 2008

Soit n € N*. Résoudre dans M;(C) I'équation :

n 11
X = (O 1) .
CCINP MP 2022
Soit E un espace vectoriel de dimension n > 2.
Soit B = (ey;...;e,) une base de E.
On note B' = (g1;...;¢&,) la base B orthonormalisée selon le procédé d’orthonormali-
sation de Schmidt.

1. Rappeler le procédé de Schmidt ainsi que I'expression des €; en fonction de e;.
2. Prouver que (Idg)8 = [1¢e, )
i=1

3. Montrer que pour toute base B” orthonormale de E, on a :
[det((1dp)E'| < TTllesl (%)
i=1

4. Prouver que (x) devient une égalité si et seulement si (Idg)8" est diagonale.

2141 | Centrale-Supélec MP 2021

Soit A € M3(R) une matrice a coefficients strictement positifs tels que :
V(Z,j) € [[1 ) 3]]2, aijaji = 1.

1. Déterminer le polynéme caractéristique de A.
2. On suppose que A n'est pas inversible. Etudier la réduction de A.

3. Etablir une condition nécessaire et suffisante pour que A soit inversible.

Montrer que dans cette condition, A n’est pas diagonalisable dans R. L’est-elle

dans C?

2142 | Centrale-Supélec PSI 2021

Soit f un endomorphisme de R?. Sa matrice dans la base canonique est

-2 1 =2
A=|-8 2 4| eMR).
1} -
1 0 1
Soitu= |1 |[,v=[2]etw=|2] trois vecteurs de R3. On note B = (u;v;w).
-1 1 1

1. Montrer que B est une base de R3.
2. Ecrire la matrice de f dans la base B.

3. Exprimer A™ pour tout n € N.
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2143 | Centrale-Supélec PC 2015

Soit E I'ensemble des fonctions de classe C* de R dans R et p €]0;1[. On considere
I’endomorphisme u de E défini par :

u(f):x— f(p(x —1)+1).

Déterminer les valeurs propres et les vecteurs propres de wu.

ENSAM PSI 2015

a b b
Soit A=|b a b| € M;3(C).
b b a

1. Etudier la diagonalisabilité de A.

2. Déterminer ses sous-espaces propres.

ENSAM PSI 2015

Soit m et p deux entiers tels que m > p > 1 et A(m; p) le déterminant suivant :
) @) (7)
ey ey e

Déterminer A(m;p + 1).

2146 | Mines-Télécom PC 2022

1. Rappeler la définition d’'un endomorphisme diagonalisable et ses caractérisa-
tions.

2. Soit A € M7(R). On suppose que Spg(A) = {2;1; —i}.
Trouver toutes les valeurs possibles pour la trace de A et le déterminant de A.

2147 | Mines-Ponts PSI 2016

Soit M € M, (R) nilpotente, d’indice p, et telle que MTM = MM?T.
1. Déterminer MTM.
2. Déterminer M.

2148 | TPE/EIVP PC 2018

Soit A € M, (R) une matrice antisymétrique. La matrice M = A+1, est-elle inversible 7

CCINP PSI 2016

Soit A € M, (C) telle que Tr(A) = rang(A) = 1. Montrer que A% = A.
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CCINP PSI 2015

Soit D une matrice diagonale de M, (R) & coefficients positifs ou nuls et H une matrice
de O,(R). Montrer que Tr(HD) < Tr(D).

CCINP PSI 2015

Soit P € M,(R) orthogonale. Trouver une majoration de la somme de ses coefficients
meilleure que n?.

ENSAM PSI 2015

Etant donné un vecteur non nul @ de R?, on note a = ||4]|. On considere
f:Zr—unt

endomorphisme de R3.

1. Déterminer Im(f) et Ker(f). Calculer f o f.
On rappelle que :

-

an((bAE) = (T-Ab— (@b
2. Déterminer la matrice A de f et A% dans la base canonique.

3. Déterminer f™ en fonction de a, f et f2.

4. Déterminer ’endomorphisme suivant :

+oo fn
exp(f) = > 1
n=0 """

2153 | Mines-Ponts MP 2018

Soit E un espace euclidien et (y;);e; une famille de vecteurs telle qu’il existe A, B > 0
tels que :
Vo € B, Allz|* < Y (@, y;)* < Bll=||*.
jeJ

1. Montrer que la famille (y;);ecs est génératrice de E.

2. On considere dans cette question uniquement :
E=R ety = (50), g2 = (=5 —3)  vs = 2.

Montrer que cette famille convient.

3. On suppose ici que A = B =1 et que, pour tout j € J, ||y;|| = 1. Montrer que
la famille (y;),es est une base orthogonale de E.

4. On suppose seulement A = B. Montrer que :

Vee FE, x= %Z(m,yﬂyj.

jeJ
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2154 | Centrale-Supélec PSI 2022

On note I = {O ; g} et £ = C(I,R). On munit £ du produit scalaire usuel :

jus

(f.9) = /02 f(t)g(t)dt.

Pour f € E, on définit deux fonctions A(f) et B(f) sur I en posant :

1. Montrer que :
V(f;9) € B (A(f).9) = (f, B(g)).

En déduire que les valeurs propres de B o A sont toutes positives.

2. Montrer que :
Vi€ E, Veel, (A(f)(2)? < :v/:f(t)?dt.

En déduire I'existence d'un réel K indépendant de f tel que ||A(f)]| < K| f]|-

3. Montrer que A est un endomorphisme continu de E.

2155 | TPE/EIVP PC 2017

Soit dans un espace vectoriel euclidien f telle que f(0) = 0 et pour tout couple de
vectewrs z,y, || f(x) — f(y)|| = lz —yl|
1. Montrer que f conserve la norme.

2. Montrer que f conserve le produit scalaire.
3. Montrer que f est linéaire.

4. Que peut-on conclure sur f?

2156 | Central-Supélec MP 2019

1. Montrer que deux polynémes de C[X] sont premiers entre eux si et seulement
s’ils n’ont pas de racine commune.

2. Soit A, B € M,(C).

(a) Montrer que B et BT ont les mémes valeurs propres. On suppose que A et B
ont une valeur propre commune. Montrer qu'il existe C' € M, (C) non nulle
telle que AC = CB.

(b) On suppose maintenant que A et B n’ont aucune valeur propre commune.
Montrer que la seule matrice complexe C telle que AC' = CB est C' = 0.

—

Soit A € M,,(C). Montrer que :

n
2 — ay| <Y Jay]

Sp(4) c [ J{z€eC
i=1 =
4

oL
EONA
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CCINP MP 2019

Soit M € M, (C). On note M la transposée de la comatrice de M. On rappelle que :
MM = MM = det(M)I,.

1. Soit P € GL,(C).

a) Montrer que P est inversible.

Eb) Montrer que det(P) = det(P)".

(c) Calculer P.

(d) Trouver une relation entre P~! = P~1,
2. Soit A, B € GLy(C).

(a) Montrer que AB = BA.

(b) Soit P € GL,(C) tel que B = P~'AP. Montrer que B = P"1AP.
3. Soit A € M, (C).

(a) Montrer que si A est diagonalisable, A 'est aussi.
(b) La réciproque est-elle vraie ?

Mines-Télécom MP 2021

Soit A et B deux matrices de M,(R) telles que A et B commutent et B est nilpotente.
1. Démontrer que det(I,, + B) = 1.
2. Montrer que det(A + B) = det(A).

2160 | Mines-Ponts PC 2015

Soit F I'ensemble des fonctions de classe infinie sur R et D l'opérateur de dérivation
sur E. On définit les quatre fonctions suivantes :

fi(z) = cosh(x), fa(x) =sinh(z), f3(z) = xcosh(z), fi(z)= xsinh(x).

Soit B = (f1; fo; f3; fa) et F' = Vect(B).

Montrer que B est une base de F'.

Montrer que D induit un endomorphisme d sur F.
Ecrire la matrice A de d dans B.

Calculer A* et trouver un polynéme annulateur de d.

AN R

La matrice A est-elle diagonalisable ?

Mines-Ponts PC 2014

Soit A une matrice non nulle de M3(R). On suppose que A? est la matrice nulle.
1. Que vaut la dimension de Ker(A)?
2. Déterminer la dimension de {M € M;5(R) | AM + MA = 0}.
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Mines-Ponts PC 2016
1 2 3

Montrer que [3 1 2| € M3(R) et AT sont semblables.
2 31

2163 | Centrale-Supélec PC 2015

Soit a un nombre réel différent de 0, 1 et —1. On suppose que M et aM sont semblables.

1. Montrer que si x est une valeur propre de M, alors pour tout naturel k£ non nul,
za® est une valeur propre de M.

2. En déduire que M est nilpotente.

ENSEA /ENSIIE

Trouver 'ensemble des matrices A € M,,(R) diagonalisables sur R, vérifiant 1’équation
A3+ A =2I,.

ENS MP 2018

Soit (A; B) € M,(R)? tel que AB = I,,. Montrer que BA = I,,.

2166 | Mines-Télécom MP 2016

1. Donner le théoreme du rang.
Soit f et g des endomorphismes de E.
2. On suppose que g o f = 0. Montrer que rang(f) + rang(g) < n.
3. On suppose que g + f est bijective. Montrer que rang(f) + rang(g) > n.

2167 | X MP 2016

Soit A € M, (C).
1. On suppose A* = A2, Calculer exp(A).
2. On suppose A* + A3 —2A4% = 0. Calculer exp(A).

CCINP MP 2016

1. Localiser les racines réelles de X3 — X — 1.
2. Soit A € M,,(R) et xa(X) son polynéme caractéristique.

Calculer xgglm xa(z), im xa(x) et xa(0).

3. On suppose A> = A + I,,. Montrer que det(A) > 0.

2169 | Mines-Ponts MP 2015

Trouver toutes les matrices A € M, (R) vérifiant :

(A+ 1) — (AT +1,)=0
Tr(A) =0
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CCINP PSI 2021

“ 1 —CT
Soit C'= 1| : | € Mp1(R) et M = (C’ I )
an,
1. Calculer MTM.
La matrice M est-elle inversible ?
2. On pose N = (M—HTM.
Montrer que N € O,;1(R).

2171 | Mines-Télécom PSI 2021

a ¢ b 010
Soit A=1b a c| e M3(C)et J=[0 0 1| e M;5(C).
c b a 1 00

1. Exprimer A en fonction de J et J2.
2. Calculer le polynome caractéristique de J. La matrice J est-elle diagonalisable ?

3. Diagonaliser A.

2172 | TPE/EIVP PSI 2019

Soit
a+b ab
1 a+b ab O
d(asb) = € M,(R).
O 1 a+b ab

1 a+b
1. Calculer le déterminant de ¢(a;b).

2. Déterminer, pour (x;y; z) € R? tel que 2? = yz, le déterminant de

2r 2z
Yy 2x oz O
M = R € M,(R)
O Yy 2r =z

y 2z

CCINP PSI 2018

Soit E un K-espace vectoriel, f € L(F) et p un projecteur de E. Montrer que p et f
commutent si et seulement si Ker(p) et Im(p) sont stables par f.
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CCINP PSI 2018

Soit £ un K-espace vectoriel et f € L(E).
1. On suppose f surjective. L’application f? est-elle surjective ?

2. On suppose f3 = f. Montrer que si f est injective, f est surjective.

2175 | Mines-Ponts PSI 2015

On note E l'ensemble des fonctions continues sur R et E’ I'ensemble des fonctions
continues et bornées sur R. Soit g une fonction continue de R dans R’. Pour f € F,
on note :

TN = gy (Oa0

1. Montrer que T(f) appartient a E, puis que T est un endomorphisme.

2. Déterminer les valeurs propres de T'|g:.
Quelle est la dimension des sous-espaces propres ?

X
Soit A € M, (R) telle que A% —3A4? + 34 = 0.
Montrer que Tr(A) et det(A) sont des multiples de 3.

2177 | X-ENS/Mines/Centrale

Soit A et B deux matrices de M, (C). On considére 1'application :

[ My(C) —  M,(C)
— AM+ MB

Quel est le spectre de f7

2178 | TPE/EIVP PSI 2015

Soit M € M;(C) semblable a iM.

1. Soit A une valeur propre de M. Montrer que i\ est aussi une valeur propre de
la matrice M.

2. Montrer que M est nilpotente (i.e. il existe & € N tel que M* = 0).

2179 | Centrale-Supélec PC 2016

Soit A € M,(R). On pose :

)\ = inf Z (Cl,ij — mij)Q

MeSn(R) 1<ij<n

1. Prouver l'existence de A, puis le calculer.

1 0 «
2. On suppose que A= [0 1 0
0 01

Montrer de deux manieres que iig}) A=0.
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2180 | Mines-Télécom PSI 2017
Soit A € M, (R) une matrice nilpotente telle que AAT = AT A. Montrer que A = 0.

2181 | Mines-Télécom PSI 2016

On considere I’endomorphisme :

[ Ry[X]

Déterminer det(f).

CCINP PSI 2016

Soit A € My(R) telle que A? = AT et A #£ 0.
1. Trouver un polynéme annulateur de A.

2. On suppose que 0 appartient au spectre de A. Déterminer ce spectre.

3. Montrer que A est semblable a B = (1

0 0) avec une matrice de passage ortho-

gonale.

Mines-Ponts MP 2015
Soit A € M,(C). On appelle classe de A I’ensemble :

{PAP™' | P € GL,(C)}.

On suppose que la classe de A est bornée.

1. On appelle matrice de dilatation toute matrice de la forme I,, + (A — 1)E;;
avec A # 0. Montrer que A est diagonale en utilisant les matrices de dilatation.
Montrer que toutes les matrices appartenant a la classe de A sont diagonales.

2. En utilisant les matrices M; = I,,+E; ; 11, montrer que A est une matrice scalaire.

2184 | TPE/EIVP PC 2015

Soit f et g deux endomorphismes tels que fogo f = f.
1. Montrer que f og et go f sont des projecteurs.
Montrer que Im(f) = Im(f o g) et Ker(f) = Ker(g o f).
2. Soit les propositions suivantes :
(P1) fogof=Ff
(P2) gofog=yg
(P3) rang(f) = rang(g)
(a) Montrer que (P;) et (P,) entrainent (Ps).
(b) Montrer que (Ps) et (P;) entrainent (F;).
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Mines-Télécom PSI 2019
Soit E un espace vectoriel réel de dimension finie et f, g deux endomorphismes de F
vérifiant fog= f+g.

1. Montrer que Ker(f) = Ker(g) et Im(f) = Im(g).

2. On suppose que f et g sont diagonalisables. Montrer que f o g est aussi diago-
nalisable et que Sp(f o g) C R\|0;4].

2186 | ENSEA/ENSIIE PC 2014

Soit (E, (-,-)) un espace vectoriel normé euclidien de dimension n. Soit (u;)1<;<, une
famille de vecteurs de E telle que :

V(i 5) € [Lspl, i # 4, (wayuy) = =1
On considére pour tout (u;v) € E? et pour tout (z;y) € R? :
{(u;2), (v;9))) = (u,v) + zy.

1. Montrer que ({-,-)) est un produit scalaire.

2. Que peut-on dire de la famille ((u;;1))1<i<p 7 En déduire une inégalité entre p
et n+ 1.

2187 | Mines-Ponts MP 2019

Soit M € My(C). Etablir I'équivalence :

M non diagonalisable <= M = D + T avec D scalaire et T" nilpotente non nulle

Etudier les matrices X € M,(C) telles que X" = (é 1)

2188 | Mines-Ponts MP 2021

Soit E I’ensemble des fonctions continues de R dans R. Pour f € E, on définit f par :

1 rz
2 — t)dt si 0
Fa) = ~[ @ sic#
f(0) siz=0
1. Montrer que ¢ : f f est un endomorphisme de F£.

2. Déterminer les éléments propres de ¢.

3. L’endomorphisme ¢, induit par ¢ sur R, [X] est-il diagonalisable ?

2189 | Mines-Ponts MP 2022

Soit n > 2 entier et o réel. On consideére la matrice suivante :

A— (ali—ﬂ)

1<i,j<n

Donner une condition nécessaire et suffisante pour que A soit inversible.
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2190 | Mines-Ponts PC 2016

Soit E un espace vectoriel de dimension finie n, F' et G deux sous-espaces vectoriels
de E. Montrer que F' et G ont méme dimension si et seulement s’il existe un sous-
espace vectoriel H de E tel que F = F @ H et E = G ® H, c’est-a-dire s’ils ont un
supplémentaire commun H.

2191 | Mines-Ponts PC 2016

Soit f et g des endomorphismes d’un espace vectoriel de dimension finie. Montrer que :

dim(Im(f) N Ker(g)) = rang(f) — rang(g o f).

2192 | Mines-Ponts Pc 2015

Soit K le corps des réels ou celui des complexes, A et B deux matrices de M, (K).
Trouver la relation entre dim(Ker(AB)) et dim(Ker(A)) 4 dim(Ker(B)). Etudier le cas
d’égalité.

2193 | Mines-Ponts PSI 2015
Soit A € M,(R) et ¢ : R™ x R™ définie par :
o) = |4
G
Trouver une condition nécessaire et suffisante sur A pour que ¢ soit un produit scalaire
sur R™.

2194 | Mines-Ponts PSI 2013

On consideére le déterminant suivant :
det(A+zB)

avec A et B deux matrices de M, (R).
1. Quel type de fonction est-ce ? (sinus, exponentielle,. . .)

2. Déterminer le degré de ce déterminant.

2195 | Mines-Ponts MP 2013
Soit A € M,(R) fixée. On consideére :

va : Sp(R) — S,p(R)
S  — ASAT

Montrer que det(p4) = (det(A))" .

ENS

Déterminer les matrices A € M,,(R) vérifiant :

Vi >n, A+ AF = AT
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2197 | Centrale-Supélec PSI 2014

. 1 1
Soit A = (_2 5

Trouver le rayon de la convergence de la série entiere Y [|A"[|2".

) € M5(C) et [|-|| une norme sur Ms(C).

2198 | Centrale-Supélec PSI 2014

Soit F un espace vectoriel et f un endomorphisme de E vérifiant :
(f—=Id)Po(f—21d) =0 et (f—1Id)*o(f—2Id)#0.

L’application f est-elle diagonalisable ?

Mines-Ponts MP 2014
2 11
On considere M = [1 2 1] € M3(R).
00 3
Déterminer les sous-espaces vectoriels de R? stables par M.

X MP 2014

Soit, (E, ||||) un espace vectoriel réel normé. On note :

lz +ylI> + llz -yl
W(E) = sup
@wer\{o0))  2([zl* + llyl*)

1. Montrer que 1 < pu(E) < 2.

2. Montrer que FE est euclidien si et seulement si pu(E) = 1.

2201 | X-ENS Cachan PSI 2016

On considere une matrice A € S,,(R). On note :

p(A) = Ag;gg;)w
1. Prouver que, pour tout k € N*, p(A¥) = p(A)*.
2. Montrer que I'application A — p(A) définit une norme sur S,(R).
3. Soit A, B € S,(R) telles que AB = BA.
(a) Montrer que AB € S,(R).
(b) Montrer que p(AB) < p(A)p(B).

4. Soit ||-|| une norme vérifiant :
VA, B € 5,(R), AB=BA = |AB|| < [AllllB] (1)

Montrer que, pour tout A € S,(R), || 4| = p(A).
(Autrement dit, p est la plus petite norme vérifiant la propriété (1).)
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2202 | Centrale-Supélec MP 2014

Soit E un espace euclidien de dimension n. Trouver tous les vecteurs x € F tels qu’il

n
existe une base orthonormée (e1;...;e,) de E telle que z = ) _e;.
i=1

2203 | Mines-Ponts PSI 2015

On se donne deux matrices A et B de M, (C) et on considere I’endomorphisme de
M,(C) :
w:Mv+— AMB.

1. Montrer que :
p=0<«= A=00uB=0.

2. Montrer que :
¢ est nilpotente <= A ou B est nilpotente.
3. Montrer que :
© est diagonalisable = A et B sont diagonalisables.

4. Qu’en est-il de la réciproque ?

2204 | Mines-Ponts PSI 2025
2
T

Soit g 1 x — e~

1. Montrer que pour tout n € N, il existe un unique polynéme H, € R,[X] tel
que :
n n —z2
Vo € R, ¢ (x) = (—1)"H,(z)e ",

2. Montrer que

2

+o0o
(P;Q) — (P,Q) = /0 P(2)Q(z)e ™ da

définit un produit scalaire sur R[X].

3. (a) Montrer que :
Vn € N*, VP € R[X], (H,, P) = (H,_,, P').

(b) Montrer que la suite (H,),en forme une famille orthogonale.
(c) Calculer ||H,|*

tn
4. On considere la série ) —'Hn(x).

n=>0 """

Etudier la nature de cette série et sa valeur éventuelle.

2205 | Mines-Ponts MP 2016

Soit M, (C) et p € N*. Montrer que M est diagonalisable si, et seulement si, M? est
diagonalisable et Ker(M) = Ker(MP).

444




Mines-Ponts MP 2016

Soit M € Mj,(K) telle que rang(M) = 2n et M3 = 0.
0, 0, O

Montrer que M est semblable a | /,, 0, 0,
0, I, 0,

2207 | Mines-Ponts MP 2016

Soit A € M,,(R). On pose S = AT A.
1. Quelle est la particularité de S 7 Quelle(s) conséquence(s) ?
2. Montrer que les valeurs propres de S sont positives.

3. Quel est le lien entre les noyaux de A et S7? En déduire un lien sur d’autres
sous-espaces particuliers.

4. On suppose A? = A. Montrer que les valeurs propres de S non nulles sont
supérieures a 1.

2208 | Mines-Ponts MP 2025

Trouver I'ensemble des polynomes P € R[X] tels que :

VA € O,(R), P(A) € O,(R).

CCINP PC 2016

Soit £ un C-espace vectoriel de dimension finien > 1 et fi,..., fi des endomorphismes
non nuls de E vérifiant :

Pour tous 7 et j distincts dans [1; k],
fiofj=0et fi+---+ fr =Idp.

1. Pour tout ¢ € [1;k], calculer f;o (fi+---+ fi).
En déduire que f; est un projecteur.
2. (a) Justifier que le somme Im(fy) + - - - + Im(fx) est directe.
(b) Montrer que E = Im(f;) @ --- ® Im(fx).
Dans toute la suite, B désigne une base de F adaptée a cette décomposition.
3. Soit a, ..., a des complexes deux a deux distincts et soit f = aq fi+- - -+ fr.
(a) Montrer que la matrice de f dans B est une matrice diagonale D que 'on
précisera.
(b) Pour tout p € N, donner une expression de f? en fonctions de p, des f; et
des «;.
4. (a) Montrer que la famille {fi;...; fix} est libre.
(b) Montrer que pour tout i € [1;k], la famille {f;; Idg; f;...; fF71} est liée.
(c) Montrer que la famille {Idg; f;...; f*~1} est libre.
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2210 | Centrale-Supélec MP 2015

1. Soit f et g deux formes linéaires non nulles d'un espace vectoriel E. Montrer
que f et g sont colinéaires si et seulement si elles ont le méme noyau.

Soit f1,..., fn, [ des formes linaires d’un espace vectoriel réel E. On suppose
que, pour tout = € E, fi(z) > 0,..., fu(x) = 0 implique f(z) > 0. On veut
montrer qu’il existe des réels aq,...,a, tels que f = a1 f1 + -+ anfn.

2. Montrer cette propriété pour n = 1.

3. Etablir le cas général. (On pourra restreindre fi, ..., f, a Ker(f,)).

2211 | Mines-Ponts MP 2017
On considére un espace euclidien F, ainsi qu'une base (eg;...;e,) de E orthonormale.

1. Soit f un endomorphisme de E. Vérifier que :
Tr(f) = Z(f(ek)>€k>-
k=1

2. Soit f et g deux endomorphismes symétriques de E ayant leurs valeurs propres
positives. Montrer que :

0 <Tr(fog) <Tr(f)Tr(g).

3. On suppose de plus que f est inversible.
Dans quel cas a-t-on Tr(f o g) =07 Et Tr(f o g) = Tr(f)Tr(g)?

2212 | X MP 2017

Soit p une matrice symétrique positive. On dit que p est un état si Tr(p) = 1.

1. Soit A € M,(R) et V € R" de norme 1. On note IIy la projection orthogonale
sur Vect({V'}). Montrer que Tr(IIyA) = (V, AV).

2. Soit p un état. Montrer qu’il existe (A\;)i<icn € (Ry)™ et (Vi)i<icn une base

orthonormée de R™ tels que p = > NIIy,.
i=1
3. Soit p un état. On dit que p est un état pur si, et seulement si, tous les \;
sont nuls sauf un. Montrer qu’'un état p est pur si, et seulement s’il existe P un
projecteur orthogonal de rang 1 de R"™ tel que Tr(pP) = 1.

4. Montrer qu'un état p est pur si et seulement si Tr(p?) = 1.

5. Dans le cas n = 2, montrer que les états purs sont exactement les matrices

1<1+COS(¢) sin(p) )

2\ sin(p) 1 —cos(y)

avec ¢ € R.
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2213 | Mines-Ponts MP 2017
1. Soit n € N*. On pose w = o5 et

A, = (w(kfl)(jfl))lgj r<n”

)

Calculer A,A,. En déduire |det(A, )], puis Uinversibilité de A, et A,
2. Quels sont les 6 € C tels que

soit inversible ?

X ESPCI 2017

Soit p; et po deux projecteurs d’un espace vectoriel E de dimension finie.
1. Montrer que p; + po est un projecteur si et seulement si p; o ps = pg 0o p; = 0.

2. Montrer que p; 4+ po est une symétrie si et seulement si p; + ps = Idg.

2215| TPE/EIVP MP 2017

Soit n > 2 entier et A € M, (R) telle que :
V(i;5) € [1;n]?, ai; €]051[ et > ay = 1.
j=1

1. Montrer que |det(A4)| < 1.
2. Montrer que 1 € Sp(A).
3. Montrer que
beSp(4) = [b| <1

puis que
b|=1 = b=1.

CCINP PSI 2017

Soit A, B € M, (R) non nulles. Pour tout M € M, (R), on définit :
(M) = Tr(AM)

et V(M) =M+ Tr(AM)B.
1. Montrer que ® est linéaire et donner la dimension de son noyau et de son image.

2. Montrer que si A est valeur propre de ¥ différente de 1, alors toute matrice
propre associée M est colinéaire a B.

3. Trouver les autres valeurs propres de W.

4. Donner une condition nécessaire et suffisante sur A et B pour que V¥ soit diago-
nalisable.
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2217 | Mines-Ponts MP 2017

Soit A et B deux matrices symétriques réelles d’ordre n. On suppose que pour tout X
dans M, 1 (R)\ {0}, XTBX > 0. Montrer que A + iB est inversible.

2218 | Mines-Ponts MP 2018

On considére un espace euclidien (F, (-, -)). Soit f et g deux endomorphismes symé-
triques tels que :

Vo e E, [(z, f(x))] < {z,9(x)).
Montrer que |det(f)| < det(g).

Mines-Ponts MP 2018
Soit A € M,(R) et f4 € L(M,(R)) définie par f4(M)= AM.
Montrer que Sp(A) = Sp(fa).

CCINP PC 2018

Soit E = {(x,)nen € RY | 3 22 converge} et

f: RN — R
(xn)nGN = Xy

a’® + b?

1. Calculer (|a| — |b])? et montrer que > |ab|.

2. (a) Montrer que E est un sous-espace vectoriel de RY.
(b) Montrer que f est une application linéaire de E dans R.

3. Soit

QY ExFE — R
+00
(Tn)nen; (Yn)nen) = Z TnlYn
n=0

Montrer que ¢ est bien définie sur E x E et que ¢ est un produit scalaire sur
E. En déduire que

+o0o
(xn)nGN — Z x%
n=0

est une norme sur F.

4. On suppose que F est muni de cette norme. Montrer que si (2, ),en est dans E,
alors la suite (x,, + Z,11)nen est aussi dans E.

5. Soit g : (p)neny € E — (25, + Tpt1)nen. Montrer qu’il existe k& € R tel que pour
tout (($n>neN3 ((yn)neN) eExFE:

19((zn)nen) = 9((Un)nen) | < Kl (#n)nen = (yn)nenll

2221 | Mines-Ponts MP 2018

Soit A € St (R). Montrer qu’il existe une unique matrice H dans S;""(R) telle que
A=H*+H.
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Mines-Ponts PC 2015
Soit
H = {(z;y; z;t) € R* | ax + by + cz + dt = 0}

et H = {(x;y;z;t) e R* | dz + by + 2z +d't =0}.
1. Montrer que H N H' est un espace vectoriel.

2. Déterminer la dimension de ’'intersection.

CCINP PC 2018

Soit M € Ms,11(R) telle que tous les coefficients sont nuls sauf ceux de la ligne n + 1
et de la colonne n+ 1 qui valent tous 1. Montrer que M est diagonalisable, puis trouver
ses valeurs propres et vecteurs propres associés.

2224 | Mines-Télécom PSI 2018
Soit n € N* et M € M, (R).

1. Rappeler les propriétés du déterminant, en particulier det(M7) et det(AM),
avec \ € R.

2. On suppose que M est antisymétrique.

(a) Montrer que, si n est impair, M n’est pas inversible.
(b) Montrer que, si n =2 et M # 0, alors M est inversible.
(c) Peut-on affirmer que M est inversible ou non inversible sin =4 et M # 07

ENS MP 2018

Soit A et B dans S,,(R) de valeurs propres respectives aq, ..., a, et by, ..., b,. Montrer
que :

(b — i) < T((B — A)?).

2226 | Centrale-Supélec MP 2018

Soit E un espace vectoriel de dimension finie n et B = (ey;...;¢e,) une base de E. On
k

pose s = Zek et so = 0. Soit u € L(FE) telle que :
i=1

VEk € [1;n], u(er) = 28, — sp — €.
1. Justifier que l'on définit une unique application linéaire et donner la matrice
A= (u)-
2. Déterminer le polyndme caractéristique de A.

3. Déterminer le spectre complexe de A et montrer qu’il est contenu dans un cercle.

2227 | X MP 2018

Soit E un espace vectoriel réel de dimension finie. Caractériser les formes bilinéaires B
sur F vérifiant :

V(z;y) € E?, B(z;y) =0 = B(y;z) = 0.
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2228 | Mines-Ponts MP 2018

Soit n > 2 un entier et ¢ un automorphisme de M, (C) tel que :
V(4; B) € (M,(C))%, p(AB) = p(A)p(B).

1. Déterminer ¢(I,,).
2. Soit 1 < ¢ < n. Montrer que ¢(E;;) est un projecteur de rang 1.

3. Pour 1 < i < n, soit A; un élément non nul de Im(p(E;;)).
Montrer que {A;;...; A,} est une base de C".

2229 | Mines-Ponts MP 2018

Soit n € N*, A € M,(R) et I un intervalle non vide et non réduit & un singleton.
Montrer I’équivalence suivante :

Vtel, e € 0,(R) < Ac A,(R).

CCINP MP 2021

Soit M € M,(C) et A, u deux nombres complexes distincts non nuls. On suppose
trouvées deux matrices non nulles A, B € M,(C) vérifiant [, = A+ B, M = NA+ uB
et M? = )\NA+ 1i°B.
1. Montrer que M est inversible et déterminer son inverse. (On pourra utiliser
M? — (XN + p)M + Auly).)
2. (a) Exprimer A en fonction de I, et M.
(b) Montrer que A et B sont des projecteurs.

3. La matrice M est-elle diagonalisable 7 Déterminer ses valeurs propres.

CCINP MP 2021

Soit E un espace vectoriel réel euclidien de dimension n, v un endomorphisme symé-
trique de F.

1. Soit p un entier naturel impair.
(a) Montrer I'existence d’'un endomorphisme de symétrique v tel que v = wu.
(On pensera a la matrice représentative de u.)

(b) Montrer que v possede les mémes sous-espaces propres et le méme nombre
de valeurs propres distinctes que w.

(c) Montrer que v est I'unique endomorphisme symétrique tel que v? = u.
2. Soit p un entier naturel pair et non nul.

(a) A-t-on les mémes résultats ?

(b) Que peut-on dire si u est positif ? (C’est-a-dire Sp(u) C R;..)

(¢) Que peut-on dire si u et v sont positifs ?
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CCINP MP 2021

Soit f un endomorphisme de C™.

1. On suppose que det(f?) # 0 et que f? est diagonalisable. Trouver un polynéme
annulateur de f et montrer que f est diagonalisable.

2. On suppose que det(f?) = 0 et que f? est diagonalisable. On suppose de plus
que Ker(f) = Ker(f?). Montrer que f est diagonalisable.

Mines-Ponts PSI 2021

Soit A € S, (R) a valeurs propres dans R, et a > 0.
1. Le produit de matrices carrées symétriques est-il symétrique ?
2. Montrer que I, + aA est inversible.
3. Montrer que M = (I,, — aA)(I, + aA)~! est symétrique.

Mines-Ponts MP 2019
Soit A= GL,(C)u{0,}.
1. L’ensemble A est-il un sous-espace vectoriel de M, (C)?

2. Quelle est la dimension maximale d'un sous-espace vectoriel de M,,(C), contenu
dans A?

3. Qu’en est-il dans R? On s’intéressera surtout au cas n = 2.

2235 | Mines-Ponts MP 2022

Soit E un espace préhilbertien et ¢ une forme bilinéaire symétrique positive, non né-
cessairement définie positive, et telle que :

3C >0, V(wy) € B, [d(z;9)] < ll=lllyll.
On note (x) la proposition :
Ja >0, Vz € E, |¢p(z;7)| = |laf*.
1. Montrer que si E est de dimension finie, alors :
(%) <= ¢ est définie positive.

2. On suppose que E est de dimension infinie et qu’il existe une suite (e,)nen
orthonormale totale de E.

(a) Construire ¢ bilinéaire symétrique définie positive telle que :
3C >0, V(z;y) € B2, o(z;9)| < Cll |1y

mais qui ne vérifie pas (x).

(b) Conclure que la boule unité fermée n’est pas compacte.
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CCINP MP 2022

Soit E un espace euclidien. On note A(F) I'ensemble des endomorphismes antisymé-
triques, c’est-a-dire :

u€ AE) <= Y(zy) € E?, (u(z),y) = —(u(y), z).
1. Montrer que :
Vo € B, (u(z),z) =0 < u € A(E).
Pour u € A(E), quelles sont les valeurs propres possibles de u ?

2. Caractériser les endomorphismes de A(F) a 'aide de leur matrice dans une base
orthonormée.

3. Soit F' un sous-espace vectoriel stable par u. Montrer que F* est stable par u.
On suppose maintenant que Ker(u) = {0}.
4. (a) Montrer que u? est un endomorphisme symétrique.

Soit x un vecteur propre de u?. Montrer que F' = Vect({z;u(z)}) est un
sous-espace vectoriel stable par w.

(b) Montrer qu’il existe une base orthonormée B de E telle que :

0 =X\
A O
0 =X 0
5 A 0
(U)B = )
0
0 =X
Ap 0
avec Ap, ..., A\p réels non nuls.

2237 | Centrale-Supélec MP 2015

Soit E un espace vectoriel de dimension finie n. On considere v un endomorphisme de
E. On note x le polyndme caractéristique de u.

1. Soit V et W deux sous-espaces de E stables par u et tels que E =V & W. En
notant x’ (respectivement x”) le polynéme caractéristique de uly (respective-
ment uly ), montrer que x = x'x”.

2. On note y = HPiai la décomposition en facteurs irréductibles de y. Montrer
que pour tout 7, dim(Ker(P)(u)) = a; deg(F;).

3. Si le polynéme minimal de u est y, montrer que :

Vk < a;, dim(Ker(PfF(u))) = kdeg(P).

2238 | Mines-Ponts PC 2019

Soit n € N* et D la matrice diagonale de M, (R) de coefficients diagonaux 1,...,n.
Déterminer toutes les matrices M € M, (R) telles que DM = M D.
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2239 | Mines-Ponts MP 2018
Soit A € M,(C).

1. On suppose que A est inversible et qu'il existe N € N* tel que AV soit symétrique
réelle. Montrer que A est diagonalisable sur C.

2. On suppose que dim(Ker(A)) = 1 et qu'il existe N € N* tel que AV soit symé-
trique réelle. Montrer que A est diagonalisable sur C.

3. Que se passe-t-il si dim(Ker(A)) > 17

2240 | Mines-Télécom PSI 2018

_1 a a

2 b c

; * —_2]1 b _1 b
Soit a,b,c e R* et M = —5 | 5 ¢
c c _1

a b 2

On note f I’endomorphisme de R? canoniquement associé a M. On munit R? du produit
scalaire canonique.

1. La fonction f est-elle une symétrie vectorielle ?

2. La fonction f est-elle une isométrie vectorielle ?

2241 | Mines-Ponts MP 2019

Soit A une matrice complexe carrée de taille n a coefficients complexes. Montrer 1’équi-
valence entre :

i) AA=1,;

ii) il existe une matrice S complexe inversible telle que A = S5

2242 | Mines-Ponts MP 2018

Soit F un espace euclidien.
Soit w un endomorphisme symétrique de E tel que Tr(u) = 0.

1. Montrer qu'il existe z € E '\ {0} tel que (u(z),z) = 0.
2. Soit n € N* et A € M,(R).

Montrer qu'il existe P € O,(R) telle que tous les coefficients diagonaux de
P~1AP soient égaux.

2243 | Mines 2015

On considere deux espaces vectoriels E et F' sur le méme corps K, deux applications
linéaires, u € L(E, F), v € L(F, E) telles que vou € GL(E).

Montrer que Im(u) @ Ker(v) = F.

Mines 2012
Soit A € GLg(R) telle que A(A —I,,)(A —21,) =0 et Tr(A) = 11.
Calculer le polynéme caractéristique de A.
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CCINP 2016

Soit (F, (-, -)) un espace euchdlen de dimension n et pour tout ¢ < p, U; un endomor-

P
phisme symétrique de E tel que Z rang(U;) = dim(E) et tel que » (U;( = ||z
i=1 i=1

P
1. Montrer que Z U; =1dg.

i=1
2. Montrer que Uj; est la projection orthogonale sur Im(U;).

cor 2017

Soit E un espace vectoriel réel de dimension 3 muni d’une base B et f ’endomorphisme

1 1 -1
dont la matrice dans la base Best A=|—-1 3 -3
-2 2 =2

1. Montrer que E = Ker(f?) @ Ker(f — 2Idg).
2. Donner un élément de Ker(f?) \ Ker(f).

3. Montrer qu'’il existe une base B’ de E telle que (f)5 =

4. Soit g € L(E) tel que g*> = f. Montrer que Ker(f?) est stable par g.
Que peut-on en déduire ?

CCP 2017

1 a a
On considere la matrice A= | -1 1 -1
-1 0 2

1. Calculer le polynéme caractéristique de A.

2. On suppose que a > 0. La matrice A est-elle diagonalisable ?
3. On suppose que a = 0. La matrice A est-elle diagonalisable ?
4. On suppose que a < 0. La matrice A est-elle diagonalisable ?

Il sera essentiel au cours de la discussion de préciser le corps de référence, R ou C.

2248 | Mines-Ponts MP 2022
On suppose ici K = R ou K = C. Soit n € N* et u 'application de M,,(K) dans M, (K)
qui a la matrice de terme (a; ;)1<; j<n associe la matrice de terme (@n41—54)1<i j<n-

1. Vérifier que u est linéaire.
2. Déterminer son spectre et les dimensions des sous-espaces propres.

3. L’application u est-elle diagonalisable ?
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CCINP MP 2022

Soit £ un C-espace vectoriel de dimension finie et f un endomorphisme de E.
1. On suppose que f est diagonalisable. Montrer que f? est diagonalisable et que
Ker(f) = Ker(f?).
2. On suppose que f? est diagonalisable et que f est inversible.
(a) On note Ay, ..., A, les valeurs propres distinctes de f2. Montrer que le poly-
noéme

f[(XQ - )‘p)

est un polyndéme annulateur de f.
(b) En déduire que f est diagonalisable.

3. On suppose que f? est diagonalisable et que Ker(f) = Ker(f?). Montrer que f
est diagonalisable.

2250 | Centrale-Supélec MP 2018

Pour tout j entier compris entre 0 et 2n, on note :
fi :t — (sinh(2))’(cosh(t))*" 7.
On pose :
F=A{fo;...;fon} et F = Vect(F).
1. Montrer que F est une base de F'.
2. Soit d 'application de F' dans C*°(R,R) qui a f associe f’.

(a) Montrer que d définit un endomorphisme de F.
(b) Déterminer ses espaces propres.

2251 | Mines 2016

Soit A une matrice symétrique de M, (R). On suppose qu'’il existe un nombre réel «
racine a la fois de x4 et de son dérivé x',. Montrer que pour tout v € M, (R), la
famille {v; Av; A%v;...; A" 1o} est lide.

CCINP MP 2023

Soit E un espace vectoriel et p, ¢ deux projecteurs de E tels que Im(p) C Ker(p).
1. Montrer que Im(p) NIm(q) = {0g}.

2. Soit = p+ q — p o q. Montrer que r est un projecteur sur Im(p) 4+ Im(q)
parallelement & Ker(p) N Ker(q).

Mines-Ponts PC 2024

Soit A, B € M, (C) telles que leur spectre soient disjoints.
1. Montrer que le polynéme caractéristique de A évalué en B est inversible.
2. Soit X € M, (C). Montrer que AX = X B si et seulement si X = 0.

3. Montrer que pour tout M € M,(C), il existe une unique matrice X € M, (C)
telle que AX — XB =M.
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2254 | Mines-Ponts MP 202

Soit E' l'espace vectoriel des applications de classe C* sur [0;1] que 'on munit du

produit scalaire :
f: E* — R

1
(fig) — [ fBg)at
Soit v 'application de E dans lui-méme qui a toute fonction f € E associe sa primitive
nulle en 0.
1. Montrer que v est un endomorphisme.

2. Montrer qu’il existe un endomorphisme w tel que pour tout couple (f;g) d’élé-
ments de E, (v(f),g) = (f, w(g)).
3. Quels sont les valeurs propres et les vecteurs propres de v o w?

Mines-Télécom MP 2021
Soit £ = {f € C'(R,R) | f(0) =0}.
Soit T' défini pour tout f € F et tout € R par :

() = [

Montrer que T est un endomorphisme de E et déterminer ses valeurs propres.

2256 | Mines-Ponts MP 2023
Soit (ay;as;...;ay,) € C™.

0 a; ay --- ay
ai 0 as -+ a,
Onpose M =|a a 0 - ay
a, ay --- a, 0

Déterminer le polynéme caractéristique et le déterminant de la matrice M.

2257 | Mines-Ponts PSI 2019

Soit E' un espace vectoriel de dimension n et f un endomorphisme de E. Soit xy un
vecteur de E tel que B = {zq; f(z0); f*(x0);...; f" 1 (x0)} soit une famille libre de E.

1. Minorer le rang de f.
2. Déterminer C(f) ={g € L(E) | fog=go f}.

CCINP MP 2022

Soit E un espace euclidien de dimension non nulle.

1. Montrer que si p est un projecteur orthogonal, alos p est un endomorphisme
symétrique.

2. Soit p et g deux projecteurs orthogonaux.

(a) Montrer que p o g o p est un endomorphisme symétrique.
(b) Montrer que (Ker(q) + Im(p))* = Im(q) N Ker(p).
(¢) Montrer que p o g est diagonalisable.
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2259 | Mines-Ponts MP 2022

Soit ¥ l'ensemble des fonctions continues de R dans R. On définit :

Vi€ B Ve R o()w) =5 [ fl)du et 9(7)(0) = F(0).

T2 ).

1. Démontrer que la fonction ¢ ainsi définie est un endomorphisme de F.
2. Déterminer les valeurs propres de ¢ et les sous-espaces propres associés.

3. Démontrer que si n € N, R,[X] est stable par ¢ et déterminer les sous-espaces
propres induits. (On confondra ici fonctions polynomiales et polynomes.)

CCINP PC 2022

Dans 'espace vectoriel R* euclidien canonique, on considére le sous-espace vectoriel F
d’équations :
r+y+t=0 et z=0 ou (x;y;21t) € R

Déterminer une base orthonormée de F'.

2261 | TPE/EIVP MP 2016

Soit A et B deux matrices carrées de dimension n telles que AB admette n valeurs
propres deux a deux distinctes. La matrice BA est-elle diagonalisable ?

2262 | Centrale-Supélec MP 2025

1. Donner une caractérisation des applications linéaires injectives et la démontrer.

2. Soit z € [0;1]. On note :

Soit E l'espace vectoriel des fonctions continues et intégrables de [0; 1] & valeurs
réelles. Pour z € [0;1[ et f € E, on note :

b(z) = /0 "R (at) (1) .

(a) Montrer que ¢ est un endomorphisme de E.
(b) Montrer que 0 est une valeur propre de ¢.

X MP 2017

Soit S I'ensemble des fonctions f € C°(R,R) telles que :

V(a; B) € N?, sup|:vaf(’3)(:£)| < +00.
z€R

Soit £ : .S — S une application linéaire telle que :

VfeS Uf) =)

et en notant h:z — x :
((hf) = he(f).

Montrer que ¢ = Aldg pour un A réel.
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ENS MP 2013

Soit o € S,. On considere 'endomorphisme de C" qui a x = (x1;...;2,) € C" associe
U (x) = (To(1); - -3 Ta(n))-
1. Quel est le spectre de a, ?

2. Quels sont les sous-espaces vectoriels de C" stables par tous les a, 7

2265 | Mines-Ponts MP 2017

Soit A un polynome de degré au plus n. On considére 'application :
¢:Pr— (AP)™

pour tout polynéome P de degré inférieur a n.
1. Donner une condition nécessaire et suffisante pour que ¢ soit bijective.

2. Donner une condition nécessaire et suffisante pour que ¢ soit diagonalisable.

X MP 2019

Soit f € L(R?). Quelle est I'image par f d’un cercle de centre 0 et de rayon 17

CCINP PC 2013

Soit (M;)1<j<p une famille de M, (C) telle que, pour tout j, M? = —1I,, et pour j # k,
M; My, = —MM;.
1. Trouver un polyndéme annulateur de M;. En déduire que la matrice est diago-
nalisable.
2. (a) Montrer que Sp(M;) est inclus dans {—i;i}.
(b) Montrer que M; est inversible et que n est pair.
(c) Montrer que i et —i sont effectivement valeurs propres.
3. Montrer que les dimensions des sous-espaces propres de M sont égales et donner

4. Trouver un tel couple de matrices pour n = 2, puis pour n = 4.

2268 | Mines-Télécom MP 2022

Soit M, N € M,(R) telles que N* = NM = 0. On suppose de plus que M est trigona-
lisable sur M, (R). Montrer que M + N est trigonalisable sur M, (R).

CCINP MP 2024

0 01
Soit la matrice A= |2 1 0| € M3(R).
0 01

1. Justifier que A est trigonalisable mais non diagonalisable.
2. Soit M € M3(R) telle que M? = A.
(a) Justifier que M n’est pas inversible.
(b) Montrer que les seules valeurs propres possibles pour M sont —1,0 et 1.
(¢) Montrer que la dimension des sous-espaces propres de M est égale a 1.
3. Déterminer I'ensemble des matrices M € M3(R) telles que M?* = A.
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2270 | Centrale-Supélec PSI 2021

Soit A € M, (C) possédant p > 2 valeurs propres distinctes Aq,...,A,. On suppose
que :
Vie [2;p], [N < [A] (%)
1. On note, pour tout k € N tel que Tr(A*) £ 0, t; = w
' ’ ’ Tr(AF)
Montrer que la suite (fx)reny est définie a partir d’'un certain rang, qu’elle
converge et déterminer sa limite.

2. Justifier que si 'hypothese (x) n’est pas vérifiée, le résultat précédent peut-étre

faux.
1 0 0
3. Soit A=[-2 3 1
4 -4 -1
1 00
(a) Montrer que A est semblablea B= [0 1 1
0 01

(b) Déterminer la limite de A?k quand k tend vers +oo0.

2271 Centrale-Supélec PC 2023

1. Soit P € M,,(R). On considere I"'endomorphisme :

dp: M,(R) — M, (R)
A — AP

Déterminer la matrice de dp en fonction de PT dans une base bien choisie.

2. Soit @ € M,(R). On considere I’endomorphisme :

9gq - M,(R) — M,(R)
A — QA

Déterminer la matrice de gg en fonction de () dans une base bien choisie.

3. Soit P € GL,(R). On considere ’endomorphisme :

v: My(R) — M,(R)
A —s PTAP

Déterminer det(p) et Tr(p).

2272 | Mines-Ponts PSI 2024

Soit n > 2 entier.
1. Montrer que pour tout A € GL,(R) on a Tr(ATA) > 0. Pourquoi a-t-on
Tr(ATA) #£07
2. Soit S € SFT(R). Montrer qu’il existe A inversible telle que S = AT A.

3. Montrer que :
V(S;5") e (S:[JF(R))Z, Tr(SS") > 0.
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2273 | Centrale-Supélec PSI 2023
On définit G = {M € My(C) | det(M) = 1}.
Soit A et B dans G, de méme trace a.
1. (a) Donner une condition suffisante sur @ pour que A soit diagonalisable. Cette
condition est-elle nécessaire 7

(b) Donner une condition suffisante sur o pour que A et B soient semblables.
Cette condition est-elle nécessaire 7

Soit
¢o: R — M,(C)
a(t) b(t)
L (c(t <t )
On a donc, pour tout t réel, ¢'(t) = (Z ;

2. Soit M € Ms(C). Montrer que 'application ¢ — Mgb t) est de classe C! sur R
et préciser sa dérivée.

3. Soit A € G de trace nulle. Montrer I'existence de ¢ de classe C' de R dans G

vérifiant :
V(s;t) € R?, o(s +1) = d(s)p(t)
¢(0) =1 et ¢'(0)=A

2274 | Mines-Ponts PSI 2023

Soit A € M, (R) une matrice réelle symétrique de valeurs propres A;(A) < --- < A\, (A).
On note (-, -) le produit scalaire canonique de M,,1(R). On pose :

(AX, X)

VX € Mua(R)\ {0}, Ra(X) = 25

Soit k € [1;n] et G 'ensemble des sous-espaces vectoriels de dimension k.
On note (ey;...;e,) une base orthonormée telle que :

1. Montrer que :

VX € Vect({ers... exd) \ {0}, Ra(X) € [M(A); As(A)]-

2. Montrer que :

) = gy (g, RaC0)).

3. Soit A et B deux matrices symétriques réelles.
En déduire que :

A (A) + A(B) < M(A + B) < M(A) + Mo(B).
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2275 | Centrale-Supélec MP 2024

Soit E un espace euclidien de dimension n € N*, muni de sa norme euclidienne ||-||.

1. Soit H un hyperplan de F.
Montrer qu'’il existe a € E tel que H = (Vect({a}))*.

2. Soit (xq;...;Zny1) € E™ une famille de vecteurs unitaires tels que :
Ja <0, tel que Vi, j € {1;...;n+ 1}, i #j = (z5,75) = .

Déterminer «.

3. Montrer qu'une telle famille existe.

X MP 2021

Soit f un endomorphisme de R!° qui stabilise tous les sous-espaces de dimension 5.

Que dire de f7

2277 | Mines-Ponts MP 2021

0 a -—c
Soit (a;b;c) ERPet A=|—a 0 b
c —=b 0

1. Justifier I'existence d™un réel d tel que A% + dA = 0.
2. Déterminer d.
3. Pour tout n € N, exprimer A" en fonction de n,d et A2.

4. Montrer que exp(A) = I3 + aA + A%, ot « et 3 sont deux réels a expliciter.

CCINP PC 2021

Soit. £ un espace vectoriel euclidien de dimension n, (-,-) son produit scalaire et ||-|| la
norme associée. Pour a € E unitaire et a € R, on considere I’endomorphisme f, défini
par :
fo: E — E
r — z+afa,r)a
1. Soit (eq;...;e,) une base orthonormée de (Vect({a}))*.
Montrer que B = (a;es;...;e,) est une base orthonormée de E et trouver la
matrice associée a f, dans B.

2. (a) Calculer (fzo fu)(x) et déterminer ~y tel que f, = fgo f, en fonction de «
et 3.

(b) Donner une condition nécessaire et suffisante sur o pour que f, soit bijectif.
(c) Préciser alors f; .

3. Soit V un sous-espace vectoriel de E tel que s,(V) =V, ou s, est I'endomor-
phisme défini par s,(z) = x — 2(a, x)a.
(a) Montrer que s, € O(E).
(b) Montrer que s,(V+) C V*, puis que s,(V+) = V+.

4. Soit g € O(E). Montrer que g o 5,0 g~' = S4(a).
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2279 | Mines-Télécom MP 2025
Soit ' un K-espace vectoriel de dimension finie, « € K*, f et g dans L(E) tels que :

feg—gof=af

1. Calculer f"og— go f™ pour tout n € N.

2. En déduire que f est nilpotent.
Indication : on pourra considérer 1’application ¢ : h+— hog—go h.

CCINP PC 2018

Soit F un espace euclidien et a, b deux vecteurs de F orthogonaux entre eux.

1. Soit ¢ : z +— x + (a,x)a + (b, z)b. Montrer que ¢ est un endomorphisme symé-
trique de F.

2. On se place dans un espace euclidien de dimension 3 et on se donne une base
orthonormée B = (e1;eq;€3) avec a € Vect({e1}) et b € Vect({ez}). Préciser la
matrice M de ¢ dans cette base.

3. Préciser les éléments propres de ¢ et déterminer P € O3(R) et D matrice
diagonale de M;3(R) telles que M = PDP~L.

4. Généraliser I’étude a un espace vectoriel de dimension n.

CCINP PSI 2018

Soit A et B deux matrices de M, (C) telles que AB = BA. On note M = (61 i)

1. Soit U et V' deux matrices semblables et R un polynéme. Montrer que R(U) est
semblable & R(V).

2. Soit P un polynéme a coefficients complexes. Exprimer P(M) en fonction de
P(A),P(A’) et B.

3. Supposons que B = 0 et que A est diagonalisable. Montrer que M est diagona-
lisable.

4. Supposons que M est diagonalisable. Montrer que A est diagonalisable et que
B =0.

ENS Lyon PC 2018

Soit A = (a;)1<ij<n € Sn(R) vérifiant :
o V(i;j) € [1in]? ayy € {051}
e Vie[l;n], a; =0;
« il existe un entier k strictement positif tel que chaque colonne de A contienne
exactement £ termes non nuls;

o Y(i;5) €l;n]* i #j = ANlel;n], ay=a;=1.
1. Déterminer le spectre de la matrice A2.

2. Montrer que n = k? — k + 1.
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Mines-Ponts MP 2018

Soit n € N* et K un corps.

Soit D = {M € M, (K) | V(i;7) € [1;2n]? i # j mod n = M;; =0}.
1. Montrer que D est une sous-algebre de Ms, (K).
2. Montrer que, pour M € DN GLy,(K),ona M~! € D.

2284 | Centrale-Supélec MP 2013

Soit f une fonction continue de C* dans R vérifiant :

V(z2) € (C)?, f(z2) = f(2)f(¢).
1. (a) Calculer f(1). Pour n € N* et w un racine n®™® de l'unité, calculer f(w).

Pour § € R, calculer f(e!).

(b) On note f la restriction de f & R* . Montrer qu’il existe a € R tel que, pour
tout x € RY, f(z) = 2.

Indication : on pourra étudier la fonction In(f).
(c) Calculer f(z) pour tout z € C*.

2. Soit n € N*. Soit ¢ une application de GL,(C) dans R, vérifiant :

V(A; B) € (GLa(C))?,  @(AB) = ¢(A)p(B).
(a) Montrer qu'il existe o € R tel que :
Vze C*,  ¢(zl,) = |2

(b) Montrer que deux matrices semblables ont la méme image par .
(¢) Montrer par récurrence que :

VA € GL,(C), o(A) = |det(A)]°.

Indication : on pourra commencer par s’intéresser aux matrices diagonali-
sables.

3. Soit ¥ une fonction continue de M, (C) dans C, et vérifiant :
V(4; B) € (GL,(C))*, ¢(AB) = ¢(A)(B).
(a) Montrer qu'il existe 5 € R, tel que :

VA€ My(C),  [(A)] = [det(A4)|".

(b) Montrer que si I'image de M, (R) par ¢ est réelle, alors ¢ vérifie 'une des
deux propriétés suivantes :

o VA€ M,(R), (A) = |det(A)]”;
e VA€ M,(R), ¥(A) = sgn(det(A))|det(A)]?.
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2285 | TPE/EIVP MP 2015

On consideére la matrice A=|—-1 0 0 | € M3(R).
1 1 0
Calculer exp(A).

2286 | X ESPCI PC 2016

Soit F un K-espace vectoriel et p, ¢ deux projecteurs de E' qui commutent.
1. Montrer que po q et p+ q¢ — p o ¢ sont des projecteurs.

2. Déterminer leur noyau et image en fonction de Ker(p), Ker(q), Im(p) et Im(q).

2287 | Centrale-Supélec MP 2013

Soit E un C-espace vectoriel de dimension n, a € L(E) tel que pour tout A € Sp(A),
dim(Ker(A — Mdg)) = 1.

1. Traiter le cas ou a est nilpotente.

2. Onnote Ay, ..., \; les valeurs propres de a de multiplicités respectives nq, ..., n,.
Montrer que pour tout j € {1,...,¢} et tout m € {1,...,n;},on a:

dim(Ker(a — A\;1d)™) = m.

3. Soit F' un sous-espace vectoriel de E stable par a. Montrer que F' = Ker(Q(a)),
ol () est le polynéme caractéristique de 'endomorphisme induit par a sur F.

4. Soit D l'’ensemble des diviseurs unitaires du polyndéme caractéristique de a et
F l'ensemble des sous-espaces stables par a. Déduire de la question précédente
que l'application @ € D — Ker(Q(A)) € F est une bijection.

5. Conclure quant aux espaces propres de a.

2288 | Centrale-Supélec MP 2019

Soit A € M,(R) symétrique qui s’écrit :

B, C
A— P “p
(CpT Dp>
avec B, € M,(R).

1. Montrer que A est définie positive (i.e. Vo € M, (R) \ {0}, XTAX > 0) si et
seulement si toutes les valeurs propres de A sont strictement positives.

On suppose dans la suite que A est définie positive.
2. Montrer que det(B,) > 0.
3. Montrer que det(A) < det(B,) det(D,), puis que det(A) < ajag - - anp-

464




CCINP PC 2024

Soit A € M,(R) de trace non nulle et

f: M,(R) — M, (R)
B — Tr(A)B — Tr(B)A

1. Montrer que Ker(f) = Vect({A}).
2. L’application f est-elle diagonalisable ?

2290 | Mines-Ponts MP 2015
Soit F un espace euclidien de dimension n, v un endomorphisme de E.
n
1. Montrer que » (v(e;), ¢;) ne dépend pas de la base orthonormée (ey;. .. ;e,) de

i=1
F choisie.

2. Montrer que la somme Z Z(v(ei), fi)? ne dépend pas des bases orthonormées
i=1 j=1

(e1;...5€,) et (f1;...; fn) choisies. Calculer sa valeur lorsque v est un projecteur
orthogonal de rang r.
Mines-Ponts PSI 2021
1 11
Soit M= [0 1 1] e M(R).
0 01

1. Pour tout n € N*, calculer M™.
2. Déterminer une base de F' = Vect({M" | n > 1}).

3. Montrer que le commutant de M est exactement F'.

2292 | Centrale-Supélec MPI

On considere M, (C), 'ensemble des matrices carrées de taille n a coefficients complexes.

1. Donner une caractérisation des matrices de rang inférieur ou égal a k avec les
mineurs.

2. Montrer que I’ensemble des matrices de rang inférieur ou égal a k est un fermé.
On considere pour A € M, (C) I'endomorphisme de M, (C) :

Ty M+— AM — MA.

3. On suppose pour cette question que A est diagonalisable. Donner le spectre de
Ty.

4. La matrice A n’est plus nécessairement diagonalisable. Donner le rang maximal
de TA.

5. Montrer que T4 posséde une unique valeur propre si et seulement si A possede
une unique valeur propre.
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Mines-Télécom MP 2022
Dans tout Iexercice, on considére A une matrice antisymétrique de M, (R).
1. Montrer que :
VX € M1 (R), XTAX = 0.
2. Quen déduire des valeurs propres réelles de A? A quelle condition A est-elle
diagonalisable 7
3. On pose M = A+ I,.
(a) Montrer que M est inversible.
(b) La matrice M st-elle diagonalisable ?
4. Montrer que K = M~'M7T est orthogonale.

5. Soit B une matrice symétrique réelle dont les valeurs propres sont strictement
positives. Montrer que A + B est inversible.

Mines-Télécom PSI 2023
Soit A = (a;;) € M,(R) telle que :

V(i;j) € [1;n]?, aij = 5>

1. Déterminer le rang de A et déterminer ses valeurs propres sans calculer le poly-
nome caractéristique.
2. En déduire que A est diagonalisable.

3. Déterminer une base de vecteurs propres de A.

2295 | X MP 2016

Soit E et F' des espaces vectoriels réels de dimensions finies (a priori différentes). Soit
p = 2 et f une application p-linéaire de EP dans F'. On dira que f est antisymétrique
si

Vo € Sy, V(x1;02;5 ... 53,) € EP, f(%0(1): To2); - -3 Ta(p)) = €(0) f(215 025 .. .5 25).

1. Montrer qu’il existe un espace vectoriel AP(FE) et une application p-linéaire al-
ternée A de EP dans AP(FE) telle que, pour toute application f p-linéaire anti-
symétrique de EP dans F' :

o AP — F, f=poA.

2. Montrer que AP(FE) est défini a isomorphisme pres.

3. Montrer que (z3;...;x,) € EP est 1ié si, et seulement si, A(xy;...;2,) = 0.

X MP 2019

Soit f : R — R continue et bornée. On suppose que Vect({x +— f(z + k) | kK € Z}) est
de dimension finie. Que dire de f 7
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2297 | Centrale-Supélec PSI 2026
1. Soit E et F' deux C-espaces vectoriels de dimension finie. Quelle est la dimension
de L(E,F)?

2. Soit p formes linéaires fi, ..., f, sur un C-espace vectoriel £’ de dimension finie
n € N*. Montrer que les propositions suivantes sont équivalentes :
i) La famille {fi;...; f,} est libre.
ii) L’application
v: E — Ccr
r — (fi(z);...; fr(x))
est surjective.
iii) Il existe une famille {z1;...;x,} d’éléments de E telle que :

filer) - fplz)
det((fj(w:i))ij) =| t | #0.

fl("rp) T fp@p)

3. Montrer que :

ﬁ Ker(f;) C Ker(f) <= f &€ Vect({f1;...;fp})

=1

X MP 2017

Donner toutes les formes linéaires de My, ;(R) invariantes par conjugaison par le
groupe orthogonal, i.e. toutes les formes linéaires /¢ telles que, pour toute matrice A et
toute matrice orthogonale P, on ait {(P~'AP) = ((A).

2299 | Centrale-Supélec MP 2022

Soit F un C-espace vectoriel de dimension n € N*. On note L(E) ’ensemble des
endomorphismes de E et on note E* son dual, i.e. I'espace des formes linéaires sur
E. On se donne A C L(F). On dit que A est trigonalisable s’il existe une base de
trigonalisation commune a tous ses éléments. On suppose dans tout I'exercice que les
éléments de A commutent deux a deux.

1. On définit, pour u € L(FE), 'application suivante :
T,: B — FE*
Y > You
Montrer que T, € L(E*).
2. Donner un condition sur u et v de L(E) pour que T, et T,, commutent.

3. Montrer que les endomorphismes de A admettent un vecteur propre commun.

4. En déduire que A est trigonalisable.
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CCINP MP 2021
-1 3 -8
Soit M= 1 =2 7 | e MR).
1 -2 6
Déterminer le polynéme caractéristique de M.
La matrice M est-elle diagonalisable ?

Calculer (M — I3)3 et en déduire le calcul de M™ pour tout n € N.

Montrer que la suite (%M ") converge. On note A sa limite.

n>1
Soit Xy € M3y1(R). On définit la suite (X,,),>1 par X, = M"Xj.
T
On notera X,, = | yn
Zn
(a) Montrer que si X # 0, alors X, # 0 pour tout n € N.
(b) Montrer que si zg — yo + 329 # 0, alors la série de terme général

ARl

n

V2 YR+ 22

diverge.

2301 | Centrale-Supélec PC 2015

Soit F et F' deux espaces vectoriels de dimensions respectives n et p, avec n > p. Soit
u€ L(E,F)etve L(F, E), tels que uwov = Idp. Montrer que v o u est un projecteur,
puis déterminer son noyau, son image et son rang.

2302 | X MP 2017

On considere P'application ¢ : M, (C) — C[X] qui & une matrice M associe (M) le
polynéme minimal (en degré) tel que @(M)(M) = M.

1. Montrer que ¢ est bien définie.

2. Quels sont les points de continuité de ¢ ?

CCINP MP 2017

Soit A une matrice complexe d’ordre n telle qu’il existe p € N* vérifiant AP = 0.
1. Déterminer le polynéme caractéristique de A.
2. Montrer que A™ = 0.
3. Prouver que det(A + I,,) = 1.
4. Soit M une matrice complexe inversible d’ordre n qui commute avec A.
(a) Que peut-on dire de AM~1?
(b) Démontrer que det(A + I,,) = det(M).
(c) L’égalité reste-t-elle valable si M est seulement inversible ?
(d) L’égalité reste-t-elle valable si seulement M commute avec A?
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Mines-Ponts MP 2017
Soit A € M, (R) telle que Tr(A) =0 et A> — A2 — A—2I, = 0.
1. Montrer que n est un multiple de 5.

2. Cas particulier : n = 5.

Montrer que A est semblable a diag(2, m, m), ou m = (? :1)

3. Cas général : réduire A.

2305 | X MP 2015

Soit A € M, (C) et A < 0 une valeur propre de AA. Montrer que A est de multiplicité
paire. En déduire que det(I, + AA) > 0.

CCINP PSI 2019
Soit
o @ RyX]? — R

1
(PiQ) — [ P
1. Montrer que ¢ est un produit scalaire.

2. A l'aide de la méthode de Schmidt, trouver une base orthonormale de Rs[X],
notée (Qo; Q1; Q2; Q3)-
3. Soit P dans R3[X] tel que ||P|| = 1. Montrer que :
sup{|P(2)| | = € [~1; 1]} < 2V2.

Indication : calculer, pour i € [0;3], M; = sup{|Qi(z)| | x € [-1;1]}.
4. Peut-il y avoir égalité?

2307 | TPE/EIVP PSI 2015

Soit A une matrice telle que A € S, (R). Soit I’endomorphisme :

¢ : M,(R) — M, (R)
M — AM — MA

On définit le produit scalaire classique sur les matrices.

1. Montrer qu’il existe une famille (Xi;...; X,,) de vecteurs de M, ;(R) propres
pour A telle que :

V(i j) € [1;n]?, X! X;=0sii#jet X[ X;=1sii=j.
2. Soit (M;;) telle que :
V(i; §) € [L;n]?, Mi; = X; X

Montrer que la famille des M;; est une base orthonormale de vecteurs propres
pour .
3. Quel est le rang de p?
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CCINP PC 2022

Soit a € C* et

a1 a a?
A= -2 -1

a a 1 a

a? a? al! 1

1. Montrer que Sp(A) = {0;4}.
2. Montrer que A est diagonalisable.

X MP 2013

Soit K un corps, E' un K-espace vectoriel de dimension finie et f un endomorphisme
de FE vérifiant fo f = 0. Montrer qu’il existe h et g des endomorphismes de F tels que
f=gohet hog=0.

2310 | Centrale-Supélec MP 2015

Soit m,n deux entiers naturels non nuls.
Pour une matrice A € M,(C), on pose A* = A" .

On dit que A vérifie la propriété (P) si, et seulement si,

fj <TZ> (A%)FAmF = 0,

k=0

1. Montrer que, si A est nilpotente d’indice p tel que 2p < m + 1, alors A vérifie
la propriété (P).

2. Déterminer les matrices réelles vérifiant (P) telles que AA* = A*A.

3. Pour X,Y appartenant & C", on pose (X,Y) = X'Y. Soit X , Y appartenant
a C". En s’aidant de la fonction définie par ¢(t) = (e X, eY) pour tout t

appartenant & R, montrer que 'application ¢ — e!4"e! est a coefficients poly-
nomiaux.

2311 | Centrale-Supélec MP 2017

On pose £ = C([0;1],R) et T de E dans E tel que :

1 T

Vi€ B Vo€ 01, T(H() = (f (2) +f($;1)>.

1. Montrer que T est un endomorphisme de E et que pour tout f dans E, on a :
1 1
| 1@ de = [ fa)dr.

2. Pour tout entier naturel d, on pose Ey = Ry[X]. On note T, la bi-restriction de
T a E;. Montrer que T} est diagonalisable, en donner les valeurs propres et les
sous-espaces propres associés.

3. Montrer que pour tout élément f de F, la suite de fonctions (7"( f))en converge

1
uniformément vers la fonction constante égale & / f(z)dz.
0
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2312 | ENSEA/ENSIIE MP 2019

4 —4 2
Soit A=| 4 —6 4| € Ms(R).
—2 4 0

1. (a) Calculer A% +4A — 1215.
(b) En déduire le polynéme minimal et le polynéme caractéristique de A.
(c) La matrice A est-elle diagonalisable? Le cas échéant, la diagonaliser.

2. Calculer A™ pour tout n € N.

Mines-Ponts MP 2019
Soit A € M,(R) telle que Tr(A) > 0, et z: R — R", telle que :

Vi € R, 2/(t) = Az(t) et lim z(t) = Ogn.

t—+o00

Montrer qu’il existe une forme linéaire non nulle /, telle que, pour tout ¢t € R, 'on ait

U(a(t)) = 0.

2314 | Centrale-Supélec MP 2022

1. Soit A = (a;;)1<ij<n une matrice de M, (R) symétrique, a valeurs propres A
strictement positives. Soit ¢ : RY — R une fonction convexe.

(a) Montrer que i ola;) < ilgo()\ )

=1

(b) Montrer que det(A) < [] au

2. Soit A une matrice quelconque de M, (R). Montrer que :

|det(A li[ , z:: a;;|?

On supposera par la suite que ce résultat est aussi valable dans M, (C).

3. On note D la boule fermée de C, de rayon 1. Déterminer :

sup H |z; — 2.

(715.-32n)ED™ 1<i<j<n

2315 | Mines-Télécom PSI 2022

Soit A = (a;;) € GL,(R). On pose A~ = (b;;). Soit encore J € M, (R) la matrice dont
tous les coefficients valent 1.

1. Donner les coefficients de M = JA~!. Déterminer le rang de M.
2. Montrer que :

i=1j5=1

det(A —J) ( zn: zn: bm) det(A
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CCINP PC 2023

Soit E un C-espace vectoriel de dimension finie, f et g deux endomorphismes non nuls
de E, a et b deux complexes (a non nul) tels que :

fog—gof=af+bg.

On note ¢, 'endomorphisme de L(E) qui a u associe :

¢g(u) =uog—gou.

Pour les quatre premieres questions, on suppose que b = 0.
1. Montrer que Ker(f) est stable par g.
2. Montrer que pour tout n € N*, on a ¢,(f") = anf".
3. Montrer qu’il existe un entier & > 2 tel que f* = 0.
4

. Soit u 'endomorphisme induit de g sur Ker(f). Montrer que u admet un vecteur
propre et que f et g ont un vecteur propre commun.

5. On suppose que b # 0. Montrer que f et g ont un vecteur propre commun.

2317 | Mines-Ponts MP 2024

Soit ' un K-espace vectoriel de dimension finie n > 2 et u € L(FE) nilpotente d’indice
r = 2.

1. Montrer qu'il existe g € F tel que F = {xo;u(zo);...;u " (xq)} soit libre.
2. Montrer qu'il existe p € E* tel que ¢(u""*(z¢)) = 1 et p(uF(xq)) = 0 pour tout
keo;r—2].

r—1
On pose, pour tout y € E, v(y) = p(y)zg et p= > uFovou 7"
k=0
3. Calculer p(x) pour z € V = Vect(F), puis montrer que Ker(p) est un supplé-

mentaire de V' stable par p.

4. En déduire I'existence d’une base B de E telle que :

0 --- 0 1 0O --- 0
: 0
(NE=1|: 0 1
0

0 0

2318 | Mines-Ponts PSI 2024

Si A e M,(C), le commutant de A est défini par :
C(A)={M € M,(C) | AM = MA}.

Montrer que pour tout M € M, (C) on a dim(C(A)) > n, et chercher les cas d’égalité.
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X MP 2013

Soit t € R* et M = (exp(t|j — i|))1<ij<n- Montrer que M € S+ (R).

Mines-Télécom MP 2024
T
Soit E=(1 0 -+ 0) € Mya(R).
1. Montrer que
{M € M, (R) | E est un vecteur propre de M}

est un sous-espace vectoriel de M, (R) et donner sa dimension.

2. Méme question avec une autre colonne X € M, (R) non nulle.

2321 | Mines-Ponts MP 2024

Soit u € L(R*) tel que son polyndme caractéristique vérifie :

Déterminer les sous-espaces vectoriels de R* stables par .

2322 | Mines-Ponts MP 2019

1. Pour A, B dans M,,«,(R), montrer que rang(A + B) < rang(A) + rang(B).

k
2. Soit Vi,..., V) des matrices colonnes telles que Z Vl-V;-T =1,.
i=1
Montrer que k > n.

2323 | Mines-Ponts MP 2025
Trouver les matrices M € M(R) telles que :

3 5
3 —
M +2M = <0 _12>.

2324 | Mines-Ponts MP 2025
Soit n > 1 et A, B deux matrices de M, (R) qui vérifient :

rang(AB — BA+1,) = 1.
1. On pose X = AB — BA. Montrer que :
Tr(X?) = 2Tr(ABAB) — 2Tr(A%B?).
2. En déduire que :

n(n—l)'

Tr(ABAB) — Tr(A*B?) = 5

On pourra déterminer les valeurs propres de X.
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Mines-Ponts MP 2025
Soit n € N* et A € A,(R).

1. Montrer que Sp(A) C iR.

2. Montrer que si A est inversible, alors rang(A) est pair.

3. Montrer que pour tout A € A,(R), P = (I, + A)(I, — A)~' € O,(R).

4. On considere 'application :

f: AR — On(R)
A — (I, + A, — A)!
Montrer que f est une application bijective.

5. Dans cette question on considere n = 2.
Pour A € SO5(R), trouver B € Ay(R) telle que (I, + B)(I, — B)™' = A.

2326 | Mines-Ponts MP 2016
On considere deux matrices A, B € M, (Z) telles que :

Vk € [0;2n], det(A+ kB) € {—1;1}.

1. Calculer det(A) et det(B).

2. Montrer que A~! est a coefficients entiers.

CCINP MP 2018

Soit H la matrice dont tous les coefficients valent 1, A la matrice avec que des 1 sauf
sur la diagonale ou il n’y a que des b, ou b € R.

1. Les matrices H et A sont-elles diagonalisables ?

2. Déterminer les valeurs propres et les vecteurs propres de H.
3. Calculer det(A).

ENS MP 2019

Soit n € Nymn > 2 et A, B € M,(R). Prenons aussi une famille (;)1<;<nt1 de réels
distincts. Montrer que les deux propositions suivantes sont équivalentes :
i) Vie[l;n+1], det(A+t;B) =0;

ii) il existe W et V, deux sous-espaces vectoriels de R™, tels que A(V) C W et
B(V) c W, avec dim(W) < dim(V).

Mines-Ponts MP 2019
Soit n € N* et (z1;...;x,) € [0;7]"™
On définit M,, = (my;) € M,(R) par m;; = cos ((j — 1)x;) pour tout (i;5) € [1;n]?.

On pose :
pn=J[ (cos(z;) — cos(x;)).
1<i<gsn
1. Montrer que, pour tout (i;5) € [1;n]? cos((j — 1)x;) est un polynéme en
cos(x;) dont on précisera le terme dominant.

2. Calculer det(M,,) en fonction de p,.
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2330 | Centrale-Supélec PC 2019

On considere une matrice A = (a;j)o<ij<n de M,41(R) ainsi q'un vecteur colonne
B = (bi)ogign de M(n+1)><1(R).
1. Trouver une condition nécessaire et suffisante pour que I’équation AX = B,
d’inconnue X € M, 41)x1(R), admette une unique solution.

2. On suppose que cette condition est vérifiée et on note X = (x;)o<i<n 'unique
solution de cette équation. Montrer alors ’égalité

det(A())
To=——
det(A)
ou Ag est la matrice obtenue en remplacant la premiere colonne de A par B.
3. On pose ap = 1 et by = 0. On considére un élément (ay;...;a,) de R™. On se
donne des entiers by, ..., b, strictement positifs et tous distincts. On suppose

qu’il existe un polynoéme P tel que :
(1-X)"P(X) =" apX™.
k=0

Exprimer P(1) en fonction des by seulement.

2331 | Mines-Télécom MP 2021

1. Soit K le corps réels ou des complexes, et A € M, (K). Donner la définition
d’une valeur propre de A et du polynome caractéristique de A. Quel est le lien
entre ces deux notions ? La matrice A admet-elle toujours une valeur propre ?

2. Soit A une valeur propre de A. Soit P un polynéme annulateur de A. Que peut-
on dire de P(\)? Justifier.

3. Soit A € M,(R) telle que A%+ A+ I, = 0. Que peut-on dire des valeurs propres
réelles de A7 Et des valeurs propres complexes ?

2332 | Mines-Télécom MPI 2023

Soit E un espace vectoriel réel et u € L(E) tel que Sp(u) = {A1;...; A} avec les A,

deux a deux distincts, et
p

P =T[(X = ).

1. Donner une condition nécessaire et suffisante sur P pour que u soit diagonali-
sable. Prouver-le.

2. Existe-t-il dans R” un endomorphisme u tel que (X — 1)(X? + 1) annule u et

Tr(u) =07
3. Soit v un endomorphisme de R” tel que (X — 1)(X? + 1) annule u. Déterminer
det(u).
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2333 | Mines-Télécom MP 2022
Soit n € N* et X € M,(R) telle que X X7 X = —1I,.
1. Montrer que X est symétrique.

2. Déterminer X.

CCINP MP 2024

Soit A € M, (C) inversible.

1. Soit P € C[X] annulateur de A? (de degré p € N*) et Ay,...,\, les racines de
P comptées avec leur multiplicité. On pose Q(X) = P(X?). Que peut-on dire
de @ 7 Exprimer () sous forme d'un produit d’irréductibles.

2. Montrer que A est diagonalisable si et seulement si A% est diagonalisable.

3. Soit M = 31 é) Montrer que M est diagonalisable si et seulement si A est
diagonalisable.

CCINP MP 2016

Soit a € R%, E=C([0;a],R) et F ={f € E| f de classe C?, f(0) = f(a) = 0}.
1. Démontrer que F' est un sous-espace vectoriel de E.

2. Soit
D . F — FE
f H f//

Déterminer Ker(D) et Im(D).

X MP 2015

Soit A € M,(C). Montrer que son polynéome caractéristique est égal a son polyndme
minimal si et seulement s’il existe un vecteur x € C" tel que {w; Ax; A%x;...; A" 1z}
soit une base de C".

2337 | X MP 2015

Soit k € N* et py, le nombre de partitions de {1;2;...; k}. Exprimer, en fonction des py,
le nombre de classes de similitude d’endomorphismes de C™ de polynome caractéristique
P fixé.

CCINP PSI 2019

1. Soit M € M,(C). On note Aq,...,\, ses valeurs propres complexes. Montrer
que Tr(M?) = S0 A2
2. On suppose n = 3. Soit

11 --- 11
1 0 --- 01
A=1: toi] € Myu(C).
10 --- 01
11 --- 11

Déterminer les valeurs propres et le noyau de A.
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2339 | Mines-Télécom PSI 2019

Soit u un endomorphisme d’un espace vectoriel réel de dimension finie impaire qui
vérifie u3 + u = 0. L’endomorphisme u est-il bijectif ?

2340 | Mines-Ponts MP 2016
Soit A € O,(R), telle que 1 n’est pas valeur propre de A.

., 1 m
1. Etudier la convergence de la suite ( Z Ak> :
m+ 1 k=0 meN

2. Etudier la convergence de la suite (A™)nex.

2341 | Mines-Télécom MP 2017

Soit E un espace vectoriel quelconque et p un endomorphisme de E tel que pop = p.
Démontrer que Ker(p) @ Im(p) = E. Qu’en déduit-on pour p?

2342 | Mines-Ponts MP 2018

1. Soit A, B,C, D € M,(R). On suppose que A et C' commutent. Montrer que :

det ((é g)) — det(AD — BC).

2. Soit M, N € M,(R) deux matrices qui commutent. Montrer 1'équivalence sui-
vante :
Ker(M)NnKer(N) = {0} <= Im(M)+Im(N)=R"

2343 | Mines-Télécom PSI 2019
Soit A € M,(R) telle que :

1 sii#j
0 sii=j

V(i;j) € [1;n]?, a;y = {

Montrer que A est inversible et calculer son inverse.

X ESPCI PC 2013
Soit A € M, (R) telle que, pour tout X € M,»(R), XTAX = 0.
Montrer que Tr(A) = 0, que det(A) > 0, et que det(A) = 0 si n est impair.

Mines-Ponts PSI 2014

Soit a,b € R et M(a;b) € M,(R) tridiagonale définie comme suit :
e m;; =a-+b
* Miiy1 = ab
o Miy1; =1

Calculer det(M (a;b)).
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CCINP MP 2016

On considere un C-espace vectoriel E. Un endomorphisme u de E est nilpotent s’il
existe k € N* tel que u*~! # 0 et ©* = 0. Soit v un endomorphisme nilpotent de E.

1. Montrer que y,(X) = X"

2. Soit v un automorphisme de £ commutant avec u. On définit f = u+wv. Montrer
que Sp(f) = Sp(v).

3. Montrer que w = v~

4. En déduire que det(f) = det(v).

1o u est nilpotent.

2347 | Mines-Télécom MP 2017

Soit M € M, (R) tridiagonale définie comme suit :
o tous les éléments au-dessus de la diagonale sont égaux a un réel a;
o ceux au-dessous de la diagonale sont égaux a un réel b;

« sur la diagonale on trouve les réels rq, ..., r,.

Calculer det(M).

2348 | Mines-Ponts PC 2019
Soit a et b deux réels. Pour tout n € N*, on note M(a;b) la matrice de M, (R) dont les
coefficients diagonaux valent a et les autres b. Calculer det(M (a;b)).

X MP 2022

Soit X un ensemble, soit fi,..., f, et g1, ..., g, des fonctions de X dans R, telles que :

Yoy, ..z € X, det ((fi(25))1<i<n) = det ((9i(25))1<ij<n) -

Que peut-on dire sur f et g?

CCINP MP 2025

Soit £ = R,[X]| muni du produit scalaire suivant :

(P.Q) = [ PwIQU)

1. Soit @ tel que :
1
Vo e R, Q(z) = / (x + t)"P(t) dt.
0
Montrer que @) € F.
On note u l'application définie par u(P) = Q).
2. Montrer que u € L(E), puis que u est bijective.

3. Pour tous i,j € {0;...;n}, i # j, calculer (X", u(X7)). Que peut-on en déduire
concernant u?

4. Montrer qu’il existe une base orthonormale (Py; Py;...; P,) de E dans laquelle
on exprimera u(Py).

5. Exprimer la trace de u en utilisant les P.

6. En déduire la trace de wu.

478




CCINP MP 2015

Soit A € My,+1(R) dont I'endomorphisme canonique a vérifie :
a(e)) =e; +egpp1 et Vi € [2;2n + 1], ale;) = e;-1 + e;.

Déterminer le polyndéme caractéristique de A.
Montrer que A est inversible.

Ecrire A~! sous la forme d’un polynéme en A.

=W o

Déterminer les valeurs propres complexes de A.

2n kﬂ'
Calculer H cos <2n n 1) )

1=0

ENSAM PSI 2015

a b b
Soit A=|b a b| avec a et b complexes.
b b a

1. Etudier la diagonalisabilité de A.

2. Déterminer ses sous-espaces propres.

Mines-Ponts MP 2013
Pour a4, ..., a, dans R” muni du produit scalaire (-, -) et de sa norme associée |-||, on
définit :

Glas.. . ap) = det (({ai, ;)2 5c,)
Montrer que cette quantité est positive, qu’elle est nulle si et seulement si la famille
{ai}1<i<p est liée, et enfin montrer que l'on a :

Gla;---1ap) < laa]l* - flap|*.

2354 | Mines-Ponts MP 2013
Soit A, B € M,(C).

1. On suppose que pour toute matrice M € M, (C), on a 1’'égalité polynomiale :
det(AM + B — X1,,) = det(AM — X1,).

(a) Montrer que B est nilpotente.

(b) Montrer que, pour tout M € M,(C), Tr(AMB) = 0 et en déduire que
BA=0.

2. Réciproquement, on suppose que B est nilpotente et que BA = 0. Montrer que
pour toute matrice M € M, (C), les polynémes caractéristiques de AM + B et
de AM sont égaux.

2355 | Mines-Télécom MP 2016

Enoncer et démontrer le théoreme du rang.

479




X MP 2013

Soit A € M,,(C) non inversible.
1. Montrer que dim(Ker(A?)) < 2dim(Ker(A)).
2. Montrer que les propositions suivantes sont équivalentes :
i) dim(Ker(A?)) = 2dim(Ker(A4));
ii) Ker(A) C Im(A);
iii) A(Ker(A?)) = Ker(A);
)

o ()2 )

2357 | Mines-Télécom MP 2017

Soit £ un espace vectoriel réel de dimension finie et soit u € L(E) tel que u3 4+ u = 0.
1. Montrer que Im(u) est stable par w.

2. Soit v I'endomorphisme induit par u sur Im(u). Montrer que v est un isomor-
phisme et déterminer v=".

3. En déduire que le rang de u est pair.

X ESPCI PC 2015

Soit A € My(R) telle qu’il existe n > 0 tel que A*" soit égal a .
Montrer que A? = I, ou qu’il existe un entier naturel & tel que A? = L,

CCINP PC 2014

Soit f 'endomorphisme de R[X] défini par :
f(P)=P(X+1) - P(X).

1. On considére f; 'endomorphisme de Rs[X] défini par f3(P) = f(P). Ecrire la
matrice de f3 dans la base canonique.

2. Soit P € Ker(f).
(a) Montrer que pour tout n € N, P(n) = P(0).
(b) En déduire que R(X) = P(X) — P(0) est constamment nul.
(c) En déduire le noyau de f.

3. On considére 'endomorphisme de R, [X] défini par f,(P) = f(P).

(a) Calculer le noyau et I'image de f,.

(b) En déduire que f, est surjective.
4. Trouver I'ensemble des polynémes P tels que P(X +1) — P(X) = X2
5. Soit H = {P € R[X]| fy P(t)dt = 0}.

(a) Montrer que H est un hyperplan de R[X].

(b) Déterminer un supplémentaire de H dans R[X].

480




2360 | Mines-Ponts MP 2023
Soit A € A,(R).
1. Montrer qu’il existe O € O,(R) telle que

(00
A=0 (o B)o,

ol B est une matrice antisymétrique réelle inversible.

2. En déduire que le rang de A est pair.

X PC 2025
Soit A € SHT(R) et B € A,(R).
Montrer que AB est diagonalisable dans M,,(C).

2362 | Centrale-Supélec PC 2019

1. Montrer que toute matrice de M,(C) est la limite d'une suite de matrices dia-
gonalisables.

2. Pour toute matrice A de M,(C), prouver I'égalité x4(A) = 0.

2363 | Mines-Télécom MP 2019

1. Soit n € N*, M € M,,(C) et m le polynéme minimal de M, de degré d.
Montrer que pour tout k € N, M* € C4_1[M], ot

Cy_1[M] = {P(M) | P € C[X], deg(P) < d — 1}.

2. En déduire exp(M).

X ESPCI PC 2013

0 t t?
SoitteR*et A= |1 0 ¢

1 1

z 7 0

Calculer A™.

2365 | X MP 2017

Soit (a;)1<i<n €t (bj)1<j<n appartenant a C". Calculer, sous réserve d’existence et sans

1
utiliser de récurrence, le déterminant de la matrice M = < .
a; J 1<i,j<n

ENSEA /ENSIIE PSI 2021
-1 m m
SoitmeRet A, = 1 -1 0 | e M;sR).
-1 0 -1
La matrice A, est-elle diagonalisable ?
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CCINP MP 2016

Soit n € N*.
1. Soit A, B € M,(R). Que penser de I'information :

AB=0 = A=00uB =07

2. Soit A € M,,(R) telle que A(A — I,,)> = 0.
(a) Montrer que Tr(A) € N.
(b) Déterminer A dans le cas ot Tr(A4) = 0.
(c) La matrice A est-elle forcément diagonalisable ?

CCINP MP 2018

Soit £ un K-espace vectoriel de dimension n et v € L(FE).

1. On suppose que F et G sont des sous-espaces vectoriels de E stables par u et
que £ = F @& G. On note v = u|p et w = u|g. Si f est un endomorphisme, 7y
désigne son polynéome minimal.

(a) 1. Justifier que x, et x,, divisent x,.
ii. Justifier que m, et m, divisent m,.
(b) Montrer que 7, = ppem(7,, Ty,).
2. Soit P € K[X]. Montrer que :

P(u) e GL(F) <= PAm =1

CCINP PSI 2025

Soit A € M, (R) telle que A commute avec A*.
1. Montrer que Ker(A4) = Ker(A%).

2. Montrer que Ker(A) et Im(A) sont supplémentaires orthogonaux.

X MP 2019

Résoudre dans M;3(R) 1'équation suivante :

1
X2 =10
0

O = N
S Ot W

ENS MP 2018

Soit n > 1, A € SL,(C) et Z(A) son centralisateur défini par :
Z(A)={M e SL,(C) | MA = AM}.

Montrer que Z(A) est infini.

2372 | X MP 2019

Soit E un espace vectoriel de dimension finie et v un endomorphisme de E. On note
pour k € N, d;, = dim(Ker(u*)).
Montrer que la suite (dg)ren est concave, i.e. la suite (dg1 — di)ren est décroissante.
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ENS MP 2019

2
Exhiber une famille libre d’éléments de M,,(R) commutative, et de cardinal {ZJ + 1.

CCINP PC 2013

Soit E un espace vectoriel de dimension finie n. Soit u un endomorphisme de E de
rang 1. Montrer qu’il existe A € R tel que u? = \u.

2375 | X MP 2017

Soit S € S,(R). On appelle support de S et on note s(S) le sous-espace vectoriel
engendré par les vecteurs propres associés a des valeurs propres non nulles.

1. Montrer qu’il existe ST et S~ dans S,(R) a supports orthogonaux telles que
S=5t-5".

2. Montrer Pexistence et I'unicité de C' € S (R) telle que C? = STS = §2.
Montrer que C' = S+ 4 5.
On notera alors C' = |S].
Indication : pour 'unicité, on montrera que C' et S? commutent.

3. Soit E={S € SF(R) | Tr(S) = 1}.

(a) Dans le cas n = 2, montrer que S € E si et seulement s'il existe a,b € R tels

Lfl+a b
2 2< — _
que a”+b-<let S 2( b 1_@).

(b) Dans ce cas, que devient dist(S;7T) pour T € E?
Donner une interprétation (en remarquant que E s’identifie au disque unité
dans R?).

4. Dans le cas général, montrer que :
dist(S;7) = max Tr(R(T — 9)).

R projecteur
orthogonal

CCINP MP 2018

Soit E un espace euclidien. On dit que f est un endomorphisme antisymétriqgue de E
Si:

V(z;y) € E%, (f(2),y) = (2, f(y)).
1. Que dire de f?? Montrer que (f?(x),z) < 0 et que (f(z),z) = 0.
2. Que dire de A, matrice de f dans une base orthonormée ?

3. Calculer det(AT) de deux manieres différentes. En déduire que si f est inversible,
alors dim(FE) est paire.

4. Montrer que les valeurs propres de f? sont réelles et négatives.

2377 | Mines-Télécom MP 2024

Soit A € M,(R).
1. Donner la définition de exp(A).
2. Soit A € A, (R). Montrer que exp(A) € SO,(R).
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2378 | Centrale-Supélec MP 2024

Soit p € N*. On note E' = M,(K), ot K= R ou K = C. On pose :

P
VA€ E, |A]| = max > _|a;|.
=1

1<i<p
U= ]

1. (a) Montrer que ||| est une norme d’algebre sur E.
(b) Donner la définition de e ainsi que le type de convergence.
(c) Montrer qu’on a alors ||e?| < el4ll,

2. Montrer que :
VA, B € E,Vn € N*, ||A" — B"|| < nK" '||A - B,

ot K = max([|Al}; || B])-

3. Etudier I'existence de :

y A B\\"
(oo ) (D)

Si cette limite existe, calculer-la.

X MP 2013

Soit V' un espace vectoriel et s € L(V') tel que rang(Id — s) = 1.
1. Donner une expression simple de s.

2. Soit G un sous-groupe de GL(V) contenant s et tel que les seuls sous-espaces
vectoriels de V' stables par tous les éléments de G sont {0} et V. Montrer que
I’ensemble des endomorphismes qui commutent avec tous les éléments de G est
constitué des homothéties de V.

Mines-Ponts MP 2019

On note £ = C*°((R",R) et £* son dual.

On définit D = {d € E* | ¥(f:g) € E2, d(fg) = £(0)d(g) + (0)d(f)}.
1. Montrer que D est un sous-espace vectoriel de E* non réduit a {0}.
2. Montrer que a € R" — do[-](a) est injective sachant que do[-](a) : f > dof(a).
3. Donner une base de D.

Indication : on pourra utiliser la relation fondamentale de 1’analyse pour 1’ap-
plication t — f(tx).

CCINP MP 2022
Soit
u : My(R) — M, (R)
X — =X +Tr(X)I,

1. Déterminer un polynéme de degré 2 annulateur de wu.

2. En déduire que u est diagonalisable et déterminer ses valeurs propres et ses
SOus-espaces propres.
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2382 | X-ENS Cachan PSI 2021

Soit E un espace euclidien de dimension n. Soit x4, ..., x; € E tels que pour tous i # j,
(w;, z;) < 0. Montrer que k ne peut pas étre trop grand et déterminer cette limite.

CCINP MP 2018

1. La matrice A est-elle diagonalisable ?

2. (a) Donner les éléments propres de A et leur sous-espace propre associé.
(b) Déterminer I'ensemble des solutions de I'équation X2 + X = A.
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9 Dénombrement et probabilité

X-ENS

1. Déterminer le nombre a,, de maniéres de recouvrir un damier de dimension 2 X n
avec des pieces de dimension 1 x 2.

2. Montrer que si n est assez grand, a,, est la partie entiere de

1 (1 + \/5>"H.

VAN

1
2 V5

2385 | Mines-Ponts MP 2021

Soit X et Y deux variables aléatoires indépendantes de méme loi a valeurs dans R

X
Montrer que E (Y) > 1.

—

Soit G un groupe fini non commutatif. Montrer que la probabilité que deux éléments

de G pris au hasard commutent est inférieure ou égale a %.

Mines-Ponts

On suppose que la probabilité p,, quune famille ait n enfants est donnée par :

n

a
Pour tout n € N, p, = avec a € R

n!

1. Trouver a.
2. Quelle est la probabilité que la famille ait au moins un garcon ?

3. La famille a exactement un garcon. Quelle est la probabilité qu’elle ait deux
enfants ?

Mines-Ponts

Soit m > 2 un entier. On pose 2 = {1;...;n}, ensemble qu'on munit de la probabilité
uniforme P. Soit d € N* tel que d divise n. On note Dy I'ensemble des multiples de d
dans €.

1. Calculer P(Dy).

T

2. Soit n = pr‘ * la décomposition en nombres premiers de n. Les événements
i=1
(Dp, )icq1;..;ry sont-ils mutuellement indépendants ?

3. On note p(n) le nombre d’éléments de €2 premiers avec n.

s 1
Montrer que #(n) =11 (1 - > .
n

i=1 Di
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2389 | Mines-Ponts PC 2016
Une urne contient M pommes vertes et N pommes rouges. On les mange une par une et
on s’arréte quand on a mangé la derniere pomme rouge. Calculer la probabilité d’avoir
mangé toutes les pommes.

[2390] x

On suppose que 80 hommes et 40 femmes défilent dans un ordre aléatoire. Montrer que
la probabilité de ne jamais avoir deux hommes et deux femmes successivement est de
I'ordre de 1 sur le nombre d’Avogadro.

Mines-Ponts PC 2024
Soit €2 un univers au plus dénombrable.
1. Soit (£2,.A,P) un espace probabilisé.
Caractériser les évenements A indépendants de tout évenement B.

2. Existe-t-il une probabilité sur la tribu P(£2) telle que tous les événements de
P(€2) sont mutuellement indépendants? Le cas échéant, caractériser toutes ces
probabilités.

ENS MP

Soit un tirage aléatoire indépendant avec probabilité uniforme de deux éléments de
Z/nZ. Quelle est la probabilité que le produit de ces deux nombres soit nul ?

Mines-Ponts MP
Soit (£2,7,P) un espace probabilisé.
1. Soit (Aj; Ag) € T2 Calculer :

P(A; U Ay) + P(A; U Ay) + P(A; U Ay) +P(A U Ay).

2. Soit n € N* et (Ap)icken € T" On pose T, = {A; A1} x - x {A,; A}
Calculer :
> P(BiU...UB,).

(B1;...;Bn)€ly,

CCINP PSI 2021

Soit X7 et X, des variables aléatoires indépendantes de méme loi B(n, %), oun € N*,

o (Xy 1
OnposeA—(O X2>’

1. En développant de deux maniéres (1 + X)?* montrer que

S -6

2. En déduire la probabilité que A soit diagonalisable.
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2395 | Mines-Télécom MP 2024

Soit X et X, des variables aléatoires indépendantes, de méme loi G(p), ou p €]0;1][.
X; 1

0 Xy)

Calculer la probabilité que A soit diagonalisable.

On pose A =

CCINP PC 2022

Soit X7 et Xy des variables aléatoires indépendantes telles que
X1~ B(n, ) et Xo ~ B(n,3).

74

(X1
OnposeA-(O X2>'

1. Calculer la probabilité que A soit inversible.

2. Calculer la probabilité que A soit diagonalisable.

2397 | Mines-Ponts PSI 2019

Soit Y une variable aléatoire a valeurs dans Z telle que :
e VneN,P(Y =n)=P(Y =—n)
« Y[~PQ) (A>0)

0 Y 1
Onpose A=Y 0 1
Y 1 0

1. Donner la loi de rang(A).
2. Calculer la probabilité que A soit diagonalisable.

2398 | Mines-Ponts PSI 2019

Soit X, Y, Z, T des variables aléatoires indépendantes identiquement distribuées de loi
de Bernoulli B(p).

X X X
XY Y
On pose A = Y Vv 7

NN

XY 7
1. Donner la loi de Tr(A).
2. Calculer la probabilité que A soit inversible.

3. Calculer la probabilité que A soit diagonalisable.

2399 | Centrale PC 2023

Soit X et Y des variables aléatoires indépendantes identiquement distribuées telles que
X ~Y ~PA) (A>0).

On pose A = (E:Bi 1) .

1. Calculer la probabilité que A soit inversible.

2. Calculer la probabilité que A soit diagonalisable.
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Mines-Télécom PC 2024

Soit X7, X5 et Y des variables aléatoires indépendantes telles que X; ~ X5,
PY =1)=p, P(Y =-1)=1-p (p€]0;1]).

On pose A = YX)E'Q §j )
1. On suppose que X; +1~G (%) Calculer la probabilité que A soit inversible.
2. On suppose que X1 ~ P(A) (A > 0).

Calculer la probabilité que A soit diagonalisable.

2401 | Mines-Ponts

Soit n € N* et (A;)1<i<n une famille d’événements indépendants. Montrer que la pro-

n
babilité qu’aucun des A; ne se réalise est majorée par exp ( -> IP’(AZ-)>.
i=1

ENS PC 2019

On lance cinq dés a six faces. Chaque dé affichant un 6 est écarté. On recommence cela
jusqu’a ne plus avoir de dé et on note K la variable aléatoire égale au nombre d’étapes
de cette expérience. Pout tout n € N, calculer P(K < n). En déduire la loi de K.

X MP/PC PSI 2016

Soit n € N*. On munit S,, de la loi uniforme. On note X, la variable aléatoire donnant
le nombre de points fixes d'un élément de 5,,.

1. Calculer P(X,, = n).
. Déterminer la loi de X,,.

2
3. Pour k € N, déterminer 1_131 P(X, = k).
4

. Soit X une variable aléatoire suivant une loi de Poisson de parametre 1. Montrer

que
ngrfoog) [P(X, = k) — P(X = k)| = 0.

cop Mp

.....

Bernoulli de parameétre p. On pose, pour i € {1;...;n} :

Y =1+ (e—1)X, Sn:fjln(m) M, = (ﬁy>

1. Déterminer les lois de Y; et de In(Y;).
(a) Montrer que E (tln(Xi) = Gy, (t) et que E (tln(Yi)) = Gy ().
(b) Calculer Gg, (t).
(¢) Donner E(S,,) et Var(S,).

2. Trouver une relation entre S,, et M,,.

3. Calculer E(M,,) et E(M?) a laide de Gg,, puis en déduire Var(M,,).
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2405 | Mines-Ponts MP
Soit X une variable aléatoire discrete a valeurs strictement positives, avec X (£2) fini.

Soit n € N* et m € [1;n]. Soit Xi,..., X, des variables aléatoires (mutuellement)
indépendantes suivant la loi de X. Calculer I'espérance de

ZZLZI X k

2221 X k

Mines-Ponts 2023
+o0 1

Soit v > 1 et ((a) = > - (fonction zéta)
k=1

On définit la probabilité P, sur N* par :

1
(a)ne

Po ({n}) = c

Pour tout m € N*, soit A,, = {gm | ¢ € N*}.
1. Calculer P, (A,,).

2. Soit (pk)r>1 la suite croissante des nombres premiers. Montrer que les éveéne-
ments A, sont indépendants.

3. En déduire le produit eulérien :

¢<a>=ﬁo<l—plg)_l-

k=1

cor mp

On considere X7, ..., X,, des variables aléatoires indépendantes suivant toutes des lois

n
de Bernoulli de parametre p; non nécessairement tous égaux. Soit S = Z X;.
=1

1. Calculer E(S) et Var(S5).
2. Déterminer les valeurs de py, ..., p, pour que Var(S) soit maximale.

3. Déterminer la loi de S dans le cas ou Var(S) est maximale, et calculer E(S) et
Var(S).

2408 | Mines-Télécom MP 2023

On considére n tulipes qui ont chaque année une probabilité p €]0; 1[ de fleurir. Si une
tulipe fleurit une année, alors elle fleurira toutes les années suivantes. Soit les variables
aléatoires suivantes :

e X, : année de la premieére floraison de la *™¢ tulipe

o X :année a partir de laquelle toutes les tulipes ont fleuri
1. Exprimer X en fonction des X;.

2. Donner la loi des X;.

3. Si k € N, calculer P(X > k).

4. En déduire que X est d’espérance finie et calculer E(X).
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X MP 2023

Soit X, et Y,, deux variables aléatoires indépendantes suivant la loi uniforme sur [1; n]?.
Pour tout r € Q, soit u,(r) = P(X,, # Y,, (X,Y,) de pente r). Trouver un équivalent
de u,(r) pour n — +oc.

CCINP MP 2025

Un homme peint un mur en étant placé sur un échafaudage, des passants passent
sous son échafaudage et ont chacun un probabilité p €1]0;1[ de se faire toucher par
une goutte de peinture. Soit X la variable aléatoire donnant le nombre de personnes
touchées en une journée et Y celui du nombre de personnes qui ne sont pas touchées.
On suppose que n personnes passent dans la journée.

1. Donner les lois de X et Y, puis dire si X etY sont indépendantes.

2. On suppose maintenant que N personnes passent dans la journée et que N suit
une loi de Poisson de parametre A > 0. Donner les lois de X et de Y, puis
I’espérance et la variance de X.

3. Montrer que X et Y sont indépendantes.
4. Calculer cov(X, N). Les variables X et N sont-elles indépendantes ?

cop

Soit N € N* et p €]0;1[. On pose ¢ = 1 — p. On considére N variables aléatoires
Xi, ..., Xx définies sur un méme espace probabilisé (2, A, P) mutuellement indépen-
dantes et de méme loi géométrique de parametre p.

1. Soit i € [1; N] et n € N*. Déterminer P(X; < n) puis P(X; > n).

2. On considere la variable aléatoire Y définie par Y = min (X5).

(a) Soit n € N*. Calculer P(Y > n). En déduire P(Y < n) puis P(Y = n).
(b) Reconnaitre la loi de Y. En déduire E(Y).

come

On dispose de deux urnes U; et Uy. L'urne U; contient deux boules blanches et trois
boules noires. L'urne U, contient quatre boules blanches et trois boules noires. On
effectue des tirages successifs dans les conditions suivantes : on choisit une urne au
hasard et on tire une boule dans 1'urne choisie. On note sa couleur et on la remet
dans 'urne d’ou elle provient. Si la boule tirée était blanche, le tirage suivant se fait
dans I'urne U;. Sinon le tirage se fait dans 'urne U,. Pour tout n € N*, on note B,
I'événement « La boule tirée au n®™® tirage est blanche. » et on pose p, = P(B,).

1. Calculer p;.
2. Prouver que, pour tout n € N*, p,,1; = —%pn + %_

3. En déduire, pour tout entier naturel n non nul, la valeur de p,.

491




cor vr

Soit n € N*. Une urne contient n boules blanches numérotées de 1 a n et deux boules
noires numérotées 1 et 2.

On effectuer le tirage une a une, sans remise, de toutes les boules de 1'urne.

On note X la variable aléatoire égale au rang d’apparition de la premiere boule blanche.
On note Y la variable aléatoire égale au rang d’apparition de la premiere boule numé-
rotée 1.

1. Déterminer la loi de X.

2. Déterminer la loi de Y.

o Mp

Soit A €]0; +00] et X une variable aléatoire discrete a valeurs dans N*.
On suppose que pour tout n € N*,

P(X =n)= A
(X'=n)= nn+1)(n+2)

1. Décomposer en éléments simples la fraction rationnelle R définie par

1
B = e Dt

2. Calculer .
3. Prouver que X admet une espérance, puis la calculer.

4. La variable aléatoire X admet-elle une variance ? Justifier.

cop mp

On admet, dans cet exercice, que :

1

+o0 /. =
k—q t -1 L —_—.
VgeN, Y (q)x converge et Vo €]0;1[, > = (1= z)et

k=q k=q
Soit p €]0; 1] et r € N*.
On dépose une bactérie dans une enceinte fermée a I'instant ¢ = 0 (le temps est exprimé
en secondes).
On envoie un rayon laser par seconde dans cette enceinte.
Le premier rayon laser est envoyé a l'instant ¢ = 1.
La bactérie a la probabilité p d’étre touchée par le rayon laser.
Les tirs de laser sont indépendants.
La bactérie ne meurt que lorsqu’elle a été touchée r fois par le rayon laser.
Soit X la variable aléatoire égale a la durée de vie de la bactérie.

1. Déterminer la loi de X.

2. Prouver que X admet une espérance et la calculer.
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cor vr

Soit X et Y deux variables aléatoires définies sur un méme espace probabilisé (2, A, P)
et a valeurs dans N. On suppose que la loi du couple (X;Y') est donnée par :

o . . 1
V(i;5) e N, P((X =) (Y =) = e 21
1. Déterminer les lois de X et de Y.

2. (a) Prouver que 1+ X suit une loi géométrique et en déduire I'espérance et la
variance de X.

(b) Déterminer l'espérance et la variance de Y.
3. Les variables X et Y sont-elles indépendantes ?
4. Calculer P(X =Y).

CCP MP

Dans une zone désertique, un animal erre entre trois points d’eau A, B et C.

A Tlinstant ¢ = 0, il se trouve au point A.

Quand il a puisé 'eau du point ou il se trouve, il part avec équiprobabilité rejoindre
I'un des deux autres points d’eau.

L’eau du point qu’il vient de quitter se régénere alors.

Soit n € N.

On note A, 'événement « L’animal est en A aprés son n®™® trajet. ».
On note B,, I'événement « L’animal est en B apres son n®™e trajet. ».
On note C,, I'événement « L’animal est en C' aprés son n®™° trajet. ».

On pose P(A,) = ay, P(B,) = b, et P(C,) = cy.

1. (a) Exprimer, en le justifiant, a,, . en fonction de a,, b, et c,.

(b) Exprimer, de méme, b, et ¢,y en fonction de a,, b, et c,.

11
0 3 3

2. On considere la matrice A = % 0 %
11
2 3 0

(a) Justifier, sans calcul, que la matrice A est diagonalisable.

(b) Prouver que —3 est valeur propre de A et déterminer le sous-espace propre
associé.

(¢) Déterminer une matrice P inversible et une matrice D diagonale de M3(R)
telles que D = P~1AP,

3. Montrer comment les résultats de la question 2 peuvent étre utilisés pour calculer
an, b, et ¢, en fonction de n.

Mines 2016

Soit X une variable aléatoire qui suit une loi géométrique de parametre p €]0;1][.

1
Montrer que X est bien définie et calculer son espérance.
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cor vr

Soit n € N* et £/ un ensemble possédant n éléments. On désigne par P(E) I'ensemble

des parties de FE.
1. Déterminer le nombre a de couples (A; B) € (P(E))? tels que A C B.
P(E))? tels que AN B = 0.

(
3. Déterminer le nombre ¢ de triplets (A4; B; C) € (P(F))? tels que A, B et C soient
deux a deux disjoints et vérifient AU BUC = F.

S
2. Déterminer le nombre b de couples (A; B) €
)

CCP MP

1. Enoncer et démontrer la formule de Bayes pour un systéme complet d’événe-
ments.

2. On dispose de 100 dés dont 25 sont pipés (c’est-a-dire truqués). Pour chaque dé
pipé, la probabilité d’obtenir le chiffre 6 lors d’'un lancer vaut %

(a) On tire un dé au hasard parmi les 100 dés. On lance ce dé et on obtient le
chiffre 6. Quelle est la probabilité que ce dé soit pipé?

(b) Soit n € N*.
On tire un dé au hasard parmi les 100 dés. On lance ce dé n fois et on obtient
n fois le chiffre 6. Quelle est la probabilité p, que ce dé soit pipé?

(c) Déterminer lim p,. Interpréter ce résultat.
—+00

n
CCP 2016

Une machine a sous tire au hasard un entier n € N* avec la probabilité 2% (Si T est
Uentier tiré, P(T' = n) = 2%) Si le nombre tiré n est pair, le joueur gagne n points, si

le nombre tiré n est impair, le joueur perd n points.

1. Justifier qu’'une telle loi de probabilité est cohérente. Quelle est la probabilité
que le joueur gagne?

2. Soit GG la variable aléatoire égale au gain du joueur. Calculer 'espérance de G.

CCP 2016

a
Soit a > 0 et X une variable aléatoire qui a pour loi : ¥n € N*, P(X =n) =

n(n+1)
1. Déterminer la constante a.

2. La variable X admet-elle une espérance ? Une variance ? Expliciter sa fonction
génératrice.

2423 | Mines-Télécom PC 2018

Soit deux urnes : la premiere contient 2 boules blanches et 3 boules noires et la seconde
4 blanches et 3 noires. On choisit un urne au hasard et on réalise un tirage avec remise :
si la boule tirée est blanche, on fait le tirage suivant dans I'urne 1 sinon dans 'urne 2.
Soit I’événement : « Tirer une boule blanche au n®® tirage. » et P, = P(B,,).

1. Calculer P;.
2. Calculer P,;, en fonction de P,.

3. Calculer P, en fonction de n.
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X PC 2019

On munit I'ensemble des permutations de {1;...;n} de la distribution uniforme. On
note P, la probabilité qu'une permutation n’ait aucun point fixe. Calculer P, et sa
limite pour n — +o0.

2425 | X ESPCI 2017

La durée de vie d’'une ampoule électrique comptée en années est représentée par une
variable aléatoire X, a valeurs dans N*, vérifiant, pour tout n € N*, P(X =n) = 2%
Si 'ampoule fonctionne toujours au bout de n années, quelle est la durée moyenne

pendant laquelle elle fonctionnera encore ?

TPE/EIVP 2016

Soit X une variable aléatoire a valeurs dans N* telle que, pour tout £ € N*,

kE—1
P(X =k)= 57
+o0
1. Vérifier par le calcul que » P(X =k) = 1.
k=1

2. Donner la fonction génératrice de X. Quel est son rayon de convergence ?

3. La variable X admet-elle une espérance finie ? Si oui, la calculer.

cor per

Deux joueurs jouent avec des pieces équilibrées. Ils lancent chacun n fois une piece.
Celui qui gagne est celui qui obtient le plus grand nombre de fois pile. Quelle est la
probabilité qu’il y ait un gagnant ? On pourra utiliser (et éventuellement démontrer)

Pegalits 3 (" L
cgallte = .
¢ izo \1 n

Mines-Ponts PC

Soit X une variable aléatoire suivant une loi géométrique de parametre p €10;1].
Calculer E (%)

X ESPCI

On place aléatoirement n > 3 boules dans n urnes. Calculer la probabilité qu’'une seule
urne soit vide.

2430 | ENSEA/ENSIIE PSI

Soit X une variable aléatoire suivant une loi de Poisson de parametre A. Montrer que :
N+1

AT
N’

E(|X —A]) =2e avec N = |\].
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2431 | Mines-Télécom

On pose une série de questions indépendantes, et on note py la probabilité de répondre
correctement a la question k. On pose rp = py - - - pg.

1. On note X la variable aléatoire qui compte le nombre de questions justes avant
le premier échec. Déterminer la loi de X.
+oo
2. Montrer que E(X) = Y P(X > k).
k=0
3. Montrer que X admet une espérance si et seulement si la série de terme général

+oo
T, converge. Prouver qu’on a alors E(X) = ) 7,.
n=1

Centrale PC

Soit (X,,)nen+ une suite de variables aléatoires discretes, définies sur le méme espace
probabilisé (2, A, P), mutuellement indépendantes, centrées et admettant un moment
d’ordre 2. On pose, pour tout n € N*, S, = 371" ;| X;. On suppose, de plus, que
B(S1% XP) =0 € R

1. Montrer que, pour tout a € R*, pour tout n € N*,
o2

2. Soit o € R* et n € N*.

On note T} la fonction indicatrice de I'ensemble (|S;| > «), et pour tout m > 2,
T, la fonction indicatrice de 'ensemble N7",' (|Sk] < @) N(|Sm| > ).

(a) Montrer que > ; T; est I'indicatrice de 1’événement :
dk e {1;...;n},| Sk| > a.

(b) Montrer que :

S E(T:S7) < o”.

i=1

(¢) Montrer que, pour tout k € {1;...;n} :
E(T:5%) < E(TiS7).
3. Montrer que :
2
P(3k € {1;...;n}, Sy > ) < 5.
a

Conclure que

52
P (sup|5n| > 04) < -
o

neN*

2433 | Mines-Télécom PC 2017

Peut-on truquer deux dés (a 6 faces) pour que la somme suive une loi uniforme ?
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—

Soit (€, A, P) un espace probabilisé. Montrer que, pour tout (A; B) € A?

[P(A)P(B) — P(AN B)| <

] =

Quel est le cas d’égalité?

CCINP MP

Une puce se déplace sur un axe gradué d’origine O par bonds successifs d'une unité.
Elle peut aller a tout instant, soit a droite, soit a gauche, avec équiprobabilité. On note
C,, I'évenement : « La puce est en O apres n sauts. ». On note P(Cp) = 1.

1. Déterminer P(Cy,11) et P(Cyy).
An
N
3. La puce peut a présent se déplacer suivant deux directions (droite, gauche, haut,
bas) avec équiprobabilité.

(a) Montrer que P(Cy,) = <2:>2 . (1)%.

4
(b) Calculer lim P(Cy,).

n——+o00

2
2. Calculer lim P(Cy,) en admettant que ( n> ~
—+00 n

n

2436 | Mines-Télécom PSI 2024

Soit X et Y deux variables aléatoires indépendantes de méme loi géométrique de pa-

X
rametre p, avec p €]0;1[. On pose Z = v

1. Montrer que Z < X et que Z admet une espérance et une variance finies.
2. Calculer I'espérance de Z.
3. Donner la loi de Z.

2437 | Mines-Télécom MPI 2025

Soit une matrice aléatoire M € My(R) définie par :

X X
v-(505)

ou X et Y sont deux variables indépendantes, suivant une méme loi géométrique.
Déterminer la probabilité que la matrice M soit nilpotente.

Mines-Ponts PC 2022
On choisit au hasard f: [1;n] — [1;n—1], n > 2. Quelle est la probabilité que f soit
surjective ?

2439 | Mines-Télécom PSI 2022

Soit XY, Z trois variables aléatoires mutuellement indépendantes suivant la loi uni-
forme sur [1;n]. Calculer P(X +Y = Z).
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2440 | Mines-Télécom PSI 2024

On suppose que X et Y sont des variables aléatoires a valeurs dans N, telles que :

. . 1+ k
Vi, k € N, P(XZZ’Y:k)ZGZiJrk'

1. Déterminer la valeur de a.
2. Déterminer les lois de X et Y.

3. Les variables X et Y sont-elles indépendantes ?
4. Calculer P(X =Y).

2441 | Mines-Télécom MP 2021
Soit k£ € N.

1. Montrer que :

Ve e]—1;1], EO:O (Z)x”_k = (1_;)“1

n==k

2. Soit p €]0;1[. On pose :

n—1
Vn >k, P(n) = (k‘ B 1)])”(1 —p)" .

Montrer que P définit bien une loi de probabilité.

2442 | Mines-Ponts MP 2016

On considere un meuble a huit tiroirs, dans lequel il peut se trouver un objet avec la
probabilité p. Lorsque cet objet est dans le meuble, il a autant de chances de se trouver
dans un tiroir que dans un autre. On a ouvert sept tiroirs du meuble sans trouver
I’objet. Calculer la probabilité que 1’objet soit dans le meuble.

ENSAE MPI 2025

Soit A, 'ensemble des matrices carrées d’ordre 2 dont les coefficients sont contenus
dans {—1;0; 1}. On munit A de la probabilité uniforme.

1. Quel est le cardinal de Ay ?
2. Quelle est la probabilité qu’une matrice de A, soit inversible ?

3. Quelle est la probabilité que la matrice soit exactement de rang 17

2444 | TPE/EIVP MP 2017

Soit E un ensemble de cardinal n > 2. On tire au hasard et avec remise A, B des

parties de E, les deux tirages étant successifs et indépendants. Calculer la probabilité
que Card(AN B) = 1.

2445 | Mines-Ponts MP 2024

Soit X une variable aléatoire discrete telle que E(|X|) = 0.
Montrer que X est presque-sirement nulle, ¢’est-a-dire P(|X| > 0) = 0.
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CCINP MP 2023

On obtient aléatoirement un entier strictement positif n avec un probabilité de 2%
On note Ay I’évenement : « Le nombre n est un multiple de k. ».

1. Montrer qu’il s’agit bien d'une loi de probabilité sur N*.
2. Calculer P(Ag).
3. Calculer P(Ay U Aj).

2447 | Mines-Télécom MP 2024

On dispose de N coffres. Il y a une probabilité p que le trésor se trouve dans ces coffres.
Les coffres ont chacun la méme probabilité de contenir le trésor. Sachant que le trésor
n’était pas dans les N — 1 premiers coffres, quelle est la probabilité qu’il soit dans le
dernier ?

CCINP PSI 2025

On tire 5 cartes dans un jeu de 32 cartes. Soit X la variable aléatoire correspondant
au nombre de rois piochés (il y a 4 rois dans un jeu de 32 cartes).

1. Déterminer la loi de probabilité de X.

2. En admettant la formule de Vandermonde, déterminer ’espérance de X.

2449 | Mines 2022

On considére une urne contenant n boules indiscernables au toucher, numérotées de 1
a n. On tire une poignée de boules. On replace cette poignée dans I'urne et on mélange.
On tire une deuxieme poignée. Déterminer la probabilité que les deux poignées n’aient
aucune boule en commun.

CCINP PC 2021

Des personnes se transmettent a la file une information. La premiere personne regoit
I'information exacte ; ensuite, chaque personne transmet fidelement I'information (telle
qu’elle ’a regue, donc pouvant étre ou non correcte) avec la probabilité p, ou transmet
I'information contraire de celle qu’elle a recue avec la probabilité 1 — p. On note A,
lévénement « La n®™® personne recoit correctement information initiale. », et on
pose p, = P(A,). Exprimer p,,1 en fonction de p,, puis exprimer p,, en fonction de n.

ENS PC 2023

On lance une piece de monnaie jusqu’a obtenir « pile », la probabilité d’obtenir « pile »
a chaque lancer étant p. On note ¢ le rang du lancer auquel « pile » est obtenu. Puis,
on lance ¢ fois un dé a 6 faces et pour gagner le jeu il faut obtenir 6 une seule fois.
Déterminer p de sorte que la probabilité de gagner soit maximale.

2452 | Mines-Ponts MP 2023

Soit X une variable aléatoire suivant une loi de Poisson de parametre A > 0. Soit
p € N*. On note Y le reste de la division euclidienne de X par p. Déterminer la loi de
la variable aléatoire Y.
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2453 | Mines PSI 2024

Soit X et Y des variables aléatoires indépendantes telles que X (Q2) =Y (Q) = Net :

14 aF

VkEN, P(X =k) =B(Y =k) = —

1. Déterminer a.
2. Déterminer I'espérance de X.
3. Déterminer la loi de X + Y.

2454 | Mines-Télécom MP 2024

On considere une urne contenant n boules blanches et n boules noires. On pioche les
boules 2 par 2 et sans remise. Quelle est la probabilité que 'on tire exactement une
boule blanche et une boule noire a chaque tirage ?

2455 | Mines-Télécom PC 2022

Soit X et Y deux variables aléatoires indépendantes qui suivent toutes les deux une loi
uniforme sur [1;n]. On note U = min(X;Y) et V = max(X;Y).

1. Rappeler la loi de X et son espérance.
2. Trouver la loi de V' et son espérance.

3. Que vaut U 4+ V' 7 En déduire I'espérance de U.

CCINP TSI 2022

On considere un dé truqué a 2n faces, pour lequel la probabilité de tomber sur la face
k est proportionnelle & k3.

n 2 1 2
1. Montrer que Z k= n(n4—+—)
k=1

2. Calculer la probabilité que le dé tombe sur la face k.

2457 | Mines-Ponts MP 2022

Montrer qu'une intersection dénombrable d’évenements presque certains est un évene-
ment presque certain.

X MP 2021

On consideére une urne avec 10000 boules dont 6000 rouges et 4000 vertes. On effectue
des tirages successifs jusqu’a avoir tiré toutes les boules. Déterminer la probabilité que
I’on ait en permanence plus de boules rouges que de boules vertes durant ces tirages.

Mines-Télécom MP 2024
Soit X une variable aléatoire suivant une loi de Poisson de parametre A > 0. Soit Y une
variable aléatoire indépendante de X telle que Y(Q2) = {1;2} et P(Y = 1) = P(Y = 2).
On pose Z = XY.

1. Donner I'espérance de Z.

2. Donner la loi de Z.

200




2460 | Mines-Télécom MP 2025

On a un QCM de 40 questions. Chaque question comporte 4 choix et 1 seule bonne
réponse existe. Un éleve y répond au hasard. Chaque bonne réponse rapporte 3 points
et chaque mauvaise en fait perdre 1. On note les variables aléatoires X; qui valent 1
si la réponse a la i®™¢ question est bonne, 0 sinon. On note Y la variable aléatoire qui
comptabilise le nombre de points.

1. Donner la loi de Xj;.

2. Donner la loi de Y.

3. Calculer I'espérance de Y.
4

. En utilisant l'inégalité de Pafnouti (Tchebychev), majorer p, la probabilité
d’avoir une note supérieure a 60.

2461 | Mines-Ponts MP 2018
Soit r > 0. Pour tout k£ € N, on pose :

P(X =k) = 7"/01 2F11 — 2)" da.

1. Montrer que cette relation définit bien la loi d'une variable aléatoire.

2. Donner une condition sur r pour que I'espérance soit définie et la calculer.

2462 | Mines-Ponts MP 2022

On considére 2p + 1 lumitres disposées en cercle. A linstant initial, seules deux lu-
midres adjacentes sont allumées. A chaque instant, on éteint toutes les lumiéres et,
pour chaque lumiere qui était allumée a l'instant précédent, on allume une des deux
lumieres adjacentes avec une équiprobabilité. On note N la variable aléatoire indiquant
le premier instant ou une seule lumiere est allumée. Déterminer la loi de N, puis son
espérance pour p = 2.

2463 | Mines-Télécom PSI 2023

Une maladie circule dans la population et on note p la probabilité d’étre contaminé.
La probabilité d’étre contaminé par contagion (contact avec un malade) est égale a %
On considere un commercial qui passe voir n clients durant sa journée de travail. On
note N la variable aléatoire représentant le nombre de clients contaminés rencontrés

par le commercial.
1. Déterminer la loi de N.

2. Quelle est la probabilité que le commercial ne soit pas contaminé a la fin de sa
journée de travail 7

2464 | Mines-Ponts MP 2023

Soit X une variable aléatoire discrete a valeurs dans C et A € C tels que X et A X
suivent la méme loi. Que dire de X et A7
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2465 | Mines-Télécom MP 2021

Soit f : R — R une fonction convexe. On considere X une variable aléatoire réelle
définie sur un espace probabilisé (€2, T, P).

1. On suppose que X (2) est fini. Montrer que :
FEX)) < E(f(X)).

2. On suppose que X (2) est dénombrable et que X et f(X) admettent des espé-
rances finies. Montrer que I'inégalité ci-dessus reste vraie.

CCINP MP 2018

Une puce se déplace sur un triangle équilatéral ABC'. Elle se situe initialement en A.

Si elle est en A a un instant n donné, alors elle se déplace sur un des deux autres
sommets a l'instant n + 1 de maniere équiprobable.

Si elle est en B a un instant n donné, alors elle se déplace sur un des deux autres
sommets a l'instant n + 1 de maniere équiprobable.

Si elle est en C' a un instant, alors elle reste en C' a 'instant suivant.

On note A,, (resp. B, C,,) 'événement « La puce est en A (resp. B, ') a l'instant n. ».
On note w,, (resp. v,,w,) le nombre P(A,) (resp. P(B,),P(C,)).
1. (a) Déterminer w1, v,11, W,y1 en fontion de u,, vy, wy,.
U,
(b) Soit X,, = | v,
Wn,
Montrer qu’il existe une matrice M € M, (R) telle que X,, = M"™Xj.
2. (a) Donner les expressions explicites de u,, v, et w,.
(b) Que se passe-t-il lorsque n — 400 ? Expliquer.

2467 | Mines-Ponts MP 2023

Soit X; et X5 deux variables aléatoires indépendantes et identiquement distribuées.
On suppose que X7 + X» suit la méme loi que 2.X7, avec X; > 0.
Montrer que X; est presque stirement constante.

2468 | Mines-Télécom MP 2018

Soit X et Y deux variables aléatoires a valeurs dans N, telles que
exp(—b)a/b'(1 — a)*=7

P(X =4,Y =j) = (i = 7)!
0 sii<j

sii>j

1. Donner les lois de X et de Y, ainsi que leur espérance.
2. Les variables aléatoires X et Y sont-elles indépendantes ?
3. Donner laloide Z =X —Y.
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CCINP TSI 2022

On pose 20 questions sous forme de QCM a un candidat. Pour chaque question, il y a
k (k > 2) réponses possibles, une seule est correcte.

Si le candidat trouve la bonne réponse du premier coup, il marque 1 point.
Si le candidat trouve la bonne réponse au second essai, il marque 0,5 point.
Sinon il ne marque aucun point.

Déterminer la valeur de k& pour que le candidat, qui répond au hasard, ait 5/20 en
moyenne.

CCINP MP 2021

Soit X une variable aléatoire a valeurs dans N*, loi donnée par :
Vk e N* P(X =k)=p(1 —p)* !, oupel0;1].

On pose Y = (—1)*.
1. Calculer la loi de Y.
2. Calculer E(Y) et E(XY).

2471 | TPE/EIVP PC 2021

Une urne contient n boules numérotées de 1 & n. On tire sans remise une a une les
boules. On note X; la variable aléatoire égale a 1 si la ™€ boule tirée porte le numéro
7 et 0 sinon.

1. Donner la loi de Xj;.

2. Lorsque 'on vide entierement I'urne, combien de fois peut-on espérer que le
numéro d’'une boule ait coincidé avec son rang dans le tirage ?

2472 | Mines-Télécom MP 2025

1. Calculer
Card ({(4;B) € P({1;...;n})* | AC B}).

2. On choisit au hasard deux parties A et B de {1;...;n}.
Quelle est la probabilité que 1'une soit incluse dans 1’autre ?

2473 | TPE/EIVP MP 2017

On dispose d’une urne contenant n boules. A chaque tirage, on tire une boule, on
la marque et on la remet dans 'urne. Les tirages sont indépendants. On note X, la
variable aléatoire comptant le nombre de boules marquées au bout de n tirages.

1. Calculer E(X,,).

2. Trouver un équivalent simple de E(X,,) quand n — +oc.

2474 | Centrale-Supélec PC 2017

On effectue des lancers indépendants d’une piece, avec une probabilité % d’obtenir
pile, donc un probabilité % d’obtenir face. On note X le nombre de lancers nécessaires
pour obtenir deux piles consécutifs (et 'expérience s’arréte). Donner la loi de X et son
espérance.
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2475 | Mines-Télécom MP 2019
1

n(n+1)
Montrer que I'on définit ainsi une probabilité sur N*.

1. Pour n € N*, on pose P({n}) =

2. Soit X une variable aléatoire a valeurs dans N* dont la loi est donnée par :

1

P(X =n) = g

Donner le domaine de définition de la fonction génératrice G'x, son expression
et étudier sa continuité.

2476 | Mines-Ponts MP 2019

Soit n un entier naturel non nul. On organise un tournoi de football entre 2n équipes :
n de premiere division, n de deuxieme division.

1. On note a, la probabilité que chaque match fasse s’opposer une équipe de pre-
miere division avec une de seconde. Calculer a,,, en donner un équivalent.

2. On note b, la probabilité qu’aucun match ne fasse s’opposer une équipe de
premiere division avec une de seconde. Calculer b,, en donner un équivalent.

2477 | ENSEA/ENSIIE MP 2025

Soit X et Y deux variables aléatoires indépendantes suivant une loi géométrique de
parameétre p. On pose U = max(X;Y) et V = min(X;Y).

1. Calculer P(X > k) pour tout k € N*. Interpréter.
2. Trouver les lois de U et V.

3. Calculer I'espérance de U. Interpréter.

2478 | ENSEA/ENSIIE MP 2016

Alice et Bob sont des correspondants téléphoniques. Ils appellent au hasard des clients.
Alice a une probabilité ps €]0;1[ de signer un contrat et une probabilité g4 €]0;1[
d’effectuer une erreur de saisie dans le contrat. On définit de méme pg et qg pour Bob.
Alice étant plus avenante, on a p4 > pg. Un contrat a été signé et comporte une erreur
de saisie.

1. Quelle est la probabilité qu’Alice s’en soit chargée.

2. On suppose que ce contrat a été traité par Alice ou Bob avec la méme probabilité.
Comparer g4 et ¢p.

CCINP MP 2016

Marcel effectue N tirages dans une urne contenant b boules blanches en ivoire et n
boules noires en chocolat. Lorsqu’il tire une boule en chocolat, il la mange.
1. (a) Quelle est la probabilité que Marcel mange au moins une boule en chocolat ?
(b) Quelle est la probabilité que Marcel mange une et une seule boule en choco-
lat ?

2. Marcel mange une et une seule boule en chocolat. Quelle est la probabilité qu’il
s’agisse de la derniere boule tirée ?
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X ESPCI

On considére n droites vectorielles de R%. On suppose que les angles qu’elles forment
deux par deux sont tous égaux. Montrer que :

n< <d+1>‘
2

ENS MP 2016

1. Soit n € N*. Dénombrer :

An = {(xi)ie[[l;r}] € (N*)T

T
in:n,reN*}.
=1

2. Soit n, k € N*. Dénombrer :

B, = {(l'i)ieﬂl;k]] € (N*)k

'
in:n,reN*}.
i=1

2482 | Mines-Télécom MP 2023

Soit n € N et X,Y deux variables aléatoires discretes. On suppose que X suit une loi
binomiale de parameétres n et p. On suppose aussi que, pour tout i € {1;...;n}, la loi
de Y conditionnée a X = 7 est la loi binomiale de parametre n — i et p. Montrer que
Z = X + Y suit une loi binomiale et déterminer ses parametres.

2483 | Mines-Télécom MP 2017

Soit X une variable aléatoire suivant une loi binomiale de parametres n et p. Montrer

que :
X 1 -
P<_p>5><p<p>‘
n \/ne

2484 | Mines-Télécom MPI 2025

On lance n boules dans N boites de maniére indépendante. La probabilité quune boule
tombe dans une boite suit une loi uniforme.

1. On pose Y} la variable aléatoire donnant le nombre de boules dans la boite k£, et
7 la variable aléatoire valant 0 si la k®™ boite est vide, et 1 sinon. Déterminer
les lois des variables Y}, et Z,.

2. Les variables Zj, sont-elles mutuellement indépendantes ?

3. On pose T,, la variable aléatoire comptant le nombre de boites contenant au
moins une boule a l'issue de n lancés. Calculer I'espérance de T,,.

4. Calculer lim [E(T,) et interpréter le résultat.
n—-+00
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CCINP PSI 2022

Soit p,q € [0;1] tels que p+ g = 1.
On suppose que X et Y sont des variables aléatoires réelles telles que X () = [0;n],
Y () =[1;n] et :

P h sik=jetj#0
V(G k) € [0;n] x [L;n], P(X =4)N (Y =k)) = (L sij=0
sik#jetj#0
1. Quelles sont les lois marginales de X etY ? Que vaut E(Y)?

2. Les variables X et Y sont-elles indépendantes ?

=}

3. Donner la loi conditionnelle de Y sachant X = j.

CCINP TSI 2022

Soit X1,..., X, des variables aléatoires suivant une loi de Rademacher, c’est-a-dire :

P(X=1)=p et PX=-1)=1-p.

Déterminer la loi de Y = H X
k=1

2487 | Mines-Télécom PC 2024

Soit X et Y deux variables aléatoires indépendantes de méme loi. Soit Z = X +Y +1
qui suit une loi géométrique de parametre p.

1. Rappeler I'espérance, la variance et la série génératrice d’une variable aléatoire
suivant une loi géométrique.

2. Donner 'espérance et la variance de X.

2488 | Mines-Ponts MP 2022

On considére un mobile Z qui se déplace aléatoirement a droite ou a gauche, sur un
axe orienté. A D'instant 0, le mobile est a l'origine. Lorsqu’il est a I'abscisse n € Z, le
mobile fait un bond B, dont la loi de probabilité est donnée par :

Vk € Z, P(B, = k) = ap/*! avec p €]0;1].

On suppose que les bonds sont indépendants.
1. Déterminer a.

2. Pour n € N*, on note A,, la variable aléatoire égale a I’abscisse ou se trouve le
mobile apres n bonds. Montrer que :

* P < — .
Vn e N*, P(4, >n) < n(d— )
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2489 | Mines-Ponts MP 2022

Soit a,b, m trois nombres réels vérifiant a < m < b. On considere ’ensemble des
variables aléatoires discretes X qui vérifient E(X) =m et a < X <b.

1. Qualitativement, que caractérise la variance ?

2. Déterminer le maximum des E(X?) pour X dans I'ensemble considéré.

2490 | Centrale-Supélec TSI 2025

Soit Xy, Xs,..., X, n variables aléatoires mutuellement indépendantes qui suivent
toutes une loi de Bernoulli de parameétre p €10 1].
Xy
X
Onnote X =| " |etM=XXT.
Xn
1. Soit R la variable aléatoire égale au rang de la matrice M. Déterminer la loi de
R.
2. Soit T la variable aléatoire égale a la trace de la matrice M. Déterminer la loi
de T.

3. Déterminer la probabilité que M soit la matrice d’'un projecteur.

2491 | Mines-Ponts MP 2024

Soit (€2, .4, P) un espace probabilisé et p €]0;1[. Soit X et Y deux variables aléatoires
sur 2 a valeurs dans N, indépendantes, et telles que X + 1 et Y + 1 suivent la loi
géométrique de parametre p. Soit enfin Z la variable aléatoire sur €2, a valeurs dans

N*, telle que :
e X(w) +Y(w)
Yw € €, Z(w):< X (w) )

A quelle(s) condition(s) Z admet-elle une espérance finie ? une variance finie ? Calculer
E(Z) quand elle est finie.

2492 | Centrale-Supélec PC 2022

Soit p €]0;1[. Un petit garcon se proméne dans un jardin et ramasse un nombre
aléatoire N de feuilles. Pour une feuille donnée, la probabilité qu’il la trouve jolie vaut

p.
1. Déterminer la probabilité qu’il trouve toutes les feuilles jolies.

2. Le nombre de feuilles qu’il trouve jolies est une variable aléatoire notée X.
Exprimer sa loi a partir de la loi de V.

3. Dans chacun des trois cas suivants, déterminer la loi de X.

(a) La loi de N est une loi de Poisson.
(b) La loi de N est une loi géométrique.
(c) Laloi de N est une loi binomiale.
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2493 | Centrale-Supélec PC 2016

Soit N une variable aléatoire donnant le nombre d’ceufs pondus par une poule. On
suppose que N suit une loi de Poisson de parametre A\. La probabilité qu’un ceuf éclose
est p.

1. Soit D la variable aléatoire donnant le nombre de descendants dune poule.
Déterminer la loi de D.

2. Les variables D et N sont-elles indépendantes ? Qu’en est-il de N — D et D?
3. Comment retrouve-t-on la loi de N a partir de celles de N — D et de D7

2494 | Centrale-Supélec PSI 2017

Soit X une variable aléatoire. S’il existe, on note p(n) = E((X —E(X))") son moment
centré d’ordre n. On dit que X admet un Kurtosis, si X admet une espérance E(X) et
des moments centrés p(2), u(3), u(4). Dans ce cas on note

L E(X - EX)Y
BX) ==+ 0p = T 'REx e
son Kurtosis.

1. Montrer que si X admet un Kurtosis, alors a X + b admet aussi un Kurtosis et
que K(aX +b) = K(X).

2. Calculer K(X) si X suit une loi de Bernoulli de parametre p €]0;1][.
3. Montrer que pour toute variable aléatoire X, on a K(X) > —2.
4. Existe-t-il M > 0 tel que pour toute variable aléatoire X, on ait K(X) < M ?

2495 | Mines-Télécom MP 2017

Soit X et Y deux variables aléatoires indépendantes suivant une méme loi de Poisson
de parametre .

1. Donner la fonction génératrice de X et de 3Y.

2. Soit Z = 3Y + X. Donner la fonction génératrice de Z.
3. Donner l'espérance E(Z) et la variance Var(Z) de Z.

4. Donner le minimum de Var(Z + tX) lorsque ¢ décrit R.

2496 | Mines-Ponts MP 2019

Soit (2, 7,P) un espace probabilisé. Soit (X, ).eny une suite de variables aléatoires
réelles mutuellement indépendantes suivant la méme loi et admettant une variance. Soit
encore (X )nen une suite de variables aléatoires réelles mutuellement indépendantes
suivant la méme loi et admettant une variance. On pose :

Sn:ZXg et S;L:ZXé
=0 =0

En supposant E(X;) # E(X]), étudier la convergence de P(S,, < S)).
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2497 | Mines-Ponts MP 2017

Une bactérie mortelle menace 'espece humaine d’extinction. Heureusement, des scien-
tifiques ont développé un remede miracle pour la combattre : un super rayon laser.
En sachant qu’ils ont une probabilité p €]0;1[ de toucher la bactérie & chaque tir, et
que la bactérie a r € N* points de vie, donner la probabilité que la bactérie meure
lors du k®™¢ tir, puis déterminer I'espérance du nombre de tirs nécessaires pour que les
scientifiques viennent a bout de la bactérie, et sauvent ainsi 'humanité.

2498 | TPE/EIVP MP 2019

Une urne contient une boule rouge et une boule blanche. On effectue des tirages avec
remise et si on tire une boule rouge, on la remet avec 2 autres boules rouges. Soit
I’événement A, =« Lors des n premiers tirages, on a eu des boules rouges. ». On
convient que P(Ay) = 1.

1. Déterminer P(A,, | A,—1) pour tout n € N*.

2. En déduire la valeur de P(4,,).

3. Quelle est la probabilité de tirer indéfiniment des boules rouges ?

CCINP TSI 2019

Soit X et Y deux variables aléatoires indépendantes telles que, pour tout n € N,
P(X =n)=P(Y =n)=4q"p,ou g=1—p. On note aussi S = X + Y.

1. Donner I’ensemble image de X +1,Y + 1 et S.

2. Montrer que X 4+ 1 et Y + 1 suivent une loi géométrique de parametre p, puis
donner E(X), Var(X), E(Y) et Var(Y).
3. Déterminer la loi de S.

4. Soit I = min(X;Y). Montrer que P(I > k) = ¢** et en déduire la loi de I.
Calculer E(1) et Var([).

CCINP PSI 2018

Soit p €]0;1[. Pour k € N*, on pose p = p?k(1 — p)*~1.
1. Montrer que (pg)ren+ définit une loi de probabilité sur N*.
2. Soit X une variable aléatoire telle que, pour tout k£ € N*, P(X = k) = py.

(a) En examinant son existence, déterminer E(X — 1).
(b) En examinant son existence, déterminer E((X — 1)(X — 2)).

3. Etudier 'existence et la valeur de E(X).

2501 | Mines-Ponts PC 2018

On lance une piece dont la probabilité de tomber sur pile est p. On note A, : « Au
n®™e lancé on obtient pour la premiere fois deux piles consécutifs. ». On note a, la
probabilité de cet évenement.

1. Calculer aq, as, as.
2. Trouver une relation reliant a,,2 a a,.1 et a,.

3. Pourquoi est-il quasi certain d’obtenir deux piles consécutifs ?
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ENS MP 2018

Soit X et Y deux variables aléatoires indépendantes a valeurs dans N. On suppose que
XY suit une loi de Poisson. Montrer que X ou Y ne prend presque stirement que la
valeur 0 et 1, c’est-a-dire que X ou Y appartient presque stirement a {0;1}.

2503 | Mines-Ponts PC 2018

Deux joueurs de foot tirent tour a tour un penalty. Le joueur 1 (respectivement 2)
marque avec une probabilité p; €]0;1[, (respectivement py €]0;1[). On s’arréte au
premier penalty réussi.

1. Calculer la probabilité que le joueur 1 gagne.
2. Montrer que le jeu s’arréte de maniere quasi certaine.

3. Pour quelles valeur de p; peut-on obtenir un ps de telle sorte que le jeu soit
équitable 7

2504 | Mines-Ponts MP 2015

Soit n couples (homme/femme) de danseurs. Lorsque la musique change, les membres
des couples doivent trouver un nouveau partenaire de sexe opposé. Déterminer la pro-
babilité que tous les couples nouvellement formés soient différents des couples initiaux.
Quelle est la limite de cette probabilité lorsque n tend vers +oo ?

2505 | Centrale-Supélec MP 2016

Soit x,y et n trois entiers naturels vérifiant 0 < x,y < n. On considére deux joueurs
E et F et un chapeau dans lequel on dispose de n jetons, dont x jetons sont marqués
d'un X et y jetons d'un Y. Le jeu se décompose en deux temps :

Le joueur E tire consécutivement deux jetons avec remise. S’il tire deux fois un jeton
marqué d'un X, il a gagné.
Si le joueur E n’a pas gagné, alors c’est au joueur F' de tirer consécutivement deux
jetons avec remise. Si il tire deux fois un jeton marqué d’'un Y, alors il a gagné.
Si aucun des joueurs n’a gagné, alors on recommence.

1. Déterminer la probabilité ¢ qu’aucun des deux joueurs ne gagne au premier tour.

2. Déterminer la probabilité que le joueur E gagne, que le joueur F' gagne puis
qu’aucun des deux joueurs ne gagne.

Un triplet (a;b;c) d’entiers est dit pythagoricien s'il vérifie a® + b* = 2.

3. Montrer que le jeu est équilibré, c¢’est-a-dire que les deux joueurs ont la méme
probabilité de gagner, si et seulement s’il existe un triplet pythagoricien (a; b; )
tel que x = ab, y = ac et n = be.

2506 | Mines-Ponts MP 2017

Des personnes P, ..., P, se transmettent un signe + ou — avec la probabilité p de le
passer inchangé et la probabilité ¢ = 1 — p de le changer. La personne 1 recoit le signe
+. Sachant que la personne n a recu un signe 4+, quelle est la probabilité que P; ait
transmis son signe sans le changer ?
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CCINP PC 2021

1. Soit Y une variable aléatoire discrete telle que :
Y(Q)={0;1;2}, E(Y) =1 et E(Y?) = 3.

Calculer pg, p1, p2, ot pr, = P(Y = k) pour k € {0;1;2}.

2. Soit X un variable aléatoire discrete telle que :
X(Q) ={xo;x1; ... ;7).

On suppose connaitre E(X), E(X?),... , E(X™).
Comment faire pour calculer pg, p1,...,pn?

CCINP MP 2017

On dispose dans une urne n boules numérotées de 1 a n. On tire p boules simultanément.
Les variables aléatoires X et Y représentent respectivement le maximum et le minimum
des numéros tirés.
1. Montrer que :
(n+1)!
p+1)(n—p)

n k!
,;(k—p)! —

2. (a) Quel est le nombre de tirages différents ?
(b) En déduire la loi de X :

(c¢) Déterminer l'espérance de X.
3. (a) Déterminer la loi de Y.

1
(b) En déduire que E(Y) = nx

p+1

CCINP MP 2017

2
" (n
1. En exprimant (X + 1)*" de deux maniéres, calculer ) ( k:) :
k=0
2. Deux joueurs tirent chacun une piece équilibrée. Le gagnant est celui qui obtient
le plus de « pile ». Quelle loi suit le nombre de « pile » obtenu par un joueur ?
Donner son espérance et sa variance.

3. Déterminer la probabilité qu’il y ait un gagnant.

4. Donner un équivalent quand n — 400 de la probabilité calculée précédemment.
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2510 | Mines-Ponts MP 2023

Soit X une variable aléatoire suivant une loi de Poisson de paramétre A\. Montrer que :

P(X > 2)) < <Z>A.

Comparer avec 'inégalité de Bienaymé-Tchebychev.

ENS MP 2024

Soit G un groupe fini de cardinal N. On considere A une partie aléatoire de G. On
note AA = {ab | (a;b) € A?}.

1. Montrer que lim P(1 € AA) = 1.
N—+o00

2. Montrer que lim P(AA=G)=1.
N—+o00

2512 | Mines-Ponts MP 2021

On étudie la diffusion d’une information. Il y a une probabilité p qu’une personne trouve
cette information intéressante a tout instant. Si une personne trouve cette information
intéressante a un instant n, elle la diffuse & N personnes, qui sont alors au courant
a linstant n + 1. A linstant n = 0, une seule personne a l'information. Soit X, la
variable aléatoire donnant le nombre de personnes ayant recu l'information a I'instant
n et qui 'ont trouvé intéressante. On pose a,, = P(X,, = 0).

1. Donner la loi de X; et son espérance.
2. Exprimer a,, en fonction de a,_1, p et N.

3. Etudier la convergence de la suite (@n)nen-

2513 | Mines-Ponts MP 2021

Toutes les variables aléatoires sont définies sur un méme espace probabilisé (€2, A, P).
Soit m € [1;n] et X,Y des variables aléatoires indépendantes suivant toutes deux une
loi uniforme sur [1;n]. Soit Z la variable aléatoire définie par :

Z(w) = {X(w) siY(w)<m

Y(w) sinon

1. Etablir la loi de Z.
2. Etablir les espérances de X,Y et Z.

3. Trouver les valeurs de m maximisant E(Z).

2514 | Mines-Ponts MP 2018

On tire n fois une piece a pile ou face. La variable aléatoire X compte le nombre de
« face » obtenus. A partir de I'inégalité de Bienaymé-Tchebychev, trouver n tel que la

probabilité que
X

1‘ o 1
n 2| 100
soit supérieure a 0, 99.
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Mines-Ponts PC 2017

On téléphone a n personnes. Chaque personne a une probabilité p de répondre a ’appel.
On note X; le nombre de personnes qui répondent a ce premier appel. On effectue une
deuxieme vague d’appels a destination des personnes qui n’ont pas répondu la premiere
fois. On note X5 le nombre de personnes qui répondent au deuxieme appel. On répete
le processus jusqu’a ce que tout le monde ait répondu. Pour tout j € [1;n], on note
Y; le numéro de Pappel auquel la j°m¢ personne a répondu.

1. Les variables aléatoires X; et X5 sont-elles indépendantes ?
2. Donner la loi de Y;.
3. Déterminer les lois de X; et Xs.

2516 | Mines 2022

Soit f € C'([0;1],R,). Pour tout n € N, on pose :

1

Trouver une condition nécessaire et suffisante pour que la suite (p,)nen définisse une
distribution de probabilité. L’hypothese « f de classe C* » est-elle nécessaire ?

CCINP PSI 2022

Soit (X, )nen+ une suite de variables aléatoires mutuellement indépendantes suivant
toutes une loi de Bernoulli de parameétre p. On note :

Y+ +Y,
Y, = Xy 4+ X, et M, =1ttt
1. Enoncer la loi faible des grands nombres.

2. Les variables Y,, sont-elles indépendantes ?
3. Calculer I'espérance et la variance de M,,.

4. Montrer que pour tout € > 0 :

lim P(|M, —2p| > ¢) = 0.

n—-+o0o

CCINP PSI 2021

Soit un dé équilibré a 10 faces numérotées de 1 a 10. On lance le dé jusqu’a obtenir un
chiffre inférieur ou égal a 6. On note X le chiffre du dernier lancer.

1. Soit N le nombre de lancers obtenus. Déterminer la loi de V.
2. Pour tout (k;n) € [1;6] x N*, calculer P(X =k, N = n).
3. Calculer P(X = k). En déduire la loi de X.

4. Les variables X et N sont-elles indépendantes ?
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2519 | Mines-Ponts MP 2017

On définit, pour k£ € N, pp = a(ak,‘;ﬁk) avec (a,q;3) € R3. Soit X une variable

aléatoire discrete a valeurs dans N, telle que P(X = k) = p pour tout k£ € N.

1. Pour quelles valeurs de « et 3 peut-on définir un a € R pour lequel la probabilité
est bien définie 7 Quelle est alors cette valeur de a7

2. La variable X peut-elle suivre une loi de Poisson ?

ENS MP 2019

Calculer la probabilité qu'une variable aléatoire suivant la loi uniforme sur S,, possede
un cycle de taille strictement supérieure a 7.

ENSAM PSI 2018

On consideére un jeu de ballon et trois joueurs, notés A, B et C'. Le joueur A envoie le
ballon & B avec une probabilité de 0.75, B envoie toujours le ballon a C, C' envoie le
ballon a A avec une probabilité de 0.25 et & B avec une probabilité de 0.75.

On note A,, 'événement « Le joueur A posséde le ballon a l'issue du n®™® lancer. » et
on considere de méme B,, et C,. On note a, la probabilité de I’évenement A, et on
note de méme b,, et ¢,.

Au début du jeu, c’est le joueur A qui a le ballon.

1. Donner a,. en fonction de a,, b,, ¢,. Exprimer de méme b,, .1 et ¢,11.

2. Montrer que :

An41 Qp,
dM e Mg(R), Vn € N*, bn+1 =M]b,
Cn+1 Cn

Déterminer M.

3. Déterminer la limite de a,, b,, ¢,, quand n — +o0.

2522 | TPE/EIVP MP 2016

On a une urne avec 2 boules vertes et 6 boules blanches et on effectue des tirages avec

. N . n
remises. On note X, le nombre de boules vertes obtenues apres n tirages et F,, = —.
n

1. Rappeler I'inégalité de Bienaymé-Tchebychev.

2. Déterminer la loi de X,,, son espérance et sa variance, ainsi que ’espérance et
la variance de Fj,.

3. Pour n = 10000, notons : A = {F, €]0.22;0.26[}.
Minorer P(A).
4. Trouver n tel que P(A) > 0.99.
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CCINP MP 2023

Soit n € N* et X,Y deux variables aléatoires définies sur un méme espace probabilisé
et a valeurs dans [1;n + 1] dont la loi de couple est donnée par :

vwﬂeﬂhn+wipgznﬁﬁ:ﬁ:A(7l)(” )

i—1)\j—1

1
1. Montrer que A = r
2. Déterminer les lois marginales de X et Y.

Les variables aléatoires X et Y sont-elles indépendantes ?

3. Déterminer 'espérance et la variance de X.

4. Soit B = (bij)1<ij<nt+1 € Mut1(R) telle que b; = P(X = 4,Y = j) pour tout
(i;4) € [1;n+ 1]
(a) Justifier que B est diagonalisable.

(b) En calculant B?, déterminer les valeurs propres de B et donner la dimension
des sous-espaces propres associés.

ENS MP 2017

Existe-t-il une variable aléatoire X a valeurs dans 7Z telle que X et X + ¢ soient de
méme loi, oul € est une variable aléatoire indépendante de X qui vaut +1 ou —1 avec
une probabilité de %?

2525 | Mines-Ponts PC 2015

On consideére une urne contenant une proportion p dans ]0;1[ de boules noires et
q = 1 — p de boules blanches. On effectue des tirages successifs avec remise. Soit X la
longueur de la premiere suite de méme couleur, Y la longueur de la deuxiéme.

1. Déterminer la loi conjointe de (X,Y").

2. En déduire la loi, 'espérance et la variance de X.
3. Idem pour Y.

4. Vérifier rapidement que E(X) > 2.

CCINP PSI 2016

Un joueur dans un casino joue sur une machine qui renvoie un entier N dans N* selon
la probabilité P(N = n) = 5. Si n est pair le joueur gagne n jetons et si n est impair,
le joueur perd n jetons.

1. Calculer la probabilité de gagner a ce jeu.

2. Soit G le gain algébrique du joueur. Donner G et calculer son espérance.

2527 | Centrale-Supélec MP 2015

Soit Y une variable aléatoire discrete a valeurs dans N, et P une probabilité. Montrer

que Y admet une espérance finie si et seulement si Z P(Y > n) converge.
n=1
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2528 | ENSEA/ENSIIE MP 2015

1. Soit N € N* et x € R avec |z| < 1.
1
(1— z)N+

2. Soit X une variable aléatoire réelle de loi de probabilité :

Déterminer le développement en série entiere de

k—1

Vk e N\[0; N —1], P(X =k) = <N_1

>pN(1 —p).

Déterminer E(X).

2529 | TPE/EIVP MP 2018

On dispose de n pieces numérotées. La k®¢ piece a une probabilité Tlﬂ de donner
« pile ».

1. On note u; la probabilité d’avoir un nombre pair de « pile » apres avoir lancé
les @ premieres pieces. Exprimer u;,; en fonction de 7 et w;.

2. Quelle est la probabilité d’avoir un nombre pair de « pile » en langant toutes les
pieces ?

CCINP PC 2023

On pose :
Ve €]0;1], p(z) = —xIn(z).

1. Donner le tableau de variations de ¢ sur |0;1].
Montrer que ¢ est prolongeable par continuité en 0.

Soit X une variable aléatoire a valeurs dans N*. On pose, pour tout n € N*,
pn=P(X =n).
On appelle entropie de X, lorsqu’elle existe, la quantité :

H(X) = f o(pa).

2. On suppose que X suit la loi géométrique de parametre p. Montrer que X admet
une entropie et la calculer.

On revient au cas général d’une variable aléatoire X a valeurs dans N* et on
suppose que celle-ci est d’espérance finie.

3. (a) Montrer que lim np, = 0.
n—-+00

(b) Montrer que /p, In*(p,) < 4.
4. Déduire de la question 3 que :

4
0 g —DPn 1n(pn> < npn + T3V NPy
n2

5. En déduire que X admet une entropie.
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2531 | Mines-Ponts MP 2021
Soit r > 0.

1. Montrer que la relation
1
P(X =k)= / ref 11 — )" da
0

définit bien une probabilité d’une variable aléatoire X dans N*.

2. Préciser pour quelle valeur de r la variable aléatoire X admet une espérance et
la calculer.

CCINP PC 2022

Soit X une variable aléatoire telle que X (£2) = N et, pour tout n € N,
P(X =n+2)=4P(X =n+ 1) — P(X = n).

Déterminer la loi de X.

2533 | Mines-Ponts PSI 2025

Déterminer le nombre de parties A de [1;n] ayant p éléments et telles que :

Vie[l;n—1],i€ Aoui+1¢€ A.

X MP 2017

Un polygone a 2n sommets est inscrit dans un cercle. On trace n cordes de telle sorte
qu’elles ne se croisent pas (méme en un point). On note p, le nombre d’arrangements
de ces cordes.

n—1
1. Montrer que p,, = sz'pn—1—z‘-
k=0

2. Calculer p,.

3. Donner un développement asymptotique de p,,.

2535 | Mines-Ponts MP 2018

Soit une urne remplie de a boules blanches et de b boules d’une autre couleur. On tire
successivement et sans remise toutes les boules de cette urne. On note X la variable
aléatoire représentant le numéro du tirage ou la derniere boule blanche a été tirée.

1 1
1. Soit p < q. Vérifier que Z <k> = (q + )

=y \P p+1

n—1
2. Soit n € X(Q2). Montrer que P(X =n) = (a_1>.
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2536 | Mines-Télécom MP 2018

On dispose de deux boites A et B. Initialement, A contient deux jetons marqués « 0 »,
et B deux jetons marqués « 1 ». On tire un jeton au hasard de A, que 'on échange
avec un jeton tiré au hasard de B. On répete I'expérience indéfiniment. On note X, la
somme des valeurs des jetons situés dans A au bout de n tirages.

Pour tout n, on pose p, = P(X,, =0), ¢, =P(X,, = 1), r, = P(X,, = 2) et

Un =14

1. Pour tout n, exprimer U, en fonction de U,.
2. Pour tout n, exprimer U, en fonction de n.

3. La suite (Up,)nen converge-t-elle 7

2537 | Mines-Ponts MP 2018

Soit n € N* et i € [1;n]. Soit (m;)1<i<, une famille d’éléments de N* et (p;)i<i<n
une famille d’éléments de ]0;1[. On considere n variables aléatoires X; mutuellement

indépendantes suivant chacune une loi binomiale : X; ~ B(m;, p;).
n

Montrer que ZXZ- suit une loi binomiale si, et seulement si, les p; sont tous égaux.
i=1

2538 | Mines-Télécom MP 2018

Soit n € N* et (Xj;)1<i j<n une famille de variables aléatoires indépendantes telle que :

1
V(irg) € [Lin]?, P(Xy; =1) = P(X;; = —1) = .
On considere la matrice M = (m;;)1<i j<n telle que m;; = X;; pour tout (i; 7).

1. Calculer l'espérance de Tr(M).
2. Calculer I'espérance de det(M).
3. Calculer la probabilité que rang(M) = 1.

2539 | Centrale-Supélec PC 2022

Soit p €]0;1[. On considere des cellules susceptibles de se diviser en deux (avec une
probabilité p) ou de mourir (avec une probabilité 1 — p).

On suppose qu’il y a exactement une cellule a la génération 0.

Pour tout n € N, on note X,, la variable aléatoire égale au nombre de cellules a la
génération n. En particulier, la variable aléatoire X, vaut 1.

Pour tout n € N, on note g, la fonction génératrice de X,,.
1. Déterminer les lois de X; et Xs.
2. Déterminer l'univers image X, (€2) pour tout n € N.

3. Pour tout n € N et tout ¢t € [0; 1], montrer I'égalité ¢,.1(t) = gn(g1(t)).
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2540 | CCINP MP MPI 2026

Soit n un entier naturel supérieur ou égal a 3. On dispose de n boules numérotées de 1
a n et d’une boite de trois compartiments identiques également numérotés de 1 a 3. On
lance simultanément les n boules. Elles viennent toutes se ranger aléatoirement dans
les 3 compartiments. Chaque compartiment peut éventuellement contenir n boules.
On note X la variable aléatoire qui a chaque expérience aléatoire fait correspondre le
nombre de compartiments restés vides.

1. Préciser les valeurs prises par X.
2. (a) Déterminer la probabilité P(X = 2).
(b)
(a) Calculer E(X).
(b)

b) Déterminer lim E(X). Interpréter ce résultat.
n—-+00

Finir de déterminer la loi de probabilité de X.

2541 | Mines-Télécom PC 2024

Soit X,Y des variables aléatoires indépendantes suivant une loi de Poisson de para-
metres respectifs A\, pet 7 =X +Y.

1. Lequel de ces deux événements est le plus probable :
e X est pair;
o X est impair?

2. Déterminer max P(X = k).

3. Montrer de deux facons différentes que la variable aléatoire Z suit une loi de
Poisson de parametre A 4+ p. En donner I'espérance et la variance.

2542 | Mines-Ponts MP 2024

1. Soit (Y, )nen+ une suite de variables aléatoires mutuellement indépendantes sui-
n

vant chacune une loi uniforme sur {—1;1}. On pose S, = >V}
k=1
Calculer de deux manieres I'espérance de S3.

2. Soit (X,,)nen+ une suite de variables aléatoires mutuellement indépendantes sui-
vant chacune une loi B(3).

. 1 n . A
Montrer que la sulte1 (5 25—1 Xk)nen- converge simplement presque stirement
vers la loi constante 3.

X MP 2021

Soit n € N. On note T,, le triangle de sommets (0;0), (0;n) et (n;0).

1. On note R, 'ensemble des rectangles inclus dans T,,, dont les sommets sont a
coordonnées entieres et dont les cotés sont horizontaux et verticaux. Calculer

| Ro|-

2. Soit U,, I'’ensemble des rectangles dont les sommets sont a coordonnées entieres
et qui sont inclus dans un rectangle de R,,. Les cotés des rectangles de U, ne
sont pas nécessairement horizontaux ou verticaux. Calculer |U,,|. En donner un
équivalent quand n — +o0.
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2544 | Mines-Ponts PC 2025
Soit n € N* et A, B, C' des points d’affixes a, b, ¢ dans U,,.
1. Combien y a-t-il de triangles non aplatis de sommets A, B,C'?

2. Combien d’entre eux sont rectangles ?

2545 | Mines-Ponts MP 2019
Soit A un sous-ensemble de R, de cardinal n. On définit B = A + A par :

B={a+d | (a;d) € A%}

n(n+1)

1. Montrer que 2n — 1 < Card(B) < et que ces inégalités sont optimales.

2. Peut-on généraliser pour B=kA=A+---+ A?
k fois A

2546 | Mines-Ponts MP 2022

Soit p €1]0; 1[, m € N* et (€2, A, P) un espace probabilisé. Soit X une variable aléatoire
suivant la loi G(p). On note Y la variable aléatoire définie par :

Vw e Q, Y(w)=min(m; (X —1)(w)).

Calculer I'espérance et la variance de Y.

CCINP MP 2015

On dispose de 9 jetons numérotés de 1 a 9. On considére une matrice carrée de taille 3x 3
composée de ces 9 jetons. On cherche a déterminer la probabilité p que le déterminant
de la matrice soit impair.

1. Soit A = (a;;) € M,(Z) avec n > 2. Montrer que la classe du déterminant de A
modulo 2 est égale a la classe du déterminant de la matrice dont les coefficients
sont les restes r;; de la division euclidienne de a;; par 2.

2. On note M l’ensemble des matrices carrées d’ordre 3 composées des 9 jetons.
Déterminer Card(M).

3. On définit Q@ = {M € M | det(M) est impair} et A 'ensemble des matrices
carrées d’ordre 3 dont cing coefficients sont égaux a 1, quatre coefficients sont
nuls et de déterminant impair. Donner une relation entre Card(f2) et Card(A).

4. Détermination de Card(A).
(a) On considere une matrice de A dont une colonne possede trois coefficients
égaux a 1. Déterminer le nombre K; de ces matrices.

(b) On considére une matrice de A dont 2 colonnes possedent exactement un
coefficient nul. Déterminer le nombre K5 de ces matrices.

(c) Calculer Card(A).
(d) En déduire Card(€2).
5. Déterminer la probabilité p.
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CCINP MP 2019

Soit E un ensemble a n éléments. On note a, le nombre de bijections sans point fixe
de E dans F.

" (n
1. Démontrer que n! = Z ( >ank.

i=o \k
+oo a
2. On pose f(z) =) —a"
n=0 n!
Démontrer que la série entiere de définition de f admet un rayon de convergence

non nul.
3. Calculer €” f(x).
4. Soit n € N. Déterminer a,,.

5. Un professeur distribue aléatoirement des copies a ses éleves. On note D,, I'éve-
nement « Aucun des n éléeves n’a sa propre copie. ».

Calculer lim P(D,).

n—-4o00

2549 | Mines-Ponts MP 2019
n!

1. Déterminer une condition sur («; ) pour qu’il existe une variable aléatoire X a
valeurs dans N telle que P(X = n) = p, pour tout n € N. Que vaut alors a ?

Soit (a; ;) € R®. Pour n € N, on pose p, = a

2. La variable X peut-elle suivre une loi de Poisson ?

‘ pour k € N* quelconque.
n!

3. Généraliser a p, = a

ENS Lyon

Soit n € N. Soit X et Y deux variables aléatoires a valeurs dans [0;n]. Montrer que
les deux affirmations suivantes sont équivalentes :

i) Les variables X et Y sont indépendantes.
ii) Pour tous P,Q € R,,[X] on a E(P(X)Q(Y)) = E(P(X))E(P(Y)).

2551 | Mines-Ponts MP

Soit p1,pe et p des réels de ]0; 1], et X; et Xy deux variables aléatoires réelles suivant
une loi géométrique de parametres respectifs p; et ps. Soit Y une variable aléatoire a
valeurs dans {—1;1} telle que P(Y = 1) = p.

[ X X
OnposeM-(YX2 X,/

1. Quelle est la probabilité que la matrice M soit inversible ?
2. Quelle est la probabilité que les valeurs propres de M soit réelles ?

3. Soit 6y € ]0 ; g[ Quelle est la probabilité que les valeurs propres de M soient
dans I'ensemble S = {pe'? | p € RY, |0] < 6p}?
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TPE/EIVP

Soit X,Y des variables aléatoires sur un espace probabilisé (2, A,P) de méme loi

uniforme sur £ = {0,...,n}. Soit encore Z = |X — Y| et T = inf(X;Y).
+2

1. Montrer que E(Z) = M

3(n+1)

En déduire E(T).

2. Soit U une variable aléatoire a valeurs entiéres dans [0; k], ou k € N*.

k
(a) Déterminer une relation entre » P(U > j) et E(U).
=1
k
(b) Trouver de méme une relation entre »  j*P(U > j) et E(U), E(U?) et E(U?).
j=1
Retrouver E(T) a l'aide de la question 2(a).

2553 | Centrale-Supélec PSI 2022

Soit & une variable aléatoire discrete suivant la loi de Rademacher, ne prenant que les
valeurs —1 et 1, avec la probabilité %

1. Montrer que :
2
Vu e R, E(exp(uf)) < exp <u2> :

e On note ||-|| la norme euclidienne induite par le produit scalaire sur M,,«1(R).

o Soit M = (&;)1<ij<n une matrice aléatoire dont les coefficients sont des
variables aléatoires indépendantes suivant la loi de Rademacher.

+ On considére une matrice colonne X € M, ,1(R) telle que || X|| = 1.
e Soit ( = MX et ((;)i<i<n les coordonnées de ¢ dans la base canonique de
Mnxl(R).
2. Montrer que :
)\2

Vie [1in], VA 20, P(|G|>A) <2exp (—2> .

3. En déduire I'existence d’'une constante C' > 0, indépendante de n, telle que :

Vie[l;n], E (exp (if)) <C.

2554 | Mines-Télécom PC 2019

Soit X un variable aléatoire de loi P(\).

1
lculer E [ ——— .
Calculer (X—l—l)
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2555 | Mines-Ponts

Soit (€2, T, P) un espace probabilisé.

1. Montrer que :

1-— 1
Vo e[-1;1],VteR, "< Qxe’t—l— ;xet.

2. Soit X une variable aléatoire discrete ayant une espérance, centrée avec | X| < 1.
2

2
Montrer que e/* admet une espérance et que E(etX )<ez2.

3. Soit Xi,..., X, des variables aléatoires réelles discretes indépendantes et
ai,...,a, dans R*. On suppose de plus, que pour tout i € [1;n], | X;| < a;. On

n
pose S, = ZXZ». Montrer que :
i=1

t2 n
Vt € R, E(e™") <exp (2 Zaf) .

2556 | Mines-Télécom MP 2017
Considérons un dé équilibré a six faces.
1. Dans cette premiere question, on effectue 10 lancers de dé indépendants. Soit T’

la variable aléatoire qui donne le premier lancer ot I’'on obtient 6. (On supposera
que si 'on n’obtient aucun 6, alors 7" = 0.)

Déterminer la loi de 7.

Dans les questions suivantes, on ne limite plus le nombre de lancers de dés.
Notons T;, la variable aléatoire renvoyant le numéro de lancer ou I'on obtient le
neme 6,

2

a) Déterminer la loi de T7.

b

a
b

Calculer la fonction génératrice de 77, son rayon de convergence et sa somme.
3. Déterminer la loi de Ty — T;.

N e N N

)
)
)
) Calculer la fonction génératrice de T, — 77, son rayon de convergence et sa
somme.

(c) En déduire la loi de T5.

2557 | X-ENS Cachan PSI 2021

Soit A, B deux variables aléatoires suivant une loi uniforme sur {0;1;2}.

1 A-B 0
Soit M =0 A A-1
0 0 B

Quelle est la probabilité que M soit diagonalisable ?
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CCINP MP 2023

Une urne contient 2 boules blanches et 8 boules noires.

1. Un joueur tire successivement, avec remise, 5 boules dans cette urne. Pour
chaque boule blanche tirée, il gagne 2 points et pour chaque boule noire ti-
rée, il perd 3 points. On note X la variable aléatoire représentant le nombre de
boules blanches tirées. On note Y le nombre de points obtenus par le joueur sur
une partie.

(a) Déterminer la loi de X, son espérance et sa variance.
(b) Déterminer la loi de Y, son espérance et sa variance.

2. Dans cette question, on suppose que les cinq tirages successifs se font sans remise.

(a) Déterminer la loi de X.
(b) Déterminer la loi de Y.
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10 Nombres complexes

X ESPCI

Résoudre dans C3 le systéme :

2560 | Mines-Ponts MP 2023

1. Trouver les polynémes P € C[X] tels que P(C) C R.
2. Trouver les polynémes P € C[X] tels que P(R) C R.

ENS PC 2015

Soit a et b deux nombres complexes distincts. Soit P et () deux polyndémes complexes
non constants. On fait les hypotheses :

P ({a}) = Q7' ({a}) et PTI({b}) =Q7'({b}).

Montrer que P et () sont égaux.

2562 | Mines-Télécom MP 2022

Trouver les polynomes P € C[X] tels que P(U) C U, ou U est I'ensemble des nombres
complexes de module 1.

ENSEA /ENSIIE 2022
Soit n € N*. Calculer S, = > |a—1].

OéEUn

On rappelle que U,, = {em::ri 0<k<<n— 1}.

2564 | Mines-Télécom 2022
Soit n € N* et f : U, — U, définie par f(z) = 2°.
1. Pour quels n € N* la fonction f est-elle bijective ?

2. Pour quels n € N* la fonction f est-elle une involution ?

Centrale 2024

Soit n € N*.
n—1
1. Factoriser Q, = Y X" dans C[X].
k=0
n—1 L
2. En déduire que H sin <W> = ﬁ.
Pt} n 2
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2566 | Mines-Ponts PC 2022

27i

Soit n € N, n > 3 et impair. On pose w = e .

n—11 _ .k
1. Montrer l'existence de P, = et calculer P,.

n—1 I{Z
2. En déduire H tan <7T>

k=1 n

2567 | Mines-Ponts PC 2022

Soit n € N, n > 2. On note U} =TU,, \ {1} et

P, = H(:L‘—Oz) et S, = Z 1

acU% aclx =~ @

1. Simplifier P,.
2. Simplifier S,,.

comr

Soit @ un nombre complexe tel que |a| < 1.

1. Démontrer que, pour tout nombre complexe z tel que 1 —az # 0,

L |zma P _ (A= le)( —]2P)
1—azl |1 —az|?
zZ—a
2. Déterminer les nombres complexes z vérifiant —| < 1.
—az

CCINP MP 2024

1. Donner la définition d’un argument d’'un nombre complexe non nul. (On ne
demande ni 'interprétation géométrique, ni la démonstration de I'existence d'un
tel nombre.)

2. Soit n € N*. Donner, en justifiant, les solutions dans C de I’équation 2" = 1.

3. En déduire, pour n > 2, les solutions dans C de I’équation (z+1)" = (z —1i)" et
démontrer que ce sont des nombres réels.

ENSAM 2012

1. Déterminer ’ensemble des z € C tels que
z

2. Déterminer I’ensemble des z € C tels que

XENS

Trouver les polynémes P € C[X] tels que P(Q) = Q.
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comr

Soit z un nombre complexe, z # 1. Démontrer que :

1
T2 iR,
z

2| =1 <=

2573 | Mines 2015

On considere le plan complexe C. Donner une condition sur z € C pour que le triangle
ABC dont les sommets ont pour affixes respectives z, 22 et 2% ait pour orthocentre le
point O, d’affixe 0.

Centrale 2015

Soit P(X) € C[X] un polynéme non constant. On note Qp I'ensemble des nombres
complexes tels que le polynome P(X) + ¢ est scindé a racines simples sur C.

1. Montrer que 'ensemble C \ 2p est fini.

2. Soit P(X) € R[X] non constant. On note ©p Iensemble des nombres réels r
tels que le polynéme P(X) + r est scindé a racines simples sur R.

(a) Montrer que ©p est un intervalle non vide et ouvert dans R.
(b) Déterminer les polynémes P(X) € R[X] tels que Op soit non borné.

2575 | Mines-Ponts PSI 2015

Résoudre dans C :
142242224+ 422" 420 =0.

CCP PC 2015

27i

Soit w =e7 .
Soit S = w +w? +wt et T = w? + w® + wb.
Calculer S+ T et ST, puis en déduire S et T'.

2577 | Mines-Ponts PSI 2015

Soit a € R et n € N*. Résoudre dans C :

(1—12)"_ 1+ ai
1+iz)  1—dai

CCINP PC 2018

Soit # € R. On pose z = e,
1. Exprimer |1 + z| en fonction de 6.
2. Montrer que |1+ 2| > 1 ou |1+ 2% > 1.

2579 | Centrale-Supélec PSI 2014

Soit (a; b; c;d) € C*. Donner une condition nécessaire et suffisante pour que les affixes
21, %9, 23, 24 des quatre racines du polynéome P = X* + aX? +bX? + cX + d soient sur
les quatre sommets d’un carré du plan complexe.
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2580 | Mines-Ponts PSI 2017

Trouver les nombres complexes z tels que z, 22, 2°

soient alignés.

2581 | ENS Ulm
m
Soit (ag;...;am) € C™ et pour tout n € N, soit z, = Z ag.
k=1

Que dire des nombres complexes ay, ..., a,, si la suite (z,),en converge ?

2582 | ENSEA/ENSIIE PSI 2023

1
Soit f: 2 € C\ {21} s

z—2i
1. Trouver tous les z tels que f(z) € R.

2. Trouver tous les z tels que f(z) € iR.

2583 | ENSEA/ENSIIE MPI 2023

1. Factoriser dans C les polynomes X? + X + 1 et X? — X + 1.
2. Montrer que X? — X + 1 divise (X — 1) + X1,

CCINP PC

Pour tout entier n > 2, onnote U, = {z € C| 2" =1}. Onnote U = {z € C | |z| = 1}.

=1.

. U 3+ 4i\"
On cherche a savoir g’il existe n € N* tel que ( ) =
1. Montrer que U,, C U, puis que % e U.
2. Soit ay la partie réelle de (3 + 4i)* et by, sa partie imaginaire.

Exprimer a1 et by en fonction de ay et by, puis montrer que, pour tout k € N,
ap et by sont des entiers relatifs.

3. Montrer que, pour k > 1, le reste de la division euclidienne de a; par 5 est 3,
puis montrer que le reste de la division euclidienne de b, par 5 est 4. Conclure.

4. Démontrer I'inégalité :
eiﬁ . eia

<[B—al

2585 | Mines-Télécom MP 2018
1. Résoudre dans C I’équation :
224+ (14+1)2° + (4 —i)z + 12 — 6i = 0.

Indication : I’équation possede une solution réelle.

2. Que peut-on dire du triangle ABC', ou A, B, C' sont les points du plan dont les
affixes sont les racines trouvées a la question 17
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2586 | Centrale-Suplélec PSI 2025
1. Soit f: QCR = R.

(a) Rappeler la définition de « f est bornée sur 2 ».
(b) Rappeler la définition de « f admet un maximum sur € ».
2. Pour tout z € C, on pose s(z) = % et o(2) = |s(2)*
i
(a) L’application ¢ est-elle bornée ?
On pose D ={z€ C| |z] < 1}.
(b) Montrer que ¢ est bornée sur D.

(¢) Montrer que ¢ atteint son maximum sur D en exactement deux points.

2587 | Mines-Télécom MP 2022
Soit
f U, — 0,
z o 22
ou U, est le groupe des racines n®™* de I'unité.

1. Pour quels n € N* I'application f est-elle bijective ?
2. Pour quels n € N* a-t-on fo f=1d7

2588 | Mines-Télécom MP 2016

Trouver z € C tel que sin(z) = 3.

CCINP TSI 2024

Soit P=(X+1)"— X"~ 1.
1. Vérifier que e% est racine de P.

2. Trouver toutes les racines de P.

X MP 2019

Soit x,y, 2z € C tels que x + jy + j?2 = 0, avec j3 = 1 et j # 1.
Que peut-on dire du triangle xyz ?

ENS MPI 2025

1. Soit (a;b) € R x (R\ 7Z). Prouver qu’il existe z € C tel que z + ¢* = a + bi.

2. Démontrer que z — ze* est surjective sur C.

Mines-Ponts MP

n 1
Calculer H —r

i1 — e

CCINP PC 2014

Soit n € N*. On considere le polynéme P, = (X +1)" + (X — 1)". Déterminer le degré
et le coefficient dominant du polynéme P, , puis factoriser ce polynéome sur C.
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2594 | Centrale-Supélec PSI 2014

Soit n € N*.
1. Résoudre dans C I'équation (1 + z)** = (1 — z)?".

2. Calculer le produit des solutions non nulles.

2595 | TPE/EIVP MP 2017

Soit P € C[X]. Montrer que les racines de P’ sont comprises dans I’enveloppe convexe
contenant les racines de P.

X MP 2019

Soit P € C[X]. Montrer que :

sup|P(z)| = sup[P(z)].

|z[<1 |z[=1

CCINP PC 2019
1

Soit z € C*. On pose f(z) =z + —.
z
1. Soit n € N*. Montrer que :

FE) = f)fE") = ).

2. Soit n € N*. Montrer qu’il existe un polyndéme P, de degré n et de coefficient
dominant un tel que :

Vz e C*, f(2") = P.(f(2)).

On donnera une expression de P,,; en fonction de P, et P, .

3. Soit n € N*. Montrer que le seul polynéme () vérifiant :

Vz e C*, f(2") = Q(f(2))

est P,.

i(2k+1)m

4. Soit n € N* et k € [0;n —1]. On pose zp = e 2=
Calculer f(z}). Que peut-on en déduire ? Donner une expression des P,.

5. (a) Montrer que (P,(0)),en est une suite récurrente linéaire d’ordre 2.
(b) En déduire le coefficient constant de P,.

2k;+ )

7. Calculer Z coS < (26 +1 )

6. Calculer H CoS
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2598 | Mines-Ponts PC 2024

Soit n un entier supérieur ou égal a 2.

1. Montrer I'existence d'un polynéme réel P, tel que :
(1+iX)* 1 — (1 —iX)**! = 24X P, (X?).

2. Déterminer le degré de P, et son coefficient dominant.
3. Déterminer les racines de P,.

4. Simplifier H (4 + tan? <2 k_T_ 1))
n

k=1

X-ENS

Soit (z1;...52,) € (C\{0})™. Prouver qu’il existe une partie I contenue dans {1;...;n}
telle que :

D2

kel

1 n
>3zl
4@,;‘ |

X ESPCI

Calculer Z 1

2eU ©

> .

2601 | ENSEA/ENSIIE PSI 2024

Soit n > 1 un entier. On considere le polynome P tel que :
n—1
VzeC, P(z) =Y 2"
k=0

1. Déterminer les racines de P.

= n.

n—1
2. Montrer que H ‘1 s
k=1

n—1 L
3. En déduire que H sin <W> -

n—1"
k=1 n 2

2602 | TPE/EIVP MP 2017

Soit a, b, ¢ trois nombres complexes quelconques. Trouver la condition nécessaire et
suffisante pour que :

rT+y+=z =a

T+jy+jz =b

T+j%y+jz =c
admette une solution (z;y; 2) dans R3.

On rappelle que j = %
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2603 | Mines-Télécom MP 2019

1. Résoudre dans C I'équation 4z* + 322 +1 = 0.
2. Factoriser dans R[X] le polynome 4X* + 3X? + 1.
3. Trouver quatre diviseurs (positifs) de 40301.

X MP 2014

Soit z une racine n®¢ primitive de I'unité. Montrer pour d > 1 :

d d
Z(k—f—n) _ zk )

k2

Calculer le module de la somme des 2" pour k variant de 0 a n — 1.

CCINP PC 2021

1. Résoudre dans C I'équation 2" =e

P T
lg.

2. Résoudre I’équation :

(Z—I—l)”+ (z—l)”_l
z—1 Z2+1) 7
CCINP PC 2018
Soit n € N* et P = (X — 1) — 1 € C[X].

1. Déterminer les racines complexes du polynéme P.

2. En déduire une simplification du produit :

2n ( ]{?71' )
H COS .
2n +1

k=0
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11 Equations fonctionnelles

2607 | X-ENS 2023

Trouver les fonctions f : Z — Z telles que f(f(n)) = n + 2023 pour tout entier n.

Centrale 2020

Trouver les fonctions réelles définies et continues sur ]0;+oo[ vérifiant, pour tout
(z;y) € RY?,
flay) =zf(y) +yf(x).

Mines-Ponts PSI 2022
Déterminer les polynémes P € C[X] tels que XP(X + 1) = (X +4)P(X).

X PC 2015

1. Montrer que la fonction cosinus admet un unique point fixe sur R.

2. Montrer qu’il n’existe pas de fonction dérivable sur R telle que f o f = cos.

[2611] x mp

Soit f une application de R dans R telle que :

f) =1
V(ziy) € R, f(z+y) = f(z) + f(y)
Ve € R, f(z7) = (f(2))~

Que dire de f7

On commencera par montrer que f est bornée au voisinage de 0 en considérant la
fonction ¢ : x> o+ 7L

Centrale

Soit P € R[X] tel que P # 0 et P(X?) = P(X)P(X —1).
1. Montrer que si w € C est racine de P, alors w? 'est aussi.
2. Montrer que toutes les racines w € C de P vérifient |w| =1 ou w = 0.
3. En déduire que 0 n’est pas une racine de P.

4. Déterminer P en le factorisant.

2613] x

Déterminer les fonctions continues f : R — R telles que pour tout (x;y) € R? l'on ait

1 (Ve v) = 1@
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[2614] x mp

Trouver toutes les fonctions continues f telles pour tout r € Q et pour tout x € R,

flx+r) = fz) €Q

o Mp

On note F l'ensemble des fonctions de C*(R,R) ne s’annulant pas sur R et vérifiant
I’équation fonctionnelle suivante :

V(z;y) € R, fz +y) + flz —y) = 2f(2) f(y).
1. Soit f € F. Montrer que f vérifie une équation différentielle de la forme
v +ky=0. (1)

2. Déterminer les solutions de (1).

3. Déterminer F'.

2616 | Mines-Télécom PSI 2015

Trouver les fonctions f : R — R continues telles que, pour tout =z € R,

2617 x mp

Trouver toutes les fonctions f et g appartenant a C(R* ,R) telles que, pour tous z et
t appartenant a R%, f(zt) = f(x)f(t).

X-ENS

Trouver les fonctions f : R% — R* qui vérifient, pour tout = > 0,

f(f(@)) = 62 — f(z).

2619 | TPE/EIVP PC 2016

Trouver les fonctions f : R — R dérivables telles que, pour tout € R, f'(z)f(—z) = 1.

2620 | Mines-Ponts MP 2023
Trouver les fonctions f : R — R dérivables telles que, pour tout = € R, f'(z) = f(r—x).

2621 | Mines-Ponts MP
Trouver les fonctions f : R% — R dérivables telles que, pour tout € R, f'(x) = f (l)

x

Centrale

Trouver les fonctions f : R — R dérivables telles que fo f = f.
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2623 | Mines-Ponts PC 2023

Trouver les fonctions f : R — R continues telles que, pour tout =z € R,

2624 | Centrale MP 2023

Trouver les fonctions f : R — R continues telles que, pour tout =z € R,

f(f (@) =2f(z) — =

CCINP MP 2022

Trouver tous les polyndomes P € R[X] tels que (X? — X)P” = 6P.

2626 | Centrale PC 2024

Trouver tous les polyndémes P € R[X] tels que :
1. P(X?) = (X3 +1)P(X).
2. P(X?) = P(X + 1)P(X).

Mines-Ponts MP 2022
Trouver tous les polyndomes P € C[X] tels que P(X?) = P(X)P(X —1).

XENS

Trouver tous les polyndomes P € R[X] tels que P(X)P(X +1) = P(X?*+ X +1).

Mines-Ponts PSI 2019

On cherche les polynémes P € R[X] tels que, pour tout = € R, P(cos(z)) = cos(P(x)).
1. Trouver les solutions de degré 0.
2. Trouver les solutions de degré 1.

3. Trouver toutes les solutions.

X 2024

Déterminer les fonctions dérivables f : R — R telles que pour tout (x;y) € R? l'on ait

f@)f(y) = fle+yfle))

X 2024

Trouver les fonctions f € C%([0; 1], R) telles que

o1-2(s(3)+10-3))
X PC 2019

Trouver les fonctions f de classe C'! définies sur R vérifiant

Ifl+ 1+ f| <1
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X PC 2019

Déterminer les fonctions continues f : [0; 1] — R telles que, pour tout = € [0;1],

fay =3 L8,

n
n=1 2

CCP 2015

Trouver les fonctions f € C(R,R) telles que, pour tout z € R,

F(x) + /Om(x —Df()dt = 1.

CCP 2015

On recherche les fonctions f : R — R continues telles que :

:c+y) 1
5 =

SU@) + ). (B)

V(z;y) € R?, f( 5

1. Soit f une fonction vérifiant la relation (E), et les conditions f(0) = f(1) = 0.
(a) Montrer que f est impaire.
(b) Montrer que f est 2-périodique et en déduire que f est bornée.
(¢) Montrer que f(2z) = 2f(x).
(d) Qu’en déduire sur f?

2. Trouver toutes les fonctions f vérifiant la propriété (E).

2636 | Mines-Ponts 2015

Trouver toutes les fonctions f continues de | — 1; 1] dans R telles que :

Ve €)0; 1], f(z) = 1 +/OZ £2(0) dt.

&NS Ulm

Déterminer les fonctions f : R, — R dérivables telles que :

Va,y >0, flzy) > F(2)f(y) et F(1) = 1.

2638 | Centrale PSI 2017

On cherche a résoudre I’équation fonctionnelle (E) : 2zy/(x) — 2y(—z) = IENE
x

Montrer qu'une fonction f de R dans R se décompose de maniére unique en la somme

d’une fonction paire et d'une fonction impaire.

Montrer que le probleme (£) se rameéne a deux équations différentielles du premier

ordre, et résoudre le probleme (E).

X ESPCI

Déterminer les polynomes P € R[X] tels que P(X? + 1) = P(X)*+ 1 et P(0) = 0.
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Centrale PC

Déterminer les fonctions f : R — R dérivables telles que :

Vo € R, f'(z) + f(—x) = e".

2641 | Mines

Quelles sont les fonctions f: Ry — R, telles que :

Vr,y € Ry, 3a,b € Ry, f([z;y]) = [a;b] et |z —y[=]a—b]?

2642 | Mines-Ponts MP 2015

Déterminer les fonctions f : R — R de classe C* vérifiant :

F(f@Nf(x)=1, f0)=0 et f(0)>0.

2643 | Centrale-Supélec PC 2014

Trouver I’ensemble des fonctions f : R — R continues vérifiant :

2

Yz € R, f(2x) = exp (332) cos(z) f(2).

X FUF 2024

Déterminer les fonctions f : R} — R vérifiant :

1

Vo >0,Yy >0, [f(z) - f(y)] < pe

2645 | X MP 2020

Trouver les fonctions f : N* — N* vérifiant :

Vn >0, f(n+1) > f(f(n)).

2646 | Mines 2022

Trouver toutes les fonctions continues f : R — R vérifiant :

Vo € R, f(22) =1+ /Oz(:c — 1) f(28)dt.

ENS Ulm 2022

Trouver toutes les fonctions f : R — R continues et bornées telles que :

Vo € R, f(x):f(x_1)+f(x+1)+f(95—77)+f(x+7r)‘

4
2648 | Mines-Télécom MP 2023

Soit P € R[X] un polynéme vérifiant X P(X) = (X — 3)P(X + 1).
1. Montrer que si P vérifie la relation, alors 1,2 et 3 sont des racines de P.
2. Donner tous les polynémes @) € R[X] tels que Q(X) = Q(X + 1).

3. Conclure.
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2649 | Mines-Télécom MP 2023

Déterminer les fonctions f de classe C! sur R et 2r-périodiques, vérifiant :

Vo e R, f'(z) = f(x — ) + sin(x).

2650 | Mines-Télécom MP 2023

Trouver toutes les fonctions f : R — R continues telles que :

T4y

Va,y € R, f(z) :/ F(6) dt.

=y

2651 | Mines-Ponts MP 2023

1. Soit ¢ > 2. On considere une fonction f : R — R continue 1-périodique vérifiant :

Ve € R, f(;”) +f($;1> — cf(2).

Montrer que f = 0.
2. Montrer que :

+oo ) 7T2
\vd R\ Z —n) ‘= —.
T ER\Z, n;m(w n) sin?(mx)

2652 | Mines-Ponts PC 2023

On admet que si I est un intervalle de R non trivial, alors toute fonction définie sur 7,
a valeurs réelles, continue et injective est strictement monotone. Pour tout réel x, on
note {z} = x — |x]. On pose :

E={feCRR)|VzeR, f(f(z)) =z+1}.

Soit f € €&.
1. Montrer que f est strictement croissante.
2. Pour tout x € R, montrer I'égalité f(z + 1) = f(z) + 1.
3. Pour tout x € R, montrer I'égalité f(z) = f({z}) + |=].
4. On pose d = f(0) et on note g la restriction de f a U'intervalle [0;d].

(a) Montrer I'encadrement 0 < d < 1.
(b) Montrer que g réalise une bijection de [0;d] sur [d;1] et que celle-ci est
continue et strictement croissante.

5. Décrire les éléments de £.

2653 | Mines-Télécom PSI 2019

Trouver toutes les fonctions continues f de R dans R telles que :

Vo € R, f(x)—l—/:(ter)f(x—t)dt.
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2654 | TPE/EIVP MP 2015

Trouver les fonctions f :]0; 1[— R continues telles que :

Vr €]0;1], 1 fit)dt:f(x).

-z

X MP 2018

Trouver toutes les fonctions continues f de R dans R telles que :

Ve eR, 3f(2x+1) = f(x) + 5z.

X MP 2017

Trouver toutes les fonctions f : R — R dérivables telles que :

V(a;h) € B, f(z+ ) - f(x) = f'()h.

2657 | X ESPCI 2015

Trouver toutes les fonctions f € C?*(R,R) telles que :

V(z;y) € R, flz+y)f(z—y) = f2(z) — f*(y).

2658] x

Montrer qu’il n’existe pas trois fonctions continues de R dans R, f, g et h telles que :

V(z;y) € R, h(f(z) + g(y)) = zy.

ENS PC 2024

Trouver toutes les fonctions f € C*(R,R) telles que :

Vi e R, f(1)? = f(tV2).

X PSI 2023

Déterminer les fonctions f : R — R monotones telles que :

V(z;y) € R?, fzy) = f(z)f(y).

2661 | Mines-Ponts PC 2024
Soit f : R — R dérivable telle que :

Vo e R, f(z)* + (1+ f'(z)* < 1.

Que dire de f7?

X-ENS

Déterminer les fonctions f : R — R continues telles que :

Vr R, Va0, f(z) = / F(6) dt.

2a Jz—a
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2663 | Centrale-Supélec PC 2022

Soit a € R* et A €] — 1;1[. Soit encore f : R — R une fonction lipschitzienne.

1. Montrer qu’il existe une unique fonction F': R — R lipschitzienne telle que :
Ve € R, F(x) — AF(x +a) = f(x).

2. Exprimer la fonction F' dans le cas ou f est la fonction cosinus.

2664 | Mines-Ponts PC 2015

Trouver les fonctions continues f de R dans R telles que :

Vo € R, f(z) = 2/: F(t) cos(x — £) dt + 1.

2665 | X MP 2015

Montrer que la fonction nulle est la seule fonction bornée vérifiant :

£ = flt—1).

ENS MP 2014

Soit f une fonction de R dans R vérifiant :
« V(ziy) €R? flz+y) < fl@)+ f(y);
e« Vzx eR, f(z) <.

Que dire de f7

ENS 2013

Quels sont les polyndomes P € C[X] tels que P(X?) = P(X)*?

2668 | Mines-Télécom PSI 2019

On cherche a résoudre 1’équation
z t
(E) Ve eR,, u(z)=1 +/ u <2) dt,
0

avec u € C°(R;, R).

1. Soit (un)nen la suite de fonctions définie par uy = 1 et, pour tout n € N :

x t
0

Montrer par récurrence que :

xn—i—l

Va € R+, 0 é U,n+1(3§') — Un(ﬂf) < m

En déduire que la suite (u,)n,en converge vers une certaine fonction u.

2. Montrer que u est solution de (E).

3. Donner les fonctions développables en série entiere dont la restriction a R, est

solution de (F).
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ENS MP 2015

Soit f une fonction définie sur ]0;+oo[ telle que :
o Vo €|0;+o0], fl(x+1)=In(x)+ f(x);
« f(1)=0;
 f est convexe sur |0; 400
1. Montrer que, en cas d’existence, la fonction f est unique.
2. Expliciter f.

2670 | Mines-Ponts

Soit I’équation fonctionnelle :

(E): f(22) =2f(x) - 2f(2)”.

1. Quelles sont les solutions constantes sur R 7

2. Soit h : R — R. On pose, pour tout z € R, f(z) = xh(z). A quelle condition
sur h, la fonction f est-elle solution de (F)?

On définit par récurrence une suite (hy,),en de fonctions de R dans R en posant
ho:x— 1let:

2
Vn €N, byt : 3 — hy, (;) —‘;(hn <x>) .

. x>
Soit x € [0;1] eth:y+—>y—7.
3. Montrer que T, est 1-lipschitzienne sur [0;1] et que T,([0;1]) C [0;1].
Montrer que la suite (hy,)nen converge uniformément sur [0;1].
4. Montrer que (F) admet une solution continue et non constante sur [0;1].

5. Montrer que (F) admet une solution continue et non constante sur R

2671 | Mines-Ponts

Trouver les fonctions f de R dans R deux fois dérivables telles que :

Ve e R, f"(z) + f(—x) = x cos(z).
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12 Divers

2672 | X/Centrale

On a 2n + 1 cailloux. Lorsqu’on isole n'importe lequel d’entre eux, on peut séparer
I’ensemble des 2n autres en deux groupes de n cailloux dont la somme des masses est
égale. Montrer que tous les cailloux ont la méme masse.

2673] x

Calculer :

inf {sup \sin(noz)|} :

a€lm] | nez

2674 | Mines

1. Montrer que a = cos (
cients entiers.

T

9> est une racine d’'un polynome de degré trois a coeffi-

2. Justifier que a est irrationnel.

XENS

1. Soit (an)nen € CN. Pour tout n € N, on pose :

" (n
b, = E ag.
k:0<k) ’

Montrer la formule d’inversion de Pascal : pour tout n € N,
an =3 (" )ou(=1)"".
o \F

2. Pour tout n € N*| on note d,, le nombre de dérangements de [1;n], c’est-a-dire
le nombre de permutations de [1;n] sans point fixe. Calculer d,,.

ENS ULSR MP 2023

Montrer qu’il n’existe pas de polynéme P € R[X, Y] tel que :

{(:c,y) €R2|x>0,y>0} = {(x,y) c R* | P(z;y) >0}.

2677] x

n
Montrer que Y (—1)"*! > min {x;,;...;2;, } = max{zy;...;z,}.

k=1 1<ii < <ip<n

2678 | X-ENS MP

On considére P(X) = X3 + aX? + bX + c € R[X].

Montrer que les racines de P ont une partie réelle strictement négative si et seulement
sia>0,0>0,¢c>0et ab—c>0.
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2679 x mp

Soit P € R[X] admettant n racines réelles distinctes supérieures a 1.
On pose Q(z) = (1 + X?)P(X)P'(X) + X(P(X)*+ P'(X)?).
Montrer que () admet au moins 2n — 1 racines réelles distinctes.

X PC 2015

Soit f : [0; 1] — R une fonction continue et p, ¢ deux nombres réels strictement positifs.
Montrer qu’il existe g € [0; 1] tel que pf(0) + ¢f(1) = (p+ q) f (o).

[2681] x

Montrer que cos(1) est irrationnel.

X-ENS

Soit I C R% un intervalle et f : I — R. Montrer que les deux affirmations suivantes
sont équivalentes :

i) o — xf(x) est convexe;

i) z— f (i) est convexe.

2683 | Mines-Ponts

Déterminer les couples d’entiers naturels (z;y) tels que ¥ = y*. Peut-on trouver des
solutions non entieres ?

X
Soit P € R[X] tel que P(R) C R,.
Montrer qu'’il existe A, B € R[X] tels que P = A% + B2

X PC 2019

On considere une fonction f définie sur R de la forme
f(x) =2"+ax +0b

avec n > 2 entier et a, b réels.
1. Montrer que f n’a pas plus de 3 racines réelles différentes.
2. Donner un exemple avec 3 racines réelles différentes.

3. Montrer que si de plus n est pair, f n’a pas plus de 2 racines réelles différentes.

2686] x

Soit f la fonction définie pour tout A €]0; 1] par :
f(A) = sup (e_x —(1- /\:vﬁ) :

1’6[0;%]

Déterminer un développement asymptotique a l'ordre 2 de f en 0.
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Mines-Ponts

Soit (a;b;n) € N3 tel que a+ b > n.

a+b " (a b
Mont = )
ontrer que ( i ) ,;(J <n—k’>

X-ENS MP

Montrer que la fonction sinus n’est pas la restriction a Ja ; b[ d’une fraction rationnelle.

[2689] x

Soit I un intervalle réel et f : I — R7%. On dit que f est logarithmiquement convere si
Inof est convexe.

1. Montrer que si f est logarithmiquement convexe, alors f est convexe. La réci-
proque est-elle vraie ?

2. Montrer que f est logarithmiquement convexe si et seulement si, pour tout
a € R, la fonction f, : x — f(x)a” est convexe.

2690 | Mines-Ponts PC 2022

Montrer que la seule involution continue f : R, — R est Idg, .

X-ENS

Une partie A de R est dite négligeable (ou de mesure nulle) si pour tout € > 0, il existe
une suite (I,,)neny d’intervalles ouverts tels que :

Ac UL et D ul,)<e

neN neN

ou u(I,) désigne la longueur de 'intervalle I,,.
1. Montrer qu'une réunion dénombrable de parties négligeables est négligeable.

2. Soit f: R — R de classe C*. On note Z I'ensemble des zéros de f’. Montrer que
f(Z) est négligeable.

2692 | Mines-Ponts PSI 2019
—+o0

On considere, pour k € N*, [, = inf (2% — ax — b)%e " du.
(a;b)eR2 Jo

Montrer que [, existe, est atteint, et calculer sa valeur.

X-ENS PC 2023

Soit xy < .-+ < x, appartenant a l'intervalle [0;1]. Montrer qu’il existe des nombres
réels ay, . .., ay, tels que pour tout polynéome P € R, [X] I'on ait

/0 P dt = i P ().

044




—

Soit n € N*.
1. Montrer qu'il existe un unique polynéme 7,, € R[X] tel que :

Vo € R, T, (cos(z)) = cos(nz).

Calculer T}, 11 +1T,,_1. (Les polynémes T,, sont appelés polyndémes de Tchebychev.)

2. Montrer que T,, € Z[X], préciser son degré et son coefficient dominant. Déter-
miner ses racines et les extrema de la fonction z +— T, ().

3. Montrer que, pour tout polynéme P € R[X], unitaire et de degré n, on a

1

n—1

sup [P(@)] >
z€[—1;1]

)

1

il

avec égalité si et seulement si P =

2695 | Mines

Montrer qu’il existe (ag;...;a,-1) € R™ tel que :

n—1
P(z+n) =Y a,P(x + k) pour tout P € R[X] de degré inférieur & n.
k=0

cop

Soit a et b deux nombres réels tels que a < b.

1. Soit h une fonction continue et positive de [a;b] dans R. Démontrer que :
b
/ h(z)de =0 = h=0.

2. Soit E l'espace vectoriel des fonctions continues de [a; b] dans R. On pose, pour
tout f et tout g de F,

b
(og) = [ F(@)gle) da.
Démontrer que 'on définit un produit scalaire sur E.

1
3. Majorer / Vo e ® dz en utilisant I'inégalité de Cauchy-Schwarz.
0

Mines-Ponts
Soit (a; A) € R? avec A €] — 1;1].
Soit £ ={f € C'(R,R) | f'(z) = af(z) + f(\x)}.
1. Montrer que £ C C*(R, R).
2. Déterminer une fonction non nulle de E qui est développable en série entiere.

3. Déterminer E.

245




Centrale

Soit n et p deux entiers naturels non nuls. Déterminer a quelles conditions sur n et p,
les polynémes X™ — 1 et (X + 1)? — 1 admettent au moins une racine commune.

X PC 2019

Soit £ I’ensemble des fonctions f de classe C? de [—1;1] dans R vérifiant :
1
10 =f) et [ f@)de=2.

-1

On définit :
H : F — R

fo [ P

Montrer que le minimum de H sur E est atteint et le calculer.

X PC 2019

Soit m > 3 un entier. Discuter 'existence et 'unicité dans le plan d’un polygone a n
cotés dont les milieux sont fixés.

Mines PSI 2017
Calculer Z <Z> K3

k=0

2702 | Mines-Ponts 2012

Calculer arctan(2) + arctan(b) + arctan(8).

2703 | Mines-Ponts 2016

Résoudre dans R I’équation suivante :

7r
arctan(z — 1) + arctan(z) + arctan(z + 1) = 5>

2704 | Mines-Ponts

Quelles sont les fonctions f : [0;1] — R qui sont limite uniforme de polynémes
convexes 7

Centrale PSI
1
1. Montrer que l'intégrale / P(t)In(t) dt converge pour tout P € R[X].
0

2. Soit n € N. Montrer qu’il existe un unique @ € R,[X] tel que, pour tout
1 T
P e R,[X], / P(t)In(t) dt = / P(H)Q(t) sin(t) dt.
0 0
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X ESPCI

Soit n € N. Montrer qu’il existe un unique P, € R[X] tel que :
Vt € R, P,(sin?(t)) = cos(2nt)

et le déterminer.

2707 | X ESPCI

1. Soit P € R[X] scindé a racines simples.

(a) Calculer };(())(()) pour tout x appartenant a R privé des racines de P. En
déduire que, pour tout z € R, P(X)P"(X) < P'(X)%

(b) Montrer que, si deg(P) > 2, alors P’ est aussi scindé a racines simples. En
déduire que, si P = Y7 _o ap X", alors apagso < ai,, pour tout k € [0;n—2].

2. Soit P € R[X] scindé. Le polynéme P’ 'est-il aussi?

Mines-Ponts PSI

Soit P(X) = X0, axX* € R[X] un polynoéme de degré n > 2 ayant n racines réelles
distinctes deux a deux. Montrer que P n’a pas deux coefficients consécutifs nuls, au-
trement dit, pour tout k € [0;n — 1], |ax| + |ax+1| # 0.

X MP 2019

Pour toute fonction f : N* — R, on considere sa fonction moyenne :
Mf : N* — R
w230 AR
" =1
Montrer que pour tout n > 1, on a

lim (M™f)(n) = f(1).

m—-+00

2710 | Mines-Ponts MP 2019

Soit a; < --- < a, des entiers, et

Montrer que P est irréductible sur Z[X].

2711 | Mines-Télécom MP 2024
Factoriser X® + X* + 1 dans R[X].

2712 | Mines-Télécom MP 2022

Exprimer sin(3z) comme polynéme de sin(z). En déduire que sin (

s

18) est irrationnel.
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2713 | Mines-Ponts 2021

On pose ¢ : x +— cos(aarcsin(x)) avec a € R*.
Déterminer pour quelles valeurs de « la fonction g est polynomiale.

2714 | CCINP PC 2014
Soit
P:z—y+2z=3 et S:a®+y’+ 22 =4

Déterminer lintersection de S et P.

2715 | X MP 2015

Un nombre z € R est un nombre algébrique sl existe P € Q[X] tel que P(x) = 0.
Montrer que I'ensemble des nombres algébriques est dénombrable.

X MP 2019

Existe-t-il des fractions rationnelles non constantes X, Y € C(t) telles que X?+Y? =17

2717 | Mines-Ponts MPI 2024

1. Soit (uy)nen une suite réelle. On dit que (u,)nen vérifie la propriété P si
Ve >0, 3N € N, Vp, g > N, |u, —uy| <e.

(a) Soit (uy)nen une suite réelle convergente.
Montrer que (u,)nen vérifie la propriété P.
(b) Etudier la réciproque.
2. Soit (E, ||-||) un espace vectoriel réel normé de dimension finie.
Soit a €]0;1[ et f: E — E telle que :

V(usv) € B || f () = f()ll < allu—v]|.

Démontrer qu’il existe un unique x € E tel que f(x) = x.
3. Soit f: R? — R? telle que :

Y(rsy) € B2, [(r:y) = ¢ cos(x) — sin(y); sina) — cos(y).

Démontrer que f admet un unique point fixe.

2718 | ENSEA/ENSIIE MP 2021

Montrer que I'équation
arctan(z) +x =1

admet une unique solution sur [0;1].
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CCINP PC 2019

Soit E un ensemble non vide et f une application de E dans lui-méme.

1. Montrer que si f est surjective, alors f o f est surjective. La réciproque est-elle
vraie ?

2. On suppose que fo fo f = f. Montrer que f est injective si et seulement si f
est surjective.

2720 | ENSEA/ENSIIE MPI 2023

Factoriser dans R[X] le polynome X° + 1.

2721 | Mines-Ponts MP 2018

1. Comment définir 'angle formé par deux plans dans R??

2. Trouver I'angle formé par les plans P; et P, d’équations :

P :2x+3y—2=0 et Py:x—2y+32=0.

2722 | Mines-Ponts PC 2024

Soit I un intervalle de R non trivial. Montrer que toute fonction de classe C? sur I est
différence de deux fonctions convexes.

CCINP PSI 2012

Résoudre dans R I’équation suivante :

Ve+3—ava—T+o+8—6/z—1=1.

2724 | Mines-Télécom PSI 2021

Résoudre le systéme suivant ot (m;a;b) € R? :

mr+y+mz+t=a
r+my+z+mt=>0

CCINP PSI 2014

Soit la conique d’équation 22 + 6zy + y* + 42 = 0.
1. Donner la nature de cette conique. La tracer.

2. Donner I'équation des tangentes aux points d’intersection avec les axes.

2726 | TPE/EIVP MP 2017

Soit un entier n supérieur ou égal a 2 et P € R, [X] possédant n racines distinctes.
Comparer la moyenne arithmétique des racines de P et celle des racines de P’.
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2727 | X MP 2023

Soit (x;y; z) € R? vérifiant :

1
O<x<y<x2+z et z<1.

Montrer que :
y<2z ou rz=>1-—z

ENSEA /ENSIIE MP 2019
On définit une suite de polynémes telle que Hy =1 et H,11(X) = XH,(X) — H,(X)
pour tout n € N.

1. Calculer H; et H,.
2. Expliciter, en justifiant, le degré de H,,.
3. Montrer que pour tout entier n non nul, H, (X) = nH,_1(X).

4. En déduire que H, (X +a) = > <Z> H, i(a)X*.
k=0

Indication : on pourra utiliser la formule de Taylor pour les polynoémes.

2729 | TPE/EIVP MP 2017

Montrer qu’il existe un unique polynéme A € R, [X] tel que :

vpa&mme:AUwﬂwmt

2730 | Mines-Ponts MP 2025
Soit
f(z) =2° —In(x).
Déterminer les intervalles sur lesquels f admet une fonction réciproque, et donner un
développement asymptotique en 400 de la fonction réciproque.

X 2022

On considere le nombre rationnel :

1
. 0.00010102030508132134 . ..
"~ 9899

Que vous inspire 7?7
Formuler une conjecture a ’aide d’une série, puis la démontrer.

Que peut-on dire du développement décimal de r?

- W o

En déduire une conjecture faisant intervenir la suite de Fibonacci, puis la dé-
montrer.

2732 | X 2022

1
Existe-t-il P € Z[X] tel que P (\@) = /37
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ENS 2022

Montrer que, dans tout triangle, on peut inscrire une ellipse tangente au milieu de
chaque c6té du triangle.

2734 | Mines 2022

Soit P € R, [X] possédant n racines distinctes ay, ..., a,. Calculer, sous réserve d’exis-

tence : . . . )
t S
2 Pla) © 2 a; P'(a;)

=1

2735 | X 2022

Existe-t-il un cercle contenant exactement trois points a coordonnées rationnelles 7

2736 | Mines 2023

Soit P € R, [X]| unitaire.
1. Montrer qu'il existe A € R[X] tel que :

Pk) A

P= .
];]A’(k)X—k

2. En déduire qu'il existe k € {1;...;n} tel que :

Mines 2022
On pose P =Y a,X" € C[X].
=0
On note A = {i € {0;...;n} | a; # 0} et u(P) = Card(A). On suppose que (z — 1)*

divise P pour un certain k € N, et on veut montrer que pu(P) > k+ 1. On raisonne par
I’absurde en supposant que pu(P) < k.

1. On pose Py=1et Pgyy = X(X —1)---(X — s) pour s € N. Montrer que pour
tout s € {0;...;k—1}:
PE(1) =3 a;Py(i).
i€A
2. En déduire que a; = 0 pour tout ¢ € A. Conclure.

3. Discuter de 'optimalité de la minoration obtenue.

2738 | Mines-Télécom MP 2022

Pour tout n € N, soit le polynéme
Po=(X*-X+1" - X" - X" +1.

1. Déterminer n tel que X3 — X? + X — 1 divise P,.

2. Dans le cas ou P, n’est pas divisé, calculer le reste de la division euclidienne.
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2739 | TPE/EIVP MP 2018

Soit P € Q[X] un polynéme irréductible.
Montrer que P € C[X] n’admet que des racines simples.

2740| X MP 2018

1
Soit n € N*. Montrer que {nv2} > ——.
1 que { \/_} M2

X ESPCI 2024

Soit A, B € C[X] non constants, n’ayant pas de racine en commun et tels que AB est
un carré. Montrer que A et B sont des carrés.

2742 | Mines-Ponts MP 2022

Soit n € N et ay,...,a, des nombres réels. Montrer que les deux propriétés suivantes
sont équivalentes :
1) ao 7£ 0
ii) VQ € R[X], 3P € RIX] tel que Q@ = a;,P®
k=0

2743 | Centrale-Supélec TSI 2025

Soit f une fonction 1-périodique, définie par :
v € [-4:4]. £(2) = ol

1. Tracer le graphe de f sur deux périodes.
2. Calculer les coefficients de Fourier de f.
3. Etudier la convergence de la série de Fourier de f.

4. Déterminer les sommes suivantes :

+o00 1

() A=Y ———
kZ:% (2k +1)2
+o0 1

(b) B=) e
k=1
+o0 1

(c) C:kz_:ﬁ

2744 | Centrale-Supélec TSI 2024

Soit f une fonction 27-périodique, impaire, telle que :
Ve e [0;7], f(z) =z(m — ).

1. Tracer f sur deux périodes.

2. Calculer la série de Fourier de f.

3. Calculer R = Jrzo:o i
. n=0 <2n + 1)3 ‘
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Mines-Ponts MP 2015
In|z — 1]

Etudier 7 — —
Injz — 2|

2746 | Mines-Ponts MP 2025

On considere un sous-espace vectoriel U convexe de R™. On dit que f est conveze si :
Va,y e U, vt € [0:1], f(1—t)z+ty) < (1 —1)f(z) +1f(y).

1. On suppose que f est différentiable.
Montrer que f est convexe si et seulement si

Vr,y €U, fly) — f(z) = Df(x) - (y — x).

2. Soit «, B, a,b € R. On note F I'ensemble des fonctions f telles que f(a) = a et
1

f(b) = . Montrer que min/ /14 (f'(z))? pour f € F est atteint par la seule
0

fonction affine appartenant a F.

2747 | Centrale-Supélec TSI 2024

Soit une surface S d’équation z° = zy et la droite D d’équation z = 2 et y = 3(z + 1).
Déterminer les plans tangents a S qui contiennent D.

3

2748 | Mines-Ponts MP 2018

Soit f une fonction de classe O vérifiant f(0) = 0 et f'(x) = e=%f(®),
1. Etudier les variations de z — (f(z) + f(—z))2.
2. Qu’en déduire sur f?

3. Montrer que f admet une limite en 400 supérieure ou égale a 1.

Mines-Ponts MP 2018
Soit f € C([0;1],R) telle que f(0) = f(1) = 0 et telle que :

Vo€ |05 5], f@) £ o+ ).
1. Montrer que f s’annule en 7 points distincts de [0; 1].

2. Dessiner 'allure de cette fonction.

2750 | ENS MP 2016
Soit F' € R(X).
1. On suppose qu’il existe une infinité d’entiers tels que F' soit rationnelle en ces

points. Montrer qu’alors F' est le quotient de deux polynomes a coefficients
entiers.

2. On suppose désormais qu’il existe une infinité d’entiers tels que F' soit entiere
en ces points. Montrer que F' est un polyndéme a coefficients rationnels.
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CCINP PC 2023

1. Soit P=X?-2X+1etQ=P~+P + P
Vérifier que la fonction P est positive sur R et que () est strictement positive
sur R.

2. Soit P € Ry, [X] \ {0}. On suppose que la fonction P est positive sur R et on

pose
2n

Q=> rP®.

k=0

(a) Exprimer @'

(b) A laide de la fonction g : t — e 'Q(t), montrer que la fonction Q est
strictement positive sur R.

3. Pour tout couple (P; Q) d’éléments de R, [X], on pose :

2n

(P,Q) = >_(PQ)®(0).
k=0

(a) Montrer que 'on a ainsi défini un produit scalaire.

(b) Déterminer une base orthonormée de R;[X] pour ce produit scalaire.

(c) Calculer la distance de X™ a R;[X] pour ce produit scalaire. Ce nombre est

noté u,,.

4. Etudier la nature de la série de terme général (u,) n.

Pour cela, on donne le développement asymptotique :

In(n!) = nln(n) — n+ o(n).

CCINP MP 2018

1. Soit x € R\ 27Z. Montrer que :

3" cos(kz) = cos <<" u 1)95) o ()

k=1

2. Résoudre sur R I'équation ) cos(kz) = 0.
k=1

3. Pour quels entiers p I’équation Z cos(kx) = p a-t-elle des solutions sur R ?
k=1

2753 | Mines-Télécom PC 2018

On se place dans un repére orthonormé du plan. On considere n points du plan,
Aq,..., A,, donnés par leurs coordonnées dans ce repere orthonormé : pour tout
i € [1;n], As(as;b;). Soit M(z;y). On définit f telle que f(M) = X", MA?. Dé-
terminer les éventuels extrema de f.
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CCINP TSI 2021

) t2 t3
Etudier 1 b Stré T2 72/
udier la courbe parametreée par (1 —$271 = t2>

CCINP PSI 2016

Soit la surface d’équation xyz = 1.
1. Cette surface est-elle réguliere ?

2. Montrer que quelque soit le point de cette surface, les intersections du plan
tangent a la surface en ce point avec les plans Oxy, Oxz et Oyz forment un
tétraedre dont le volume est toujours le méme.

X MP 2017

Soit a, B et ~v les trois angles d’un triangle. Montrer que :

1 1 S 8
sin(a) - sin(8) ~ 3+ 2cos(y)’

Mines-Ponts MP 2017
Soit j € N*, z € [0;1] et m; = cos((j — 1)z).
Montrer que m; est un polynéme en cos(z).

2758 | Mines-Ponts MP 2019

Soit n € N* et (a;b) € R? tel que a < b. Soit (s )ren une subdivision de [a;b]. On note
A Pensemble des applications de [a;b] dans R qui, pour tout k € [1;n], sont affines
Sur [sg; Ski1)-
1. Montrer que A est un sous-espace vectoriel, de dimension finie, et déterminer sa
dimension.

2. Soit (f,)pen une suite de AN qui converge simplement. Montrer que (f,)pen
converge uniformément et que sa limite est dans A.

2759 | Mines-Ponts MP

Pour tout réel ¢, on consideére la droite d’équation (1 — ¢?)y + 2tz = 2t — 4. Montrer
qu’il existe un point équidistant de toutes ces droites.

2760 | Centrale PC 2013

, t
Etudier la courbe donnée par 1’équation polaire p(t) = 1COS<)(t).
— oS

2761 | Mines-Ponts MP 2015

Montrer qu’il existe une fraction rationnelle F' telle que pour tout x € R l'on ait
F(tanh(z)) = tanh(5x). Décomposer F' en éléments simples dans R(X).
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CCINP TSI 2023

On pose, pour tout = € }— ; g{ f(x) =2tan(x) — x.
1. Montrer que f admet une bijection réciproque impaire.
2. Montrer que f~! est O et admet un développement limité & tout ordre en 0.

3. Déterminer le développement limité de f=!, en 0, a I'ordre 4.

2763 | Centrale-Supélec MP 2019

Soit P, Q) € R[X] tels que P et @ ont les mémes racines. On suppose qu'il existe v € C*
tel que P + a et () + « ont les mémes racines. Montrer que P = Q).

CCINP MPI 2024
n

Soit n > 2 entier, aq, ..., «, des réels strictement positifs tels que Zai = 1. On pose
i=1
deux fonctions f et g telles que, pour tout (z1;...;x,) € R :

n n
[Tz si [Ja:i#0
= \i=1 i=1

0 sinon

flay; .5 wn) et g(wys.. . ian) =) @it

On pose également I' = {(z1;...;2,) € RY | g(@1;...;2,) = 1},
1. Montrer que f admet un maximum g sur I', en particulier sur I'N]0; +oo[™.
2. Déterminer pet A € T'NJ0;+o00[" tels que f(A) = p.
3. En déduire que :

n
V(z1;...;2n) € RY, Hmf‘ < Zaixi.

ENS MP 2023

1. Montrer I'existence d’une suite de polynémes de R[X], (T,),en, telle que :
Vn e N, V0 € R, T,,(2cos(0)) = 2 cos(nb).

Montrer que ces polynémes sont a coefficients entiers.

2. Soit r € Q. Trouver les valeurs rationnelles possibles de cos(rm).

Centrale 2015

On considere n + 1 nombres réels tels g < 21 < ... < z,,.
Montrer, apres avoir justifié 'existence des intégrales considérées, qu’il existe n + 1
nombres réels ag, aq,...,a, tels que :

/ \/17—16 Z apP(xy).

VP e R,]
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CCINP MPI 2024

1. Soit 7 : [-1;1] — C* définie par :

t2 1 2imt
Vi e [-1;1], v(t) = gt5)e

1 L ~(t
Calculer — ()
271 J-1 ~(t)

2. Soit g une fonction de classe C* de [a;b] dans C*. On note :

dt.

Ot i/: gg'((j)) ds et v :t—s g(t)e 0.

(a) Montrer que ¢ est de classe C'.
(b) Montrer que v est constante.
(c) Montrer qu'il existe p: [a;b] — R* et 6 : [a;b] — R tels que :

Vt € [a;b], g(t) = p(t)e?®.

3. Soit 7 : [a;b] — C* de classe C' tel que y(a) = v(b).

1 b "(t
Montrer que — =2 (*)
2 Ja (1)

Pouvait-on déduire la valeur de la question 17

dt € Z.

CCINP PC 2024

1. Montrer que 'application x — 2! est une bijection de [0; 1] dans [0;1].
2. On note M la matrice de M3(R) dont tous les coefficients sont égaux a 1.

(a) Montrer que M est diagonalisable et déterminer son spectre.
(b) En déduire le spectre de M + I.

3. Soit D = {(z1;x2;23) €]0;1]| 1 + x2 + 3 < 1}.
(a) Montrer que D est un ouvert de R3.

(b) Montrer que la fonction f définie sur D par :
(1; X9y x3) — o +xy +xf + (1 — 21 — 9 — 3)"
est de classe C? sur D et calculer ses dérivées partielles.

4. Montrer que le seul point critique de f est (i; %; i)

5. Calculer la matrice hessienne de f en a.

6. En déduire que f admet un minimum local strict en a.
On admettra dans la suite que f atteint un minimum global strict en a.

7. Soit n € N* variables aléatoires X1, ..., X,, indépendantes de méme loi a valeurs

dans {0;1;2;3}. Montrer que P(X; =--- = X,,) >

4n71'
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2769 | Centrale-Supélec TSI 2025

Faire une étude complete de la courbe paramétrée par :

x(t) = 3cos(t) + cos(3t) et y(t) = 3sin(t) + sin(3t).

X ESPCI 2023

s 2n
Montrer que Y _|cos(k)| = =
k=0

2771 | Mines-Télécom MP 2023
Montrer que le polynéme P(z) = x3 + 3x? 4 2 est irréductible sur Q.

2772 | Mines-Ponts MP 2025

Soit n un entier naturel non nul et = un réel tel que = ¢ [1;n].

On définit :
n 1 n n k
Up(T) = et v,(z) = —1”“( >
(z) DB (z) k;( ) k) i a)?
Calculer Un()
Un ()

2773 | X ESPCI 2019
On pose E = {(z;y) e R? | 2> +y* =1} et f: (z;y) — x + izy.
Représenter f(R?). La courbe présente-elle des points multiples ? Si oui, les déterminer.

Mines-Télécom MP 2023
0 01

Soit A= |1 0 1] € My(C).
010

1. Montrer que A est diagonalisable dans M3(C) et admet une unique valeur propre
réelle a. Montrer que o > 1.

2. Soit n € N. Montrer que Z A" est un entier.
AESP(A)

3. Montrer que »_ sin(ra™) converge.
n=0

ENS MP MPI 2024

Soit (z;y; z) € ]Ri. Démontrer que :

(x+y+2)°+92yz >4z +y+ 2)(zy + yz + 22).

X PC 2023
Soit P défini par P(X;Y) = aX? +bXY +cY?2 +dX +eY + f avec a,b,c,d, e, f € Z.
Trouver une condition nécessaire et suffisante pour que P|yz soit injective.
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Mines-Ponts MPI 2023
Soit P, @, R € R[X] tels que P2 — X@Q* = X R%. Montrer que P =Q = R = 0.
Ce résultat est-il vrai dans C[X]?

2778 | Mines-Télécom PSI 2023
Soit

f : x —> arccos(cos(z)) + ;arccos(cos(Zx)).

Tracer le graphe de f.

X ESPCI 2017

Pour tout (x1;...;2,) € R", prouver 'inégalité :

n 2 n
i=1

i=1

2780 | Mines-Ponts MP 2014
n
1
. 2 i _
Pour tout (n;p) € N, soit S, , = ’;1 o
Pour quels couples (n;p), le nombre S, , est-il un entier ?

2781 | Mines-Ponts MP 2017

Soit F l'espace vectoriel des fonctions continues de [0; 7] dans R. On pose :

(frg) =2 [ stateyar

™

1. Montrer qu’on a ainsi défini un produit scalaire.
2. On pose eg : t — 1 et pour k>0, e : t — ﬂcos(kt).

n

Interpréter S,(f) = > ([, ex)ex.

k=0

3. Montrer que Y (f, e;)* converge.
k>0

4. Montrer que pour tout € > 0, il existe une fonction polynomiale p telle que :

|f —pocos|e < e

5. Montrer que EIE 1f = Sn(f)]looc = 0 et déterminer la somme de Y (f,ex)”.
n 00 >0

2782 | X MP 2019

Soit deux ensembles A et B. On admet que si on dispose de deux injections respec-
tivement de A dans B et de B dans A, alors A et B sont en bijection et ont méme
cardinal.

1. Montrer que {0;...;9}" est en bijection avec NY.
2. Montrer que C([0;1],R) est en bijection avec R.
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2783 | Mines-Télécom MP 2019

n n
Déterminer tous les n-uplets (z1;...;x,) € R™ tels que le =n et fo =n.
i=1 i=1

2784 | Mines-Ponts MP 2018

Soit P = X"+ -+ a, 1X + a, € R[X] scindé a racines simples.

Soit @ = X"+ -+ b,1 X + b, € RIX].

Montrer que si les b; sont assez proches des a;, alors () est scindé a racines simples.

ENS MP 2019

Montrer qu'il existe un polynéme P € Z[X]| unitaire de degré 10 ayant 8 racines (au
moins) dans U, 2 (au moins) dans R?, vérifiant P(0) = 1 et irréductible dans Q[X].

2786 Centrale-Supélec PSI 2015

On sait que pour tout = €]0;1[, il existe une suite (a,),>1 telle que = puisse s’écrire
x = 0,a1asa3 ... en base 10. On définit f sur [0; 1] qui associe 0 & 0, 1 a 1 et, pour tout
x €]0; 1] associe 0, azajag . . .

1. Donner la représentation graphique de f.
2. La fonction f est-elle continue sur [0;1] 7

3. La fonction f est-elle continue par morceaux sur [0;1] 7

1
4. Donner une valeur approchée de / f(x)dx.
0

ENS MP 2015

Soit f de classe C*°. On dit que z est un « super zéro » de f si pour tout k£ € N,
f®)(2) = 0. Quelles sont les implications valables entre les trois propositions suivantes ?
Pour les implications fausses, fournir des contre-exemples.

« La fonction f s’annule une infinité de fois.
e La fonction f s’annule une infinité de fois sur un segment.

« La fonction f a un super zéro.

CCINP PC 2024

1. Déterminer sup {n% |n e N*}.

2. Comparer €™ et 7°.

[2789] x mp

1. Montrer que pour tout p € P et n € N :

+oo
vp(nl) =Y LZ{J (formule de Legendre)

k=1

2. Par combien de zéros U'entier 100! s’acheve-t-il 7
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2790 | Centrale-Supélec MP 2015

Soit N une application de Q dans R,. On dit que N est une wvaleur absolue si et
seulement si :

e VI €Q, Nx)=0 < =0
« V(z;y) € Q% N(zy) = N(z)N(y)
« V(r;y) € Q% N(z+y) < N(z) + N(y)

Une valeur absolue N est dite ultramétrique si
V(z;y) € Q% N(z +y) < max(N(z); N(y)).

La valeur absolue N est dite triviale si elle est constante sur Q*.

Si p est un nombre premier, on note v,(n) la valuation p-adique définie sur les entiers.
On pose par convention v,(0) = +oo.

1. Soit N une valeur absolue. Déterminer N (1) et N(—1).

2. Soit ¢ = ¢ € Q*, ot (a;b) € (Z*)?, et p un nombre premier.
Montrer que v,(a) — v,(b) ne dépend que de gq.
On le note v,(q). On définit pour ¢ € Q, |q|, = p~»(@.
Montrer que |-|, est une valeur absolue ultramétrique.

3. Soit N une valeur absolue ultramétrique non triviale.
Montrer quil existe v € R’ et p premier tels que N = |-|5.

2791 | Mines-Ponts

Soit f : R, — R une fonction convexe.

1. Montrer que £ = lim 1)

r—+oo g

existe.

2. On suppose que ¢ € R. Montrer que lim f(z) — ¢z existe.

T—>+00

2792 | Mines-Ponts MP 2024

Soit n > 2 entier. Calculer :

5] 5]
B n\ ok _ n
Sn = <2k> (=3)% et T,=> <3k> :

k=0

2793 | Centrale-Supélec MP 2017

Soit f : C — C une fonction continue. On dit que « est wvaleur asymptotique de

f ¢l existe une fonction v : [0;+oo[— C continue telle que tLler |v(t)] = +o0 et
Jim f(4(1) = .
z
1. Déterminer I’ensemble des valeurs asymptotiques de f: z — T3]
z

2. Méme question pour f : z +—> €.

3. Méme question pour f : z — sin(z).
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2794 Mines-ponts

Soit n € N*. Montrer que :

Vo €]l; 400, x"—l}n(x%ﬂ—x%>.

2795 | Mines-Ponts MP 2016

Soit X, Y et Z des variables aléatoires indépendantes suivant toutes une loi géométrique
de parametre % On dit qu’une matrice A vérifie la propriété (P) si et seulement si ses
valeurs propres sont exactement ses coefficients diagonaux.
0 X-Y Y-—-Z
1. Soit A=|X-Y 0 0
Y -7 0 0
Calculer la probabilité que A vérifie la propriété (P).

2. Montrer qu’une matrice symétrique réelle vérifie la propriété (P) si, et seulement
si, elle est diagonale.

ENS MP 2015

Soit H ’ensemble des bijections de R dans R, continues, dont la bijection réciproque
est continue. Quelle est la nature de H 7 Quels sont ses sous-groupes finis 7

2797 | X MP 2018

Soit P € R, [X] tel que :
Ve € C, P(x) =0 = Re(x) < 0.

Montrer que tous les coefficients de P sont de méme signe.

X MP 2018

1. Soit 6 € }0 ; g[ et m un entier supérieur a 1. Montrer que
sin(4nf)
sin (@) cos(0)

est un polyndme en cos?(#) de degré inférieur ou égal a 2n — 1.
2n—1
T km n
2. Mont [ — | ==
ontrer que 1 Ccos (471) Sin—3

i 2k —1
3. Calculer de la méme fagon H coS <<)7T>
el 4dn

X MP 2018

Décrire qualitativement 1’ensemble {(z;y) € R? | 22 — 2y — 2y* = 0}.

CCINP PC 2024

Soit P=nX"— X"t X2 _ ... X _-letQ= (n_|_1)Xn_an+1_1‘
1. Montrer que P et () possedent les mémes racines.

2. Montrer que toutes les racines de P sont simples.
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ENS

arccos (l
On se propose de montrer que o =

)0

T
1. Calculer e'o™.

2. Montrer que o € Q si et seulement si il existe un entier naturel non nul n tel
que (1 + 2iy/2)" = 3".

3. Montrer que (1 + 2iv/2)" = a, + ib,\/2, oll a, et b, sont des entiers vérifiant
a, — b, Z0 mod 3. Conclure.

2802] x

Montrer que parmi treize réels distincts on peut toujours en choisir deux, disons = et
y, tels que :

r—Y
0< <2—-43.
1+ 2y V3

ENS MP 2017

On dit que P est un polygone entier si P est 'enveloppe convexe de points de Z2. On
dit que P est équivalent a (), et on note P ~ @), si P et () sont des polygones entiers
et 8'il existe une transformation affine A qui envoie P sur Q et telle que A(Z?) = Z2.
Quelle est le nombre de classes d’équivalence (éventuellement infini) 7 Méme question
si I'on fixe 'aire du polygone.

2804 | Mines-Télécom MP 2018

Déterminer toutes les fonctions convexes et bornées de R dans R.

ENS MP 2016

Soit F' et G deux polyndémes non constants a coefficients entiers tels que pour tous
entiers a et b, F(a) — F(b) divise G(a) — G(b). Montrer qu'il existe un polynéme H a
coefficients rationnels tel que G(X) = H(F(X)).

2806 | Mines-Ponts MP 2016
Soit F I'ensemble défini par :

E = {f e C'([0;+0o[,R), f bornée sur R, }.
On pose ¢ définie par, pour tout f dans E et pour tout  dans R, :

+oo tanh(tz)
= t)———=dt
SN@ = [ IO
1. Montrer que ¢ est un endomorphisme de F.

2. On pose, pour tout n dans N*, f, définie sur Ry par f,(t) = arctan(nt). Etudier
les convergences simple et uniforme de la suite (¢(fy))nen-
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2807 | Mines-Télécom MP 2017

Soit A et p deux nombres réels. On définit la suite (P,),en par :

B € RQ[X]
VneN, P11 = AP, + uP,

Soit n € N*. Pour tout polyndéme @ € Ry[X], existe-t-il Py tel que P, = Q7

2808 | Mines-Ponts MP 2018

Soit f € C?*([a;b],R). On suppose que ff” = 0. On pose :

Zyp ={x € [a;0]| f(2)f'(x) = 0}.

1. Montrer que Zs est un intervalle fermé.

2. Montrer que f est affine.

2809 | Mines-Ponts PC 2018

Soit P et ) deux polyndmes réels non nuls. L’équation
P(z)
Q(x)

peut-elle avoir une infinité de solutions ?

X-ENS PSI 2021

Soit E un espace vectoriel réel normé de dimension 2 muni d’une base (e;es), et tel
que, pour tout (A\;u) € R? :

| Xe1 + pea|| = ||| Aler + |p|e2|| condition (C4)
On veut montrer que pour tout (Ai; Ag; pi1; pt2) € R :
(Al <l et [Xof < p2| = [[Arer + Asea| <[lpaer + paez||  condition (Cy)

1. Donner un exemple d’espace vectoriel normé dans lequel (C4) est vérifiée, puis
un exemple dans lequel elle ne 1'est pas.

2. Soit A € R. Soit ¢ : pu+— [|pe; + Aes||. Montrer que :

W o) € R, <u1 —QHL2> < so(m);rw(uz)‘

3. En déduire que ¢ est convexe, c’est-a-dire :
V(i pe) € R? Va € [0:1], o((1— @) + apz) < (1— a)p() + ap(ps).

4. Montrer que ¢ est croissante sur R, .

5. En déduire la propriété (Cs).
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ENS MP 2018

Soit n un nombre premier. On considere dans le plan le triangle T" formé par l'origine
et les points de coordonnées (0;n) et (n;0). On subdivise ce triangle en n triangles
ti, i € {1;...;n}, ou chaque t; est formé par l'origine et les points de coordonnées
(i—1;n+1—1) et (i;n—1).

1. On admet le théoréme de Pick :

Soit P un polygone dont les sommets ont des coordonnées entieres. Alors
S=A+ g — 1, ou S est 'aire du polygone, A le nombre de points intérieurs
a coordonnées entieres du polygone, et B le nombre de points a coordonnées
entieres appartenant a la frontiere du polygone.

Montrer alors que pour tout ¢ € {2;...;n — 1}, les ¢; ont le méme nombre de
points intérieurs a coordonnées entieres.

2. Démontrer le théoréeme admis.

ENS MP 2017

Existe-t-il une fonction f de R7 dans R telle que I'on ait simultanément :
« Va>0, f(z) = o(z%);
V8 >0, (In(2))” = o(f(x))?

ENS MP 2014

1. Montrer qu’il existe une constante C' strictement positive telle que pour tous
entiers p, g avec ¢ non nul, 'on ait :

C
IRE:
q q

2. En déduire le rayon de convergence de la série entiere suivante :

“+o00 zn

nz::l sin(nmy/2)

X MP 2018

Soit P € R[X] scindé, unitaire, nul en 1 et en —1, et strictement positif sur | — 1;1].
Soit S laire sous la courbe de P entre —1 et 1. Soit T l'aire du triangle défini par 1’axe
des abscisses et les tangentes a P en —1 et en 1.

Montrer que S > %T.

bns

Soit m € N*, zq,..., 2z, € U distincts et ay,...,a, € C. On suppose que :

m
lim apz; = 0.
n—>+ookz_:1 k<k

Montrer que a; = --- = a,, = 0.
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X MP 2021

Quels sont les n € N tels qu’il existe un cercle du plan dont le nombre de points
d’intersection avec Q? soit n ? L’intersection peut-elle étre infinie ?

ENS MP 2017

Soit d € N* et n € N. Trouver les fonctions f de [0;n]¢ dans R vérifiant :

o La fonction f est nulle aux « bords » de [0;n]? : pour x € [0;n]?, si une des
coordonnées de x est dans {0;n}, alors on a f(z) = 0.

 Pour tout x € [0;n]? n’ayant aucune coordonnée dans {0;n}, on a :

> (fl@) = fy)) =0,

YyEAL

ou A, désigne l’ensemble des points de [0;d]" « adjacents » a x, c’est-a-dire
obtenus en ajoutant ou soustrayant 1 a une des coordonnées de .

2818 | Mines-Ponts MP 2019

1. Soit P = (X —7r)* -+ (X —r,)* un polynéme a coefficients complexes. Montrer
que les racines de P’ sont des barycentres a coefficients positifs des r;, 1 < j < n.

2. Soit (uy,)nen une suite telle que :

Up + Upp1 + 0+ Upgpd—
d )

Vn €N, upiqg =

oud e N*.

Montrer que la suite (u,),en converge vers

2(up + 2uy + -+ + dug_1)

£= d(d+1)

X MP 2019

Pour f : [a;b] — R, on pose :

V(f) = sup Do If(tis) = f(8)]

n>2,a<t1 < <tn<b

Montrer que :

V(f) < 400 <= f est la différence de deux fonctions croissantes.

X MP 2016

Soit Ao, ..., A\p et py, ..., 1, des réels, et la fonction P définie pour tout 6 réel par :
P(0) = Ao+ A1 cos(0) + -+ + A, cos(nB) + py sin(f) + - - - + py, sin(nb).

Montrer que si, pour tout § € R, P(f) > 0, alors il existe @ € C[X]| vérifiant 1’égalité
P(6) = |Q(e)|* pour tout 6.
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